
16.50 Lecture 3 
 
Subjects: Orbital mechanics; Single force center  
 
The most usual application of rocket engines is to propel vehicles under conditions where 
the behavior of the vehicle is largely determined by the gravitational attractions of one or 
more bodies of the solar system, and where aerodynamic drag is not very important.  So it 
is essential to understand the behavior of an orbiting body in order to appreciate the 
requirements which must be met by the rocket engine.  For this reason we shall spend a 
short time discussing orbital mechanics.  It should be noted, however, that the intent is to 
present only the aspects that define the requirements for propulsion systems, not to 
discuss the details of orbital computations.  For these the student should refer to a text on 
celestial mechanics or spacecraft guidance. 
 
Forces between bodies. The planetary Sphere of Influence 
 
The gravitational attraction between two bodies of masses m and M is given by 
 Q =GmM 1

r 2
 

where G = 6.67x10-11m3 kg-1 s-2, and r is the distance between the bodies. The 
gravitational acceleration is then f = GM / r2 ! µ / r2 , where µ=GM is the gravity 
constant of the body with mass M. 
 
We are interested in the motion of a small body (spacecraft) in the force fields of one or 
more larger bodies. If we consider the Sun and two or more planets, the problem is 
extremely difficult mathematically.  For our purposes, it can be simplified immensely by 
considering the motion of the spacecraft under the influence of only the dominant 
attractor at any given time. On the interplanetary scale, this means the Sun most of the 
time, but near enough one of the planets (inside its “Sphere of Influence”, SOI), the 
planet will dominate. To estimate correctly the radius of the SOI, one should work in the 
frame of reference of the planet. The gravitational acceleration of the planet alone on the 
S/C is fp,SC, and the  perturbation due to the Sun of the spacecraft acceleration with respect 
to the planet is fS,SC-fS,p. Conversely, the gravitational acceleration of the Sun alone on the 
S/C is fS,SC, and the perturbation due to the planet of the spacecraft acceleration with 
respect to the Sun is fp,SC-f , which, since the distance to the Sun is much greater that that 
to the SC, is almost equal t

p,
o f
S

 alone. We now state that the relative errors in ignoring 
either of the two perturbations
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are the same on the SOI: 
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The difference on the left hand side numerator is approximated to first order as 
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Substituting this and the
 

 other accelerations into the SOI definition, and rearranging, one 
finds rSOI (= rp,SC) to be given by 
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Since Mp/MS is a small number, r /r <<1. We can therefore model the relative body 
motion near the planets (r<r

SOI S,p

SOI) as being under the influence of a single force center (the 
planet), while the body and the planet experience a common acceleration toward the Sun. 
Far from the planet (r>r ) we ignore its field and consider the body motion as influenced 
only by the Sun. For pre
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minary calculations, these limiting models are simply “patched” 

at the SOI. 
 
To see how far from a planet is far, we refer to Table 1-1, which gives the ratios of the 
planet's mass to that of the Sun and the size of hteir spheres of influence. 
 

Table 1-1 
 

                                      Relative mass          Orbital Radius, km      rSOI (Km) 
Mercury                         .167 x 10-6                   .578 x 108         98,000 
Venus                            .245 x 10-5                   1.08 x 108          536,000 

Earth                              .300 x 10-5                   1.49 x 108      791,000 
Mars                               .324 x 10-6                   2.27 x 108      501,000 
Jupiter                            .956 x 10-3                   7.77 x 108      41.6x106 

Saturn                            .286 x 10-3                   1.42 x 109      47.3x106 

Uranus                           .437 x 10-4                   2.86 x 109      44.9x106 

Neptune                         .518 x 10-4                   4.49 x 109      75.5x106 

Pluto                               .28 x 10-5                    5.89 x 109      30.8x106 

Earth's Moon,  M /M =.368 x 10-7           r =.384 x 106         
 

M E E,M
57,600 

We see for example that the sphere of influence of the Earth is just about twice the 
distance to the Moon. On one hand this means we can just barely ignore solar 
perturbations in considering cis-lunar operations not very near the Moon, but also that the 
Moon’s own motion about the Earth must be appreciably affected by the Sun’s attraction. 
Notice also the relatively large size of the SOI of the Moon in the Earth-Moon system 
(15% of the Earth/Moon distance). 
 
We can therefore reduce the complex many-force center situation to a set of simpler ones, 
namely 
 a)  Motion in the single force field of a planet 
 b)  Motion in the single force field of the Sun 
 c)  Transition from a Sun-dominated to a planet dominated situation, or vice 
versa.  As we shall see this transition can be thought of as a change of coordinate system. 
 
Motion under a Single Force Center 
 
The subject of motion under a single gravitational attractor is covered in all Dynamics 
textbooks, and so we only give here a summary of the main conclusions and working 
equations.  
 

2



    
   

c=aε a(1-ε) 

p 
r 

 π-θ   
 
 
 
 
 
 
 

With reference to the figure, the polar equation of the trajectory is    r =  , 
1+ ! cos"

where p = a(1! " 2 ) ,  ε is the eccentricity and a is the semi-major axis. If ε<1, all the 
quantities listed are positive and the trajectory is closed (an ellipse with a focus at r=0). 
The case when ε>0 will be discussed later. The quantity p is called “the parameter”, and 
has the significance shown in the figure. The minimum and maximum radii are called the 
“periapsis” and “apoaxis”, respectively (perigee and apogee for orbits around Earth); they 
are given by  

   r p
p = = a(1" ! ); r p

a = = a(1+ ! )  
1+ ! 1" !

The potential energy per unit mass, with zero at infinity, is  Ep = !µ / r .  
 
The two constants of the motion are: 

(a) The total energy per unit mass,     E 1= v2 µ µ! = !  
2 r 2a

(b) The angular momentum per unit mass,   h = r
2!! = µp = a(1" # 2 )  

 
a3/2The time to complete one orbit is      T = 2!   
µ

Using the conservation of energy, the velocity magnitude is given by the so-called “vis-
2viva” equation:       µ µv = !   
r a

The circular orbital velocity (r=a) is therefore    µ µvc = =   
r a

Notice that the kinetic energy in a circular orbit is EK = µ / 2a = !E = !1/ 2Ep . More 
generally, the average kinetic and potential energies satisfy these same curious 
relationships for any elliptic orbit.  
 
The trajectory first becomes open when ε=1, r  tends to infinity, and the total energy 
becomes zero. When this happens, the body is

a
 on a trajectory to barely “escape” the 

attractor, arriving at infinity with zero velocity. The velocity on this trajectory depends on 
2distance as µvesc = . 
r

As a final note, the apogee and perigee velocities occur frequently in orbital calculations. 
They are related to the apogee and perigee radii by 

p
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Although the formulation in terms of the classical “orbital elements” a, ε, p, etc, is 
standard, most simple problems can be solved quickly by using the energy and angular 
momentum conservation laws between judiciously selected points, often the apogee and 
perigee themselves. 
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