16.50 Propulsion Systems Spring 2012

Homework 4.1: Solid Propellant Rocket

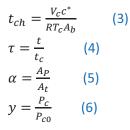
1a) Normal operation mass balance:

 $a\rho_p A_b P_{c0}^n - \frac{A_t P_{c0}}{c^*} = 0$ (1)

Transient operation after port opening:

$$\frac{V_c}{RT_c}\frac{dP_c}{dt} = a\rho_P A_b P_c^n - \frac{(A_t + A_b)P_c}{c^*}$$
(2)

Define:



A_p A_b

In terms of these variables, equation (2) becomes:

 $\frac{dy}{d\tau} = y^n - (1+\alpha)y \tag{7}$

Multiply equation (7) by y^{-n} : $y^{-n} \frac{dy}{d\tau} = 1 - (1 + \alpha)y^{1-n}$ (8) $(1 - n)y^{-n}dy = d(y^{1-n})$

Define:

 $y^{1-n} = u$ (9) $\frac{1}{1-n}\frac{du}{d\tau} = 1 - (1+\alpha)u$ (10)

This relationship is <u>linear</u> and can be easily solved. The <u>particular solution</u> is $u = \frac{1}{1+\alpha}$, and the <u>homogeneous solution</u> is $u = e^{-(1-n)(1+\alpha)\tau}$. The <u>complete solution</u> is then $u = \frac{1}{1+\alpha} + Ae^{-(1-n)(1+\alpha)\tau}$, where A is arbitrary.

At t = 0 ($\tau = 0$), we have $P_c = P_{c0}$ (y = u = 1), so $1 = \frac{1}{1+\alpha} + A$ $A = \frac{\alpha}{1+\alpha}$

Therefore:

$$u = \frac{1 + \alpha e^{-(1-n)(1+\alpha)\tau}}{1+\alpha}$$

Using
$$y = u^{\frac{1}{1-n}}$$
:

$$y = \left[\frac{1+\alpha e^{-(1-n)(1+\alpha)\tau}}{1+\alpha}\right]^{\frac{1}{1-n}}$$
(11)

1b) The combustion stops when $P_c \le 20 \ atm \quad \left(y_{extinction} = \frac{20}{70} = \frac{2}{7}\right)$. For $t \to \infty$ ($\tau \to \infty$), we obtain from equation (11):

$$y(\infty) = \frac{1}{(1+\alpha)^{\frac{1}{1-n}}}$$
 (12)

For this to be equal or less than $\frac{2}{7}$, α must be more than: $\alpha_{min} = \left(\frac{1}{y(\infty)}\right)^{1-n} - 1 = \left(\frac{7}{2}\right)^{1-0.2} - 1$ (13) $\left(\frac{A_P}{A_t}\right)_{min} = 1.724$ (14)

For values of $\alpha > 1.724$, the extinction limit $y = \frac{2}{7}$ is reached in a finite time. Solving **equation (11)** for τ gives:

$$\tau_{ext} = \frac{1}{(1+\alpha)(1-n)} \ln\left(\frac{\alpha}{(1+\alpha)y_{ext}^{1-n}-1}\right)$$
(15)

Since
$$n = 0.2$$
 and $(1 + \alpha)y_{ext}^{1-n} = \frac{(1+\alpha)}{(1+\alpha_{\min})}(1 + \alpha_{\min})y_{ext}^{1-n}$:
 $\tau_{ext} = \frac{1}{0.8(1+\alpha)}ln\left(\frac{\alpha}{\frac{1+\alpha}{2.724}-1}\right)$ (16)
 $t_{ext} = \tau_{ext}\frac{V_c c^*}{RT_c A_t}$ (17)

Assuming a molecular mass $M = 20 \frac{g}{mole}$ (not specified in problem statement), $\frac{V_c c^*}{RT_c A_t} = \frac{10 \times 1800}{\frac{8.314}{0.02} \times 3400} = 1.274 \times 10^{-2} s$ (18)

We can now calculate a few extinction times corresponding to choices of $\frac{A_P}{A_t}$ above the minimum, shown in **Table 1**.

	$\alpha = \frac{A_P}{A_t}$	1.724	2	3	4
	$ au_{ext}$	∞	1.243	0.5803	0.3915
Γ	$t_{ext} [s]$	∞	1.583e-2	7.42e-3	4.99e-3

Table 1: Extinction Times

Rapid disproportionation:	$N_2H_4 \to \frac{4}{3}NH_3 + \frac{1}{3}N_2$	(1)
Slow NH ₃ decomposition:	$\frac{4}{3}NH_3 \rightarrow \frac{2}{3}N_2 + 2H_2$	(2)

Since we assume 40% Ammonia decomposition, form **equation (1)** + 0.4***equation (2)**: $N_2H_4 \rightarrow \frac{4}{3}(1-0.4)NH_3 + \frac{1+0.8}{3}N_2 + 0.4 * 2H_2$ (3) $N_2H_4 \rightarrow 0.8NH_3 + 0.6N_2 + 0.8H_2$ (4)

We can now write the enthalpy balance for the reaction. The enthalpy of the reactants (liquid Hydrazine at 298.2K) is +50.63 kJ/mol, so using the fits provided for gaseous NH_3 , N_2 , and H_2 :

$$50.63 = 0.8(-70.40 + 51.166\theta + 4.11\theta^2) + 0.6(-11.84 + 32.42\theta + 0.76\theta^2) + \dots + 0.8(-8.23 + 27.16\theta + 1.34\theta^2)$$

 $4.976\theta^2 + 82.508\theta - 120.64 = 0$

$$\theta = \frac{-82.508 + \sqrt{82.508^2 + 4 + 4.976 + 120.64}}{2 + 4.976} = 1.352 = \frac{T}{1000}$$
(5)
$$T = 1.352K$$

Mean molecular mass:

$$\overline{M} = \frac{0.8*17+0.6*28+0.8*2}{0.8+0.6+0.8} = 16.0 \frac{g}{mol} = 0.016 \frac{kg}{mol}$$

Mean specific heat:

$$c_p = \frac{\left[0.8(\widetilde{c_p})_{NH_3} + 0.6(\widetilde{c_p})_{N_2} + 0.8(\widetilde{c_p})_{H_2}\right]}{0.016}$$

$$\begin{split} \left(\widetilde{c_p}\right)_{NH_3} &= \frac{\partial h_{NH_3}}{\partial T} = \frac{1}{1000} \frac{\partial h_{NH_3}}{\partial \theta} = \frac{51.66}{1000} \frac{kJ}{mol*K} = 51.66 \frac{J}{mol*K} \\ \left(\widetilde{c_p}\right)_{N_2} &= \frac{\partial h_{N_2}}{\partial T} = \frac{1}{1000} \frac{\partial h_{N_2}}{\partial \theta} = \frac{32.42}{1000} \frac{kJ}{mol*K} = 32.42 \frac{J}{mol*K} \\ \left(\widetilde{c_p}\right)_{H_2} &= \frac{\partial h_{H_2}}{\partial T} = \frac{1}{1000} \frac{\partial h_{H_2}}{\partial \theta} = \frac{27.61}{1000} \frac{kJ}{mol*K} = 27.61 \frac{J}{mol*K} \end{split}$$

$$c_p = \frac{0.4*51.66+0.3*32.42+0.4*27.61}{0.016} = 2,590 \frac{J}{kg*K}$$

We could now calculate $c_v = 2,590 - \frac{8.314}{0.016} = 2.070 \frac{J}{kg*K}$ and so $\gamma = \frac{c_p}{c_v} = 1.2512$

16.50 Introduction to Propulsion Systems Spring 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.