TRUE-FALSE QUESTIONS

Justify your answer in no more than two lines.

- 4 points for correct answer and explanation
- 2-3 points for a correct answer with only partially correct explanation
- 1-2 points for an incorrect answer with some valid argument
- 0 for an incorrect answer with an incorrect explanation, or <u>any answer</u> with no explanation

Statement	True	False
1. For a turbojet, a high $ heta_t = {T_{t4}}/{T_{t0}}$ gives a high thermodynamic efficiency η_{th} at any		٧
compression ratio π_c .		
One can have a T_{t4}/T_{t0} with very small pressure ratio in the cycle. This gives a Brayton		
cycle low efficiency.	—	
2. The pressure ratio of the turbine does not change when the pilot changes the fuel/air	V	
ratio f. $\frac{2(\nu-1)}{\nu-1}$		
$ au_t = \left(\frac{A_7}{A_4}\right)^{\frac{2(\gamma-1)}{\gamma+1}}$ is <u>fixed</u> by geometry (due to double choking of the flow).		
3. If the throat area A_7 of a turbojet decreases due to some obstruction, the compressor	V	
operating line moves closer to the stall line.	ľ	
The compressor operating line is $\overline{m}_2 = \frac{A_7}{A_4} \pi_c \sqrt{\frac{1-\tau_t}{\frac{\gamma-1}{T}}}$, and $\tau_t = \left(\frac{A_7}{A_4}\right)^{\frac{2(\gamma 01)}{\gamma+1}}$. If		
$A_7 \uparrow, \tau_t \downarrow, \overline{m}_2 \downarrow$.		
4. The bypass ratio $lpha$ of a turbofan engine is fixed by the geometry, and does not change		٧
with operating conditions.		
It does not vary with θ .		
5. For a fixed compressor face Mach number M_2 , the cowl lip of a subsonic inlet would	V	
choke if its area A_1 were less than $\overline{m}_2(M_2)A_2$, where \overline{m}_2 is the non-dimensional flow		
factor.		
Equate flows when A_1 chokes: $\overline{m}_2 \frac{P_{t2}A_2}{\sqrt{T_{t2}}} = \frac{P_{t0}A_1}{\sqrt{T_{t0}}}$, and since $P_{t2} = P_{t0}$, $T_{t2} = T_{t0}$,		
$\overline{m}_2 A_2 = A_1$		
6. The Euler equation is only valid for ideal, isentropic flow.		V
It is a mechanical work balance, so it is not sensitive to non-idealities.		
7. The stall line on a compressor map can be pre-determined by flow matching conditions		V
even before the specific compressor has been selected.		
The <u>working line</u> is pre-determined, but the stall line depends on compressor details.		
8. In a multi-stage turbine in which each stage has the same isentropic efficiency η_{stage} ,	V	
the overall turbine isentropic efficiency η_T is greater than η_{stage} .		
The inefficiency $1-\eta_{stage}$ of each stage means that extra heat is deposited in the flow by		
each stage, and the subsequent stages convert some of it to work by expansion.		

9. The nitrogen oxides produced in the primary zone of a jet engine burner are largely		V
destroyed by the cooler secondary air that is injected downstream.		•
The destruction reactions are very slow.		
10. A quadrupole made up of four monopoles emits less acoustic power than would each	V	
of the monopoles separately.		
There are partial cancellations between positive and negative monopoles.		

PROBLEM 1 (30 points)

The design of a certain turbofan engine is such that the turbine inlet temperature at takeoff on a standard day ($T_0 = 288\ K$, $P_0 = 1\ atm$ is $1650\ K$, and the compressor-face Mach number is $M_2 = 0.5$. The compressor is designed to provide maximum thrust at that condition. A set of such engines provides the required thrust (including margin) for takeoff of a passenger jet plane.

