TRUE-FALSE QUESTIONS:

Give an explanation for your answer in no more than 2 lines. For each question,

Right answer, valid explanation
Right answer, bad explanation
Right answer, no explanation
Wrong answer, some coherent argument
Wrong answer, no explanation (or bad explanation)

4-5 points
1-3 points
0 points
1-2 points
0 points

		T	F
Q1	The larger the weight/thrust ratio of a rocket engine, the higher the optimum initial acceleration of the vehicle. With a heavy engine, increasing a_{0} would reduce payload more than the lowered ΔV_{g} would reduce it.		V
Q2	For a satellite in an elliptical orbit about Earth, the minimum ΔV required to escape occurs at perigee. The speed is highest at perigee, i.e. closer to escape velocity.	V	
Q3	The maximum payload that can be carried over a given ΔV with an Electric Propulsion thrust system of a fixed specific mass α increases with the thrusting time chosen. Long burn time implies lower power, so a lighter power system.	V	
Q4	Since the flow speed at a choked throat is always sonic, and density is inversely proportional to temperature, the choked mass flow rate scales as $1 / T_{c}$. The other factor is speed of sound, which scales as $\sqrt{T_{c}}$ so, in the end, $\dot{m} \sim \frac{1}{\sqrt{T_{c}}}$		V
Q5	A rocket nozzle is pressure-matched on the ground. As the rocket climbs and matching is lost, thrust decreases. Pressure matching maximizes thrust at fixed P_{0}, but when P_{0} is lowered (climb), thrust increases.		V
Q6	If separation were somehow suppressed in an over-expanded nozzle with $P_{e} / P_{0}<0.4$, the thrust would increase. Suppressing separation would re-introduce suction near the exit plane, reducing thrust.		V
Q7	Reducing the throat area of a solid propellant rocket increases its thrust.	\checkmark	

	$P_{C} \sim\left(\frac{A_{b}}{A^{*}}\right)^{\frac{1}{1-n}}$ and $F \sim P_{C} A^{*} \sim A^{* \lambda-\frac{1}{1-n}}=A^{* \frac{n}{1-n}}$ So, less A^{*}, more thrust.		
Q8	In an externally heated rocket (like a nuclear or solar thermal rocket), dissociation of the gas increases thrust (for fixed chamber temperature and pressure). lf T_{c} is fixed, dissociation allows addition of extra heat, part of which is converted to jet velocity.	V	
Q9	In a chemical (combustion) rocket, dissociation of the gas increases thrust (for fixed chamber pressure). In this case, there is no extra heat to be had, so dissociation lowers T_{c}. Even if the heat of dissociation is recovered in the expansion, it is recovered at lower P.	V	
Q10	Frozen flow expansion implies $\gamma=$ constant. The c_{p} of each component species still changes with T, so even at constant composition $\gamma=\gamma(T)$.	V	
Q11	Of the two mechanisms affecting ablative cooling, heat absorption by vaporization of the surface material is dominant. Relatively little gas is generated at the surface, so its effect on S_{t} is fairly small. The main effect is the heat absorbed in the decomposition.	V	
Q12	Jet engines operate fuel-lean in order to maximize specific impulse. They operate lean to protect the turbine.	V	

PROBLEM (40\% of grade)

In a LOX-Kerosene rocket the gas-side "film coefficient", $h_{g} \equiv q_{w} /\left(T_{c}-T_{w h}\right)$ is estimated to be $1.4 \times \frac{10^{4} \mathrm{~W}}{\mathrm{~m}^{2}} / \mathrm{K}$ when the chamber pressure is $P_{c}=100 \mathrm{~atm}$., the chamber temperature is $T_{c}=3300 \mathrm{~K}$, and the hot-side wall temperature is $T_{w h}=800 \mathrm{~K}$. The first wall, separating the gas from the coolant, is a 2 mm plate of Copper/Tungsten (thermal conductivity $k=$ $300 \mathrm{~W} / \mathrm{m} / \mathrm{K}$. The coolant is the kerosene fuel, and it is estimated to be at $T_{l}=430 \mathrm{~K}$ when it arrives at the throat section after cooling the nozzle skirt.
a) Calculate the heat flux q_{w} at the throat.

