
16.50 Lecture 2 
 
Subjects: Rocket staging; Range of aircraft; Climb & Aceleration 
 

1) Rocket Staging 
 

The reason for staging is to avoid having to accelerate empty tanks. Assume for 
simplicity only two stages; one does not want to stage either too early (and then carry a 
heavy second stage tank) or too late (and carry a heavy first stage tank for a long time). It 
can be shown that for ideal symmetrical stages (same specific impulse, same structural 
fractions), the velocity increment should be divided equally between the stages, and this 
is a good first cut for more general cases. 
 
In its simplest form, staging consists of just replacing the payload of the first stage by a 
complete second stage, which in turn has its own payload, as shown in the sketch. 
 

     
 
We go back to the rocket equation, and neglect gravity losses. Write for short ! = ms"tr , 
and assume this structural fraction is the same for both stages (in each case the structural 
mass is normalized by the initial mass of that stage); assume also that the jet velocity c is 
the same for both stage engines (although typically the first stage engine will be larger 
and have a bigger thrust). The final payload is given by 
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But the total velocity increment !V = !V1 + !V2  is prescribed, and so we obtain  
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It is easy to se that this is maximum when !V1 = !V " !V1 , i.e., when !V2 = !V1 . If this 
staging is selected, the overall payload fraction is 
  

(m ) "V

    ( pay 2 ) = (e
!

2c

m0 ) opt ! # )2  
( 1

This derivation can easily be extended to N>2 stages, but things are more complicated if 
the structural fractions or the jet velocities are different among stages. 
 
Range of Aircraft 
 
 For aircraft, the simplest measure of performance is cruise fuel consumption and 
the resulting range.  At one time this was also the critical performance measure for 
transports, bombers and fighters.  This is less true now for transports because the ranges 
accessible with modern engines and airframes are in the order of 8,000 miles.  For 
bombers aerial refueling extends the range to the extent that again range is no longer such 
a challenge (although refueling is quite expensive).  Range is still important for fighters 
because the requirements for high speed and maneuverability conflict with those for long 
range. 
 
Consider an aircraft in straight, level flight 
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We define the Specific Impulse by: 

F = gI m
.

where m
.

 is the fuel mass flow, so that m
. dm = - .  Note that the inverse of I is the 

dt
‘Specific Fuel Consumption, SFC, in appropriate units. From this definition and the force
balances we obtain 
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If we assume D/L and I are constant (Here we are implying models for both the 
propulsion system and the aircraft), then  

m(t) D
!n = ! t

m0 LI

The range R = u0t where u0 is the flight velocity, so 
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where m(R) is the aircraft mass at the range R.  This is the Breguet Range Equation. 

As in the case of the rocket, it is useful to divide the mass m0 into structural, 
payload, engines and fuel:
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If the fuel is expended at R, 
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Range and Payload.  If we define: 
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we can write
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(quite similar to what we obtained for a rocket).

From this we can construct a Range vs. Payload chart.  As an example, suppose
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Note this is not a straight line, although it is close.

Climb & Acceleration

Sometimes we are more interested in climb and maneuver rather than cruise, as 
for fighter aircraft.  Then an Energy Approach is most helpful.
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Suppose the aircraft is climbing at angle !  from the horizontal.  The equation of motion 
along the path is

m du0 = F ! D ! mgSin"
dt

u du0 (F ! D)u0
0 = ! gu  

dt m 0Sin"

but u0Sin dh
! = , so it follows that

dt

g dh + u du0 (F ! D)u0 dE
0 = "

dt dt m dt

Were we define a Total Energy E gh u 2

= + 0  per unit mass.
2

If we had a simple model for F and D as a function of u0 and h we could integrate this as
we did for the rocket.  But, as we shall see later in the semester these dependencies are
much more complex for the aircraft engine than for the rocket. Thus for the two classes
of engine we have these quite different thrust characteristics:

Rocket Engine
- Nearly independent of its environment, atmosphere and speed.
Aircraft Engine  
- Strongly dependent on flight speed and atmosphere.
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