16.512, Rocket Propulsion

Prof. Manuel Martinez-Sanchez

Lecture 34: Performance to GEO

$\Delta \mathrm{V}$ Calculations for Launch to Geostationary Orbit (GEO)

Idealized Direct GTO Injection
(GTO = Geosynchronous Transfer Orbit)
Assumptions:

- Ignore drag and "gravity" losses
- Assume impulsive burns (instantaneous impulse delivery)
- Assume all elevations $\alpha>0$ at launch are acceptable

Launch is from a latitude L, directed due East for maximum use of Earth's rotation. The Eastward added velocity due to rotation is then

$$
\begin{equation*}
v_{R}=\Omega_{E} R_{E} \cos L=463 \cos L \quad(\mathrm{~m} / \mathrm{s}) \tag{1}
\end{equation*}
$$

If the launch elevation is α, and the desired velocity after the first burn is V_{1}, the rocket must supply a velocity increment

$$
\begin{equation*}
\Delta V_{1}=\sqrt{V_{1}^{2}+V_{R}^{2}-2 V_{1} V_{R} \cos \alpha} \tag{2}
\end{equation*}
$$

The trajectory will then lie in a plane LOI through the Earth's center which contains the local E-W line. In order to be able to perform the plane change to the equatorial plane at GEO, we select the elevation α such as to place the apogee of the transfer orbit (GTO) at the GEO radius $\mathrm{R}_{\mathrm{GEO}}=\left(\mu \frac{T^{2}}{4 \pi^{2}}\right)^{1 / 3}=42,200 \mathrm{~km}$ ($\mathrm{T}=24 \mathrm{hr}, \mu=3.986 \times 10^{14} \mathrm{~m}^{3} / \mathrm{s}^{2}$)

Fig. 1

Since OL is perpendicular to OI, the view in the plane of the orbit is:

Fig. 2

The polar equation of the trajectory is $r=\frac{\mathrm{p}}{1+\mathrm{e} \cos \theta},>0$
In our case $p=R_{E}$ (corresponding to $\theta=\frac{\pi}{2}$). The elevation is given by

$$
\tan \alpha=\left(\frac{\mathrm{dr}}{\mathrm{rd} \theta}\right)_{\theta=\pi / 2}=\left(\frac{\mathrm{e} \sin \theta}{(1+\mathrm{e} \cos \theta)^{2}}\right)_{\theta=\pi / 2}=\mathrm{e}
$$

and, in turn, the eccentricity follows from (at $\theta=\pi$)

$$
\mathrm{R}_{\mathrm{GEO}}=\frac{\mathrm{R}_{\mathrm{E}}}{1-\mathrm{e}} \quad \mathrm{e}=1-\frac{\mathrm{R}_{\mathrm{E}}}{\mathrm{R}_{\mathrm{GEO}}}
$$

and so $\tan \alpha=1-\frac{\mathrm{R}_{\mathrm{E}}}{\mathrm{R}_{\mathrm{GEO}}}=0.849 \quad ; \quad \alpha=40.3^{\circ}$

The angular momentum (per unit mass) is $h=\sqrt{\mu \mathrm{p}}=\sqrt{\mu R_{\mathrm{E}}}$.

Equating this to $R_{E} V_{1} \cos \alpha$,

$$
\begin{equation*}
V_{1} \cos \alpha=\sqrt{\frac{\mu}{R_{E}}} \tag{4}
\end{equation*}
$$

(i.e., the horizontal projection of the launch velocity is the local orbital speed, for any apogee radius, $R_{G E O}$ in this case)