Consider now a "hot day" situation ($T_0 = 305 \ K$, $P_0 = 1 \ atm$) for the same plane, with the same load and at the same take-off Mach number. How will the following quantities change from their design values?:

- Thrust F
- Normalized thrust $\varphi = \frac{F}{P_{t2}A_2}$
- Normalized peak temperature $\theta = {^T}_{t4}/_{T_{t0}}$
- Peak temperature T_{t4}
- Normalized flow rate \overline{m}_2
- Flow rate \dot{m}
- Fuel flow rate \dot{m}_f
- Compressor pressure ratio π_c

Same plane weight W, same M_0 , gives same lift L, and assuming same aerodynamic L/D, same drag D. Therefore, same thrust.

$$F' = F$$

For the same M_0 and P_0 , same P_{t0} , so same normalized thrust.

$$\varphi' = \frac{F'}{P'_{t0}A_2} = \varphi = \frac{F}{P_{t0}A_0}$$

Now, from lesson 18b, $\varphi = \varphi(\theta, M_0)$, hence same θ :

$$\theta' = \frac{T'_{t4}}{T'_{t0}} = \theta = \frac{T_{t4}}{T_{t0}}$$

Since
$$M_0' = M_0, \frac{T_{t0}'}{T_{t0}} = \frac{T_0'}{T_0} = \frac{305}{288} = 1.059$$
. Therefore, $\frac{T_{t4}'}{T_{t4}} = \frac{T_{t0}'}{T_{t0}} = 1.059$.
$$T_{t4}' = 1.059 \times 1650 = 1747 \ K$$

The normalized flow rate \overline{m}_2 , the compressor ratios π_c , τ_c , and the ratio $\frac{fh}{c_pT_{t0}}$ depend exclusively on θ , so

$$\pi'_c = \pi_c$$

$$\overline{m}'_2 = \overline{m}_2$$

Now, $\dot{m} = \overline{m}_2 \Gamma \frac{P_{t0} A_2}{\sqrt{RT_{t0}}}$, and so

$$\frac{\dot{m}'}{\dot{m}} = \sqrt{\frac{T_{t0}}{T_{t0}'}} = \frac{1}{\sqrt{1.059}} = 0.972$$

Also,
$$f = \frac{\dot{m}_f}{\dot{m}}$$
, so $\frac{\dot{m}_f'}{\dot{m}_f} = \frac{f'}{f} \frac{\dot{m}'}{\dot{m}} = \frac{T'_{t0}}{T_{t0}} \sqrt{\frac{T_{t0}}{T'_{t0}}} = \sqrt{\frac{T'_{t0}}{T_{t0}}}$
$$\frac{\dot{m}_f'}{\dot{m}_f} = \sqrt{1.059} = 1.029$$

PROBLEM 2 (30 points)

In designing one of the identical stages of a compressor, we wish to maximize the stage temperature rise ΔT_t , so as to minimize the number of stages, while limiting the stage loading to avoid excessive losses. Assume a 50% reaction design, with the axial velocity w determined by a compressor-face Mach number $M_2=0.5$, and an inlet total temperature $T_{t0}=250~K$.

a) Show from the Euler equation that high ΔT_t per stage is favored by high wheel spin $\omega \bar{r}$ and low stator exit angle β_1 (or, for this design, $\beta_2' = \beta_1$). Assume the wheel speed is as high as allowed by hoop stress limitations on the rim (assumed to be self-sustaining, namely, the blade centrifugal pull is compensated by the disk tension). The rim material is a Titanium alloy with working stress $\sigma = 6 \times 10^8 \ Pa$, and density $\rho = 4500 \ kg/m^3$. Take the blade ratio $r_H/r_T = 0.8$, so that $r/r_H = 9/8$. Calculate $\omega \bar{r}$.

Axial velocity:
$$w=M_2\sqrt{\gamma RT_2}=M_2\sqrt{\frac{\gamma RT_{t0}}{1+\frac{\gamma-1}{2}M_2^2}}$$

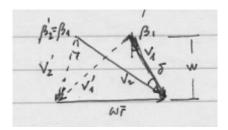
$$w = 0.5 \sqrt{\frac{1.4 \times 287 \times 250}{1 + 0.2 \times 0.5^2}} = 309.3 \, m/s$$

