Quiz 1 March 18, 2011

TRUE-FALSE QUESTIONS:

Give an explanation for your answer in no more than 2 lines. For each question,

Right answer, valid explanation	4-5 points
Right answer, bad explanation	1-3 points
Right answer, no explanation	0 points
Wrong answer, some coherent argument	1-2 points
Wrong answer, no explanation (or bad	0 points
explanation)	

		Т	F
Q1	The larger the weight/thrust ratio of a rocket engine, the higher the optimum		\checkmark
	initial acceleration of the vehicle.		
	With a heavy engine, increasing a_0 would reduce payload more than the		
	lowered ΔV_g would reduce it.		
Q2	For a satellite in an elliptical orbit about Earth, the minimum ΔV required to	\mathbf{v}	
	escape occurs at perigee.		
	The speed is highest at perigee, i.e. closer to escape velocity.		
Q3	The maximum payload that can be carried over a given ΔV with an Electric	\mathbf{v}	
	Propulsion thrust system of a fixed specific mass $lpha$ increases with the thrusting		
	time chosen.		
	Long burn time implies lower power, so a lighter power system.		
Q4	Since the flow speed at a choked throat is always sonic, and density is inversely		\checkmark
	proportional to temperature, the choked mass flow rate scales as $^{1\!/}_{T_{c}}$.		
	The other factor is speed of sound, which scales as $\sqrt{T_c}$ so, in the end, $\dot{m} \sim \frac{1}{\sqrt{T_c}}$		
Q5	A rocket nozzle is pressure-matched on the ground. As the rocket climbs and		\checkmark
	matching is lost, thrust decreases.		
	Pressure matching maximizes thrust <u>at fixed</u> P_0 , but when P_0 is lowered (climb),		
	thrust increases.		
Q6	If separation were somehow suppressed in an over-expanded nozzle with		V
	$P_e/P_0 < 0.4$, the thrust would increase.		
	Suppressing separation would re-introduce suction near the exit plane, reducing		
	thrust.		
Q7	Reducing the throat area of a solid propellant rocket increases its thrust.	V	

	$P_c \sim \left(\frac{A_b}{A^*}\right)^{\frac{1}{1-n}} \text{ and } F \sim P_c A^* \sim A^{*\lambda - \frac{1}{1-n}} = A^{*\frac{-n}{1-n}}$ So, less A [*] , more thrust.		
Q8	In an externally heated rocket (like a nuclear or solar thermal rocket), dissociation of the gas increases thrust (for fixed chamber temperature and pressure). If T_c is fixed, dissociation allows addition of extra heat, part of which is converted to jet velocity.	V	
Q9	In a chemical (combustion) rocket, dissociation of the gas increases thrust (for fixed chamber pressure). In this case, there is no extra heat to be had, so dissociation lowers T_c . Even if the heat of dissociation is recovered in the expansion, it is recovered at lower P.		V
Q10	Frozen flow expansion implies $\gamma = constant$. The c_p of each component species still changes with T, so even at constant composition $\gamma = \gamma(T)$.		٧
Q11	Of the two mechanisms affecting ablative cooling, heat absorption by vaporization of the surface material is dominant. Relatively little gas is generated at the surface, so its effect on S_t is fairly small. The main effect is the heat absorbed in the decomposition.	V	
Q12	Jet engines operate fuel-lean in order to maximize specific impulse. They operate lean to protect the turbine.		٧

PROBLEM (40% of grade)

In a LOX-Kerosene rocket the gas-side "film coefficient", $h_g \equiv q_w/(T_c - T_{wh})$ is estimated to be $1.4 \times \frac{10^4 W}{m^2}/K$ when the chamber pressure is $P_c = 100 \ atm$., the chamber temperature is $T_c = 3300 \ K$, and the hot-side wall temperature is $T_{wh} = 800 K$. The first wall, separating the gas from the coolant, is a 2 mm plate of Copper/Tungsten (thermal conductivity k = 300 W/m/K. The coolant is the kerosene fuel, and it is estimated to be at $T_l = 430 K$ when it arrives at the throat section after cooling the nozzle skirt.

a) Calculate the heat flux q_w at the throat.

$$q_w = h_a (T_c - T_{wh}) = 1.4 \times 10^4 (3300 - 800) =$$

 $3.5 \times 10^7 W/m^2$

b) By equating the same heat flux to that crossing the first wall, calculate the cool-side wall temperature T_{wc} .

$$q_{w} = \frac{k_{w}(T_{wh} - T_{wc})}{\delta} \to T_{wc} = T_{wh} - \frac{\delta}{k_{w}} q_{w}$$
$$T_{wc} = \frac{2 \times 10^{-3}}{300} (3.5 \times 10^{7}) = 567K$$

c) By also equating q_w to the heat flux through the liquid-side boundary layer, calculate the required liquid-side film coefficient, h_l .

$$q_w = h_l(T_{wc} - T_l) \rightarrow h_l = \frac{q_w}{T_{wc} - T_l} = \frac{3.5 \times 10^7}{567 - 430} =$$

$$2.56 \times 10^5 \frac{W}{m^{2}K}$$

d) Assuming for the liquid $\rho_l = 800 kg/m^3$ and a specific heat $c_l = 1900 J/kg/K$, and taking the liquid-side Stanton number to be 0.0015, calculate the implied liquid velocity u_l in the cooling passages.

$$h_{l} = \rho_{l} u_{l} c_{l} (St_{l})$$
$$u_{l} = \frac{2.56 \times 10^{5}}{800 \times 1900 \times 1.5 \times 10^{-3}} = 112 \text{ m/s}$$

e) (For 10 points of extra credit) If, due to excessive pressure drops, the maximum liquid velocity is 80 m/s, what would be the maximum chamber pressure P_c compatible with these conditions?

From Bartz's equation,
$$q_w \sim h_g \sim (P_a)^{0.8}$$
, so $q_w = 3.5 \times 10^7 \left(\frac{P_c}{100}\right)^{0.8}$
 $T_{wc} = 800 - \frac{0.002}{300} (3.5 \times 10^7) \left(\frac{P_c}{100}\right)^{0.8} = 800 - 233 \left(\frac{P_c}{100}\right)^{0.8}$
With $u_e = 80 \frac{m}{s}$,
 $3.5 \times 10^7 \left(\frac{P_c}{100}\right)^{0.8} = h_l \left(800 - 233 \left(\frac{P_c}{100}\right)^{0.8} - 430\right)$
 $= 800 \times 80 \times 1900 \times 1.5 \times 10^{-3} \left(370 - 233 \left(\frac{P_c}{100}\right)^{0.8}\right)$
 $3.5 \times 10^7 \left(\frac{P_c}{100}\right)^{0.8} = 1.825 \times 10^5 \left(370 - 233 \left(\frac{P_c}{100}\right)^{0.8}\right)$
 $\left(\frac{P_c}{100}\right)^{0.8} = \frac{1.825 \times 10^5 \times 370}{3.5 \times 10^7 + 1.825 \times 10^5 \times 233} = 0.871$

 $P_c = 84.2 \ atm$

16.50 Introduction to Propulsion Systems Spring 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.