Combining (3) and (4), $\quad V_{1}=\sqrt{\frac{\mu}{R_{E}}\left[1+\left(1-\frac{R_{E}}{R_{G E O}}\right)^{2}\right]}$
and this can now be substituted in (2):

$$
\begin{align*}
& \Delta \mathrm{V}_{1}=\sqrt{\frac{\mu}{R_{E}}\left[1+\left(1-\frac{R_{E}}{R_{G E O}}\right)^{2}\right]+v_{R}^{2}-2 v_{R} \sqrt{\frac{\mu}{R_{E}}}} \\
& \Delta \mathrm{~V}_{1}=\sqrt{\left(\sqrt{\frac{\mu}{R_{E}}}-v_{R}\right)^{2}+\frac{\mu}{R_{E}}\left(1-\frac{R_{E}}{R_{G E O}}\right)^{2}} \tag{6}
\end{align*}
$$

Upon arrival at I, there will have to be a second burn that will simultaneous accelerate the rocket to $v_{G E O}=\sqrt{\frac{\mu}{R_{G E O}}}$, and rotate the plane to equatorial $(\Delta i=L)$.

Fig. 3

The apogee velocity is $\mathrm{v}_{\mathrm{a}, \text { Gто }}$, given by
$R_{G E O} V_{a, \text { GTO }}=\left(V_{1} \operatorname{cosa}\right) R_{E}=\sqrt{\mu R_{E}}$
and so $\Delta \mathrm{V}_{\mathrm{a}}=\sqrt{\mathrm{v}_{\mathrm{GEO}}^{2}+\mathrm{V}_{\mathrm{a}, \mathrm{GTO}}^{2}-2 \mathrm{v}_{\mathrm{GEO}} \mathrm{V}_{\mathrm{a}, \mathrm{GTO}} \cos \Delta \mathrm{i}}$

$$
\begin{equation*}
\Delta V_{a}=\sqrt{\frac{\mu}{R_{G E O}}} \sqrt{1+\frac{R_{E}}{R_{G E O}}-2 \frac{R_{E}}{R_{G E O}} \cos L} \tag{8}
\end{equation*}
$$

This second burn is probably provided by the spacecraft itself, or else by the launcher's upper stage.

IDEALIZED TWO - BURN GTO INJECTION

One difficulty with the direct injection scheme is the fact that GEO insertion at I must occur on the first pass, because the GTO perigee is actually below the Earth's surface (see Fig. 2). Most operators prefer a temporary parking of the spacecraft in a GTO orbit which has a perigee above the ground, so as to make functional tests and adjustments prior to the final apogee burn (over a period of 2-4 weeks). A modification of the launch sequence to accommodate this is:
(1) Fire Eastwards with α selected for a low apogee ($\sim 200 \mathrm{~km}$ above ground) at the equatorial crossing.
(2) Fire again at equatorial crossing to raise the apogee to $\mathrm{R}_{\mathrm{GEO}}$ (no plane change)
(3) At one of the apogee passes, perform the final (circularization + plane change burn).

The formulation is very similar to the previous case.
The elevation α is now given by

$$
\begin{equation*}
\tan \alpha=1-\frac{R_{E}}{R_{p}} \tag{9}
\end{equation*}
$$

($R_{p}=$ perigee radius $\simeq R_{E}+200 \mathrm{~km}$).
This gives a very shallow trajectory, which is unrealistic; but it is a fair approximation to a real high-elevation launch, followed by a rapid rotation during the rocket firing. For $R_{p}-R_{\epsilon}=200 \mathrm{~km}, \alpha=1.74^{\circ}$.

Eqs. (5) and (6) still hold, with the quality $R_{\text {GEO }}$ replaced by R_{p}, and so

$$
\begin{equation*}
\Delta V_{1}=\sqrt{\left(\sqrt{\frac{\mu}{R_{E}}}-V_{R}\right)^{2}+\frac{\mu}{R_{E}}\left(1-\frac{R_{E}}{R_{P}}\right)^{2}} \tag{10}
\end{equation*}
$$

which is now smaller, since we are going to a much lower apogee (at r_{p}).
At this apogee (at the equatorial crossing), we have, as in Eq. (7),

$$
\begin{equation*}
v_{\mathrm{a}}=\frac{\sqrt{\mu \mathrm{R}_{\mathrm{E}}}}{\mathrm{R}_{\mathrm{p}}} \tag{11}
\end{equation*}
$$

and we next need to effect a second rocket firing that will increase velocity to that for the GTO perigee:

$$
\begin{equation*}
v_{\text {Рбто }}=\sqrt{\frac{\mu}{R_{p}} \frac{2 R_{\text {GEO }}}{R_{p}+R_{G E O}}} \tag{12}
\end{equation*}
$$