Wheel speed: or self-sustaining rim, $\sigma=\rho(\omega^2r_{\rm H}^2)$, and $\bar{r}=9/8(r_{\rm H})$, so

$$\omega \bar{r} = \frac{9}{8} \omega r_H = \frac{9}{8} \sqrt{\frac{\sigma}{\rho}} = \frac{9}{8} \sqrt{\frac{6 \times 10^8}{4500}}$$

$$\omega \bar{r} = 410.8 \, m/s$$

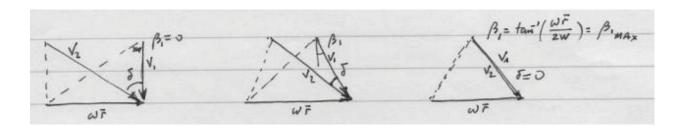
Euler equation: $c_p \Delta T_t = \omega \bar{r} (\omega \bar{r} - 2w \tan \beta_1)$ Because $v_1 = w \tan \beta_1$, $v_2 = \omega \bar{r} - w \tan \beta_1$, so $v_2 - v_1 = \omega \bar{r} - 2w \tan \beta_1$



Euler's equation shows ΔT_t increases with $\omega \bar{r}$ and decreases with β_1 , as stated.

b) Draw the velocity triangle and show that the flow turning angle δ (the angle between V_1 and V_2 , or between V_1' and V_2') increases as β_1 decreases. Values of β_1 that are too small will therefore lead to excessive blade losses, and possibly to stall. Choose the smallest β_1 that keeps $\delta \geq 15^{\circ}$.

Let us consider three values of β_1 : zero, a medium value, and the maximum that still makes $\omega \bar{r} - 2w \tan \beta_1 > 0$:



It is clear that as β_1 increases (left to right), δ decreases. So, the smallest β_1 angles give the highest blade loading (most flow turning).

If δ is prescribed, what is β_1 ? We have, from geometry,

$$\delta = \tan^{-1} \left(\frac{\omega \bar{r} - w \tan \beta_1}{w} \right) - \beta_1$$

Define $t = \tan \beta_1$, $\frac{w}{\omega \bar{r}} = \phi$:

$$\delta = \tan^{-1} \left(\frac{1}{\phi} - t \right) - \tan^{-1} t$$

Take the tangent of both sides:

$$\tan \delta = \frac{\frac{1}{\phi} - 2t}{1 + \left(\frac{1}{\phi} - t\right)t}$$

This can be rearranged as a quadratic equation for t

$$t^2 - \left(\frac{1}{\phi} + \frac{2}{\tan \delta}\right) + \frac{1}{\phi \tan \delta} - 1 = 0$$

With solution:

$$t = \frac{1}{2\phi} + \frac{1}{\tan \delta} \pm \sqrt{\frac{1}{4\phi^2} + \frac{1}{\tan \delta} + 1}$$

In our case, $\delta=15^{\circ}$ (using the negative square root, the positive makes $\omega \bar{r}-2w\tan\beta_1<0$).

$$t = \tan \beta_1 = \frac{410.8}{2 \times 309.3} + \frac{1}{\tan 15^{\circ}} - \sqrt{\left(\frac{410.8}{2 \times 309.3}\right)^2 + \frac{1}{\tan^2 15^{\circ}} + 1}$$
$$\beta_1 = 25.44^{\circ}$$

Note: This can be also found by direct trial-and-error on

$$\delta = \tan^{-1} \left(\frac{410.8}{309.3} - \tan \beta_1 \right) - \beta_1$$

c) With these choices, calculate the temperature rise ΔT_t per stage. How many stages would be required to achieve an overall pressure ratio $\pi_c=21$?

For
$$\omega \bar{r}=410.8$$
 m/s, $w=309.3\frac{m}{s}$, $\beta_1=25.44^\circ$. Euler gives:
$$\Delta T_t=\frac{410.8(410.8-2\times309.3\times0.04757)}{1005}$$

$$(\Delta T_t)_{stage}=47.6~K$$

If
$$\pi_c = 21$$
, $\tau_c = \pi_c^{\frac{\gamma - 1}{\gamma}} = 21^{\frac{1}{3.5}} = 2.3865$

The number of stages is:

$$N = \frac{T_{t0}(\tau_c - 1)}{(\Delta T_t)_{stage}} = \frac{250(2.3865 - 1)}{47.6} = 7.28$$

Rounding up:

$$N = 8$$

MIT OpenCourseWare http://ocw.mit.edu

16.50 Introduction to Propulsion Systems Spring 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.