Quiz 2 May 18, 2011

Two hours, open book, open notes

TRUE-FALSE QUESTIONS

Justify your answer in no more than two lines.

4 points for correct answer and explanation

2-3 points for a correct answer with only partially correct explanation

1-2 points for an incorrect answer with some valid argument

0 for an incorrect answer with an incorrect explanation, or <u>any answer</u> with no explanation

Statement	True	False
1. For a turbojet, a high $\theta_t = \frac{T_{t4}}{T_{t0}}$ gives a high thermodynamic efficiency η_{th} at any compression ratio π_c .		
2. The processory ratio of the turbing does not change when the pilot changes the fuel (air		
ratio f.		
3. If the throat area A_7 of a turbojet decreases due to some obstruction, the compressor operating line moves closer to the stall line.		
4. The bypass ratio α of a turbofan engine is fixed by the geometry, and does not change with operating conditions.		
5. For a fixed compressor face Mach number M_2 , the cowl lip of a subsonic inlet would choke if its area A_1 were less than $\overline{m}_2(M_2)A_2$, where \overline{m}_2 is the non-dimensional flow factor.		
6. The Euler equation is only valid for ideal, isentropic flow.		
7. The stall line on a compressor map can be pre-determined by flow matching conditions even before the specific compressor has been selected.		
8. In a multi-stage turbine in which each stage has the same isentropic efficiency η_{stage} , the overall turbine isentropic efficiency η_T is greater than η_{stage} .		

9. The nitrogen oxides produced in the primary zone of a jet engine burner are largely destroyed by the cooler secondary air that is injected downstream.	
10. A quadrupole made up of four monopoles emits less acoustic power than would each of the monopoles separately.	

PROBLEM 1 (30 points)

The design of a certain turbofan engine is such that the turbine inlet temperature at takeoff on a standard day ($T_0 = 288 \ K$, $P_0 = 1 \ atm$ is 1650 K, and the compressor-face Mach number is $M_2 = 0.5$. The compressor is designed to provide maximum thrust at that condition. A set of such engines provides the required thrust (including margin) for takeoff of a passenger jet plane.

Consider now a "hot day" situation ($T_0 = 305 \text{ K}$, $P_0 = 1 \text{ atm}$) for the same plane, with the same load and at the same take-off Mach number. How will the following quantities change from their design values?:

- Thrust *F*
- Normalized thrust $\varphi = \frac{F}{P_{t_2}A_2}$
- Normalized peak temperature $\theta = \frac{T_{t4}}{T_{t0}}$
- Peak temperature T_{t4}
- Normalized flow rate \overline{m}_2
- Flow rate \dot{m}
- Fuel flow rate \dot{m}_f
- Compressor pressure ratio π_c

PROBLEM 2 (30 points)

In designing one of the identical stages of a compressor, we wish to maximize the stage temperature rise ΔT_t , so as to minimize the number of stages, while limiting the stage loading to avoid excessive losses. Assume a 50% reaction design, with the axial velocity *w* determined by a compressor-face Mach number $M_2 = 0.5$, and an inlet total temperature $T_{t0} = 250 K$.

a) Show from the Euler equation that high ΔT_t per stage is favored by high wheel spin $\omega \bar{r}$ and low stator exit angle β_1 (or, for this design, $\beta'_2 = \beta_1$). Assume the wheel speed is as high as allowed by hoop stress limitations on the rim (assumed to be self-sustaining, namely, the blade centrifugal pull is compensated by the disk tension). The rim material is a Titanium alloy with working stress $\sigma = 6 \times 10^8 Pa$, and density $\rho = 4500 \ kg/m^3$. Take the blade ratio $r_H/r_T = 0.8$, so that $\bar{r}/r_H = 9/8$. Calculate $\omega \bar{r}$.

b) Draw the velocity triangle and show that the flow turning angle δ (the angle between V_1 and V_2 , or between V'_1 and V'_2) increases as β_1 decreases. Values of β_1 that are too small will therefore lead to excessive blade losses, and possibly to stall. Choose the smallest β_1 that keeps $\delta \geq 15^{\circ}$.

c) With these choices, calculate the temperature rise ΔT_t per stage. How many stages would be required to achieve an overall pressure ratio $\pi_c = 21$?

16.50 Introduction to Propulsion Systems Spring 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.