No plane change is involved yet, so

$$
\begin{equation*}
\Delta V_{2}=\sqrt{\frac{\mu}{R_{p}}}\left[\sqrt{\frac{2 R_{G E O}}{R_{\mathrm{p}}+R_{G E O}}}-\sqrt{\frac{R_{E}}{R_{p}}}\right] \tag{13}
\end{equation*}
$$

This places the spacecraft on an elliptical GTO orbit, still in the original plane, with apogee at $R_{G E O}$. The speed at this apogee is:

$$
\begin{equation*}
v_{\mathrm{a}, \mathrm{GTO}}=\sqrt{\frac{\mu}{R_{G E O}} \frac{2 R_{\mathrm{P}}}{R_{\mathrm{P}}+R_{G E O}}} \tag{14}
\end{equation*}
$$

and so,

$$
\Delta \mathrm{V}_{\mathrm{a}}=\sqrt{\mathrm{v}_{\mathrm{GEO}}^{2}+\mathrm{v}_{\mathrm{a}, \text { GTO }}^{2}-2 \mathrm{v}_{\mathrm{GEO}} \mathrm{v}_{\mathrm{a}, \mathrm{GTO}} \cos \mathrm{~L}}
$$

$$
\begin{align*}
& \Delta V_{a}=\sqrt{\frac{\mu}{R_{G E O}}+\frac{\mu}{R_{G E O}} \frac{2 R_{p}}{R_{p}+R_{G E O}}-2 \frac{\mu}{R_{G E O}} \sqrt{\frac{2 R_{p}}{R_{p}+R_{G E O}}}} \cos L \\
& \Delta V_{a}=\sqrt{\frac{\mu}{R_{G E O}}} \sqrt{1+\frac{2 R_{p}}{R_{p}+R_{G E O}}-2 \sqrt{\frac{2 R_{p}}{R_{p}+R_{G E O}}}} \cos L \tag{15}
\end{align*}
$$

Fig. 5

Some numerical comparisons

We will illustrate these $\Delta \mathrm{V}$'s by considering launches to GEO from two different locations:
(1) Near the Equator, on at the French kouron complex, and
(2) From mid-latitude, as from Café Canoveral $\left(\mathrm{L}=28.5^{\circ}\right)$.
(1) Equatorial Launch

Option (a): Ground to LEO (300 km), plus LEO-GEO Hohman transfer. No plane changes. Launch to the East.

$$
\Delta \mathrm{V}=\underbrace{\Delta \mathrm{V}_{1}+\Delta \mathrm{V}_{2}-\mathrm{V}_{\mathrm{R}}}_{\text {ToLEO, } \alpha=0}+\underbrace{\Delta \mathrm{V}_{3}}_{\text {GTOinjection }}+\underbrace{\Delta \mathrm{V}_{4}}_{\text {GEO circularization }}
$$

$$
\begin{aligned}
\Delta V= & (8084-463)+(10,151-7725)+(3071-1573) \\
& =7,621+2,426+1,498=\underline{11,545 \mathrm{~m} / \mathrm{s}}
\end{aligned}
$$