$$
q_{w}=h_{g}\left(T_{c}-T_{w h}\right)=1.4 \times 10^{4}(3300-800)=\quad 3.5 \times 10^{7} \mathrm{~W} / \mathrm{m}^{2}
$$

b) By equating the same heat flux to that crossing the first wall, calculate the cool-side wall temperature $T_{w c}$.

$$
\begin{gathered}
q_{w}=\frac{k_{w}\left(T_{w h}-T_{w c}\right)}{\delta} \rightarrow T_{w c}=T_{w h}-\frac{\delta}{k_{w}} q_{w} \\
T_{w c}=\frac{2 \times 10^{-3}}{300}\left(3.5 \times 10^{7}\right)=
\end{gathered}
$$

c) By also equating q_{w} to the heat flux through the liquid-side boundary layer, calculate the required liquid-side film coefficient, h_{l}.
$q_{w}=h_{l}\left(T_{w c}-T_{l}\right) \rightarrow h_{l}=\frac{q_{w}}{T_{w c}-T_{l}}=\frac{3.5 \times 10^{7}}{567-430}=\quad 2.56 \times 10^{5} \frac{\mathrm{~W}}{\mathrm{~m}^{2} \mathrm{~K}}$
d) Assuming for the liquid $\rho_{l}=800 \mathrm{~kg} / \mathrm{m}^{3}$ and a specific heat $c_{l}=1900 \mathrm{~J} / \mathrm{kg} / \mathrm{K}$, and taking the liquid-side Stanton number to be 0.0015 , calculate the implied liquid velocity u_{l} in the cooling passages.
$h_{l}=\rho_{l} u_{l} c_{l}\left(S t_{l}\right)$
$u_{l}=\frac{2.56 \times 10^{5}}{800 \times 1900 \times 1.5 \times 10^{-3}}=\quad 112 \mathrm{~m} / \mathrm{s}$
e) (For 10 points of extra credit) If, due to excessive pressure drops, the maximum liquid velocity is $80 \mathrm{~m} / \mathrm{s}$, what would be the maximum chamber pressure P_{c} compatible with these conditions?

From Bartz's equation, $q_{w} \sim h_{g} \sim\left(P_{a}\right)^{0.8}, \quad$ so $q_{w}=3.5 \times 10^{7}\left(\frac{P_{c}}{100}\right)^{0.8}$
$T_{w c}=800-\frac{0.002}{300}\left(3.5 \times 10^{7}\right)\left(\frac{P_{c}}{100}\right)^{0.8}=800-233\left(\frac{P_{c}}{100}\right)^{0.8}$
With $u_{e}=80 \frac{\mathrm{~m}}{\mathrm{~s}}$,

$$
\begin{aligned}
& 3.5 \times 10^{7}\left(\frac{P_{c}}{100}\right)^{0.8}=h_{l}\left(800-233\left(\frac{P_{c}}{100}\right)^{0.8}-430\right) \\
& =800 \times 80 \times 1900 \times 1.5 \times 10^{-3}\left(370-233\left(\frac{P_{c}}{100}\right)^{0.8}\right) \\
& 3.5 \times 10^{7}\left(\frac{P_{c}}{100}\right)^{0.8}=1.825 \times 10^{5}\left(370-233\left(\frac{P_{c}}{100}\right)^{0.8}\right) \\
& \left(\frac{P_{c}}{100}\right)^{0.8}=\frac{1.825 \times 10^{5} \times 370}{3.5 \times 10^{7}+1.825 \times 10^{5} \times 233}=0.871
\end{aligned}
$$

$$
P_{c}=84.2 \mathrm{~atm}
$$

MIT OpenCourseWare
http://ocw.mit.edu

16.50 Introduction to Propulsion Systems

Spring 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

