Quiz 1

TRUE-FALSE QUESTIONS (50%)

Please include a 1-2 line explanation for each of your answers.

Statement	True	False
1. If one takes a given rocket, with a fixed chamber pressure, and replaces its operating		
gas by one with half the molecular mass, the thrust does not change.	v	
$F = P_c A_t c_F$ and c_F depends on geometry and γ , not molecular mass.		
2. For any external pressure, adding segments to a supersonic nozzle (increasing ${}^{A_{e}}/_{A_{t}}$)		V
always increases thrust.		
Maximum thrust when $P_e = P_a$. Extending the nozzle more than that creates <u>suction</u> ,		
reduces thrust.		
3. A conventional rocket nozzle operates on the ground with $P_e = 0.5 atm$. A device is	V	
proposed that will force flow separation at the point in the nozzle where $P = 1 atm$. This will increase thrust.		
Separation will allow back-filling of the negative pressure region past $P = 1$ atm.		
4. A small test rocket is fired in vacuum and measurements are made of the jet flow speed		٧
many exhaust diameters downstream. When this is done using different expansion area		•
ratios A_e/A_t , the downstream speed is found to be invariant.		
The speed for downstream is $c = \frac{F}{m}$ i.e. the specific impulse (times g). This does vary		
with A_e/A_t .		
5. The method of characteristics can be used to design the contour of a nozzle, but only	\checkmark	
downstream from the throat.		
The M.O.C. does require $M > 1$.	L	
6. In a solid propellant rocket, increasing the throat area increases the thrust.		\checkmark
$F = P_c A_t c_F; \ P_c = \left(\rho_p a c^* \frac{A_b}{A_t}\right)^{\frac{1}{1-n}}, \text{ so } F \sim A_t^{1-\frac{1}{1-n}} = A_t^{\frac{-n}{1-n}}, F \underline{decreases} \text{ with } A_t. \text{ In}$		
addition, c_F also decreases (through $\frac{A_e}{A_t}$ decreasing).		
7. The characteristic damping time of pressure oscillations inside a solid propellant rocket		
is proportional to the linear dimensions (assuming geometrically similar rockets).	•	
$\tau \sim (1-n)\frac{V_{ch}\rho_c}{\dot{m}} = (1-n)\frac{V_c\rho_c}{P_cA_t}c^* \sim \frac{V_c}{A_t}$ For similar geometry, $\frac{V_c}{A_t} \sim L_c$		
8. In an equilibrium nozzle expansion, dissociated species recombine fairly completely.		V
This means the performance is the same as one would calculate if dissociation were		_
ignored in the chamber.		
The heat of dissociation is all recovered in the nozzle recombination, but part of it at		
$P < P_c$, so the expansion to P_e is less efficient than it would be from P_c .		
9. The chemical reactions that are selected for imposing equilibrium in the calculation of		V
chamber temperature must be the ones that actually happen during combustion.		
They can be selected arbitrarily, as long as they linearly span the space of possible		
reactions.		

10. Heat flux to the nozzle walls peaks at the throat because that is where stagnation	
temperature is maximum.	•
Stagnation temperature is T_c everywhere. What is maximum at the throat is ρu .	

PROBLEM (50%)

The gas leaving the combustion chamber of a LOX-LH rocket has the following characteristics:

- Molecular mass: M = 13 g/mol
- Specific heat ratio: $\gamma = 1.26$
- Temperature: $T_c = 3600 K$
- Pressure: $P_c = 210 atm$
- Viscosity: $\mu_g = 3 \times 10^{-5} \left(\frac{T}{3000}\right)^{0.6} Kg/m/s$
- Prandtl's number: $P_r = 0.9$

The nozzle throat has a diameter $D_t = 0.277 m$, and its first wall is a thin Copper shell which is cooled on its back side to $T_{wc} = 300 K$. The thermal conductivity of Copper is k = 360 W/m/K.

What is the maximum Copper thickness such that the hot-side temperature T_{wh} does not exceed 800 *K*?

Formulas and constants:

$$\rho_t u_t = \frac{P_c}{c^{*'}} \text{ with } c^* = \frac{\sqrt{RT_c}}{\Gamma(\gamma)'} \Gamma = \sqrt{\gamma} \left(\frac{2}{\gamma+1}\right)^{\frac{\gamma+1}{2(\gamma-1)}}$$
$$\Gamma = \sqrt{1.26} \left(\frac{2}{2.26}\right)^{\frac{2.26}{2\times0.26}} = 0.6599$$
$$R = \frac{8.314}{0.013} = 639.5 \frac{J}{kgK}$$

241.1

To calculate:

$$c^* = 2299 \frac{m}{s} \to \rho_t u_t = \frac{210 \times 1.013 \times 10^5}{2299} = 9252 \frac{kg}{m^2 s}$$
$$T_t = \frac{T_c}{1 + \frac{\gamma - 1}{2} \times 1^2} = 3186 K \to \mu_t = 3 \times 10^{-5} \left(\frac{3186}{3000}\right)^{0.6} = 3.11 \times 10^{-5} \frac{kg}{m/s}$$

Reynolds number:

$$Re_t = \frac{\rho_t u_t D_t}{\mu_t} = \frac{9252 \times 0.277}{3.11 \times 10^{-5}} = 8.24 \times 10^7$$
$$c_f \approx \frac{0.046}{Re_t^{0.2}} = \frac{0.046}{(1.24 \times 10^7)^{0.2}} = 1.201 \times 10^{-3}$$

Stanton number:

$$S_t = \frac{c_f}{2P_r^{0.67}} = \frac{1.201 \times 10^{-3}}{2 \times 0.9^{0.67}} = 6.44 \times 10^{-4}$$

Heat flux at throat:

$$q_w = \rho_t u_t c_p (T_c - T_{wh}) S_t = 9252 \left(\frac{1.26}{0.26} \times 639.5\right) (3600 - 800) \times 6.44 \times 10^{-4}$$
$$q_w = 5.17 \times 10^7 W/m^2$$

Heat conduction through Copper shell:

$$q_w = h \frac{T_{wh} - T_{wc}}{\delta_{cu}}$$
$$\delta_{cu} = k \frac{T_{wh} - T_{wc}}{q_w} = 360 \frac{800 - 300}{5.17 \times 10^7} = 3.48 \times 10^{-3} W/m^2$$

So the shell must be less than 3.5 mm thick.

16.50 Introduction to Propulsion Systems Spring 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.