Notice this is more than to Escape from mean Earth ($\Delta \mathrm{V} \simeq 11,200 \mathrm{~m} / \mathrm{s}$)
Option (b): Direct injection into GTO from ground

$$
\begin{aligned}
& \Delta \mathrm{V}=\underbrace{\Delta \mathrm{V}_{1}}_{\substack{\alpha=\text { Olaunchtor a4, 2000km } \\
(-463 \mathrm{~m} / \mathrm{sforrotation})}}+\underbrace{\Delta \mathrm{V}_{2}}_{\text {GEO circularization }} \\
& =(10,420-463)+(3071-1573)=9,957+1,498=\underline{11,455 \mathrm{~m} / \mathrm{s}}
\end{aligned}
$$

(2) Launch from $L=28.5^{\circ}$. Launch to East, $v_{R}=407 \mathrm{~m} / \mathrm{s}$

Option (a): Direct injection to GTO, circularization + plane change at GEO. 2 firings,

$$
\begin{aligned}
& \Delta \mathrm{V}=\underbrace{\Delta \mathrm{V}_{1}}_{\text {Launch with } \alpha=40.3^{\circ}}+\underbrace{\Delta \mathrm{V}_{2}}_{\begin{array}{c}
\text { GEO circularization } \\
\text { and plane change }
\end{array}} \\
& =10,070+2,102=12,172 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Note the two penalizations for latitude: the elevated launch increased $\Delta \mathrm{V}_{1}$, and the plane change at GEO increases $\Delta \mathrm{V}_{2}$.

Option (b) Direct injection with 3 firings (LEO at 300km)

$$
\begin{aligned}
& \Delta \mathrm{V}=\underbrace{\Delta \mathrm{V}_{1}}_{\text {Launch to a 300 km apogee }}+\underbrace{\Delta \mathrm{V}_{2}}_{\text {Firing to raise apogee to GEO }}+\underbrace{\Delta \mathrm{V}_{3}}_{\begin{array}{c}
\text { Circularization } \\
\text { +Plane change }
\end{array}} \\
& =7,512+2,605+1,830=11,947 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Is it true that plane change should be all done at end of GTO?

Actually, a small turning combined with initial $\Delta \mathrm{V}_{1}$ (say, from LEO) costs very little ΔV loss, even though V is then large. Try splitting into a Δi_{1} and $\Delta i_{2}=\Delta i-\Delta i_{1}$

Call $\rho=\frac{R_{2}}{R_{1}}$

$$
\frac{\sqrt{2 \frac{\rho}{1+\rho}} \sin \Delta i_{1}}{\sqrt{1+\frac{2 \rho}{1+\rho}-2 \sqrt{\frac{2 \rho}{1+\rho}} \cos \Delta i_{1}}}=\frac{\frac{1}{\sqrt{\rho}} \sqrt{\frac{1}{\rho} \frac{2}{1+\rho}} \sin \left(\Delta i-\Delta i_{1}\right)}{\sqrt{\frac{1}{\rho}+\frac{1}{\rho} \frac{2}{1+\rho}-\frac{2}{\sqrt{\rho}} \sqrt{\frac{1}{\rho} \frac{2}{1+\rho}} \cos \left(\Delta i-\Delta i_{1}\right)}}
$$

$$
\frac{\& \not \emptyset}{1+\rho} \sin ^{2} \Delta i \frac{1}{\not \rho}\left[1+\frac{2}{1+\rho}-2 \sqrt{\frac{2}{1+\rho}} \cos \left(\Delta i-\Delta i_{1}\right)\right]=\frac{1}{\rho^{2}} \frac{2}{1+\rho} \sin ^{2}\left(\Delta i-\Delta i_{1}\right)\left[1+\frac{2 \rho}{1+\rho}-2 \sqrt{\frac{2 \rho}{1+\rho}} \cos \Delta i\right]
$$

$$
\rho=\frac{42200}{6370+500}=6.14265 \quad \sqrt{\frac{2 \rho}{1+\rho}}=1.31148
$$

$$
\frac{1.31148 \operatorname{Sin} \Delta \mathrm{i}_{1}}{\sqrt{1+1.71999-2 \times 1.31148 \operatorname{Cos} \Delta \mathrm{i}_{1}}}=\frac{\frac{0.52916}{6.14265} \operatorname{Sin}\left(28.5-\Delta \mathrm{i}_{1}\right)}{\frac{1}{\sqrt{6.14265}} \sqrt{1+0.28001-2 \times 0.52916 \operatorname{Cos}\left(28.5-\Delta \mathrm{i}_{1}\right)}}
$$

$$
\begin{aligned}
& \frac{d \Delta V}{d \Delta i_{1}}=\frac{+\& v_{c_{1}} V_{p} \sin \Delta i_{1}}{Z \sqrt{v_{c_{1}}{ }^{2}+V_{p}{ }^{2}-2 v_{c_{1}} V_{P} \cos \Delta i_{1}}}-\frac{+\& v_{c_{2}} V_{a} \sin \left(\Delta i-\Delta i_{1}\right)}{Z \sqrt{v_{c_{2}}{ }^{2}+V_{a}{ }^{2}-2 v_{c_{2}} V_{a} \cos \left(\Delta i-\Delta i_{1}\right)}}=0 \\
& v_{c_{1}}=\sqrt{\frac{\mu}{R_{1}}}, \quad v_{c_{2}}=\sqrt{\frac{\mu}{R_{2}}}, \quad v_{p}=\sqrt{\frac{\mu}{R_{1}} \frac{2 R_{2}}{R_{1}+R_{2}}}, \quad v_{a}=\sqrt{\frac{\mu}{R_{2}} \frac{2 R_{1}}{R_{1}+R_{2}}}
\end{aligned}
$$

$$
\frac{\operatorname{Sin} \Delta \mathrm{i}_{1}}{\sqrt{2.71999-2.62296 \operatorname{Cos} \Delta \mathrm{i}_{1}}}=\frac{0.16280 \operatorname{Sin}\left(28.5-\Delta \mathrm{i}_{1}\right)}{\sqrt{1.28001-1.05832 \operatorname{Cos}\left(28.5-\Delta \mathrm{i}_{1}\right)}}
$$

$\Delta \mathrm{i}_{1}=2.26^{\circ}$ optimum $\quad \Delta \mathrm{i}_{2}=26.24^{\circ}$
$\left(\frac{\Delta V}{V_{c_{1}}}\right)_{\text {op }}=\sqrt{1+\frac{2 \rho}{1+\rho}-2 \frac{2 \rho}{1+\rho} \cos \Delta i_{1}}+\sqrt{\frac{1}{\rho}+\frac{1}{\rho} \frac{2}{1+\rho}-\frac{2}{\sqrt{\rho} \sqrt{\frac{2}{\rho(1+\rho)}}} \cos \Delta i_{2}}$
$\left(\frac{\Delta \mathrm{V}}{\mathrm{V}_{\mathrm{C}_{1}}}\right)_{\mathrm{Op}}=\sqrt{2.71199-2.62296 \cos \Delta \mathrm{i}_{1}}+\frac{1}{\sqrt{6.14265}} \sqrt{1.21001-1.05832 \cos \Delta \mathrm{i}_{2}}$
$=0.30178+0.23227=0.53405$ - small improvement
Compare to same with $\Delta i_{1}=0$

$$
\left(\frac{\Delta \mathrm{V}}{\mathrm{~V}_{\mathrm{c}_{1}}}\right)_{\text {ref }}=0.29838+0.23868=0.53706 \text { - small improvement }
$$

Example: Effects of doing a small plane change $\Delta \mathrm{i}_{2}$ simultaneous with the second (apogee-raising) firing in a 3-impulse direct GTO injection.

Total dV for three-impulse launch from $\mathrm{L}=28.5$ deg to GEO. Here vcE $=\operatorname{sqrt}(\mathrm{mu} / \mathrm{RE})$

