Lecture \#4

16.61 Aerospace Dynamics

- Extension to multiple intermediate frames (two)

Introduction

- We started with one frame (B) rotating $\vec{\omega}$ and accelerating $\dot{\vec{\omega}}$ with respect to another (I), and obtained the following expression for the absolute acceleration

$$
\ddot{\vec{r}}^{I}=\ddot{\vec{r}}_{c m}^{I}+\ddot{\vec{\rho}}^{B}+2 \vec{\omega} \times \dot{\vec{\rho}}^{B}+\dot{\vec{\omega}}^{I} \times \vec{\rho}+\vec{\omega} \times(\vec{\omega} \times \vec{\rho})
$$

of a point located at

$$
\vec{r}=\vec{r}_{c m}+\vec{\rho}
$$

- However, in many cases there are often several intermediate frames that have to be taken into account.
- Consider the situation in the figure:
- Two frames that are moving, rotating, accelerating with respect to each other and the inertial reference frame.
- Assume that ${ }^{2} \vec{\omega}$ and ${ }^{2} \vec{\omega}^{1}$ are given with respect to the first intermediate frame 1.
\diamond The left superscript here simply denotes a label - there are two $\vec{\omega}$'s to consider in this problem.
- Note that the position of point P with respect to the origin of frame 1 is given by

$$
{ }^{P 1} \vec{r}={ }^{2} \vec{r}+{ }^{3} \vec{r}
$$

and the position of point P with respect to the origin of the inertial frame is given by

$$
{ }^{P I} \vec{r}={ }^{1} \vec{r}+{ }^{2} \vec{r}+{ }^{3} \vec{r} \equiv{ }^{1} \vec{r}+{ }^{P 1} \vec{r}
$$

- We want $P I \dot{\vec{r}}^{I}$ and $P I \ddot{\vec{r}}^{I}$
- The approach is to find the motion of P with respect to frame 1.

$$
\begin{aligned}
{ }^{P 1} \dot{\vec{r}}^{1} & ={ }^{2} \dot{\vec{r}}^{1}+{ }^{3} \dot{\vec{r}}^{1} \equiv{ }^{P 1} \vec{v} \\
& ={ }^{2} \dot{\vec{r}}^{1}+\left({ }^{3} \dot{\vec{r}}^{2}+{ }^{2} \vec{\omega} \times{ }^{3} \vec{r}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
P 1 \ddot{\vec{r}}^{1} & ={ }^{2} \ddot{\vec{r}}^{1}+{ }^{3} \ddot{\vec{r}}^{1} \equiv{ }^{P 1} \vec{a} \\
& ={ }^{2} \ddot{\vec{r}}^{1}+\left({ }^{3} \ddot{\vec{r}}^{2}+2\left({ }^{2} \vec{\omega} \times{ }^{3} \dot{\vec{r}}^{2}\right)+{ }^{2} \overrightarrow{\vec{\omega}}^{1} \times{ }^{3} \vec{r}+{ }^{2} \vec{\omega} \times\left({ }^{2} \vec{\omega} \times{ }^{3} \vec{r}\right)\right)
\end{aligned}
$$

- While the notation is a bit laborious, there is nothing new here this is just the same case we have looked at before with one frame moving with respect to another.
- Steps above were done ignoring the motion of frame 1 altogether.
- Now consider what happens when we include the fact that frame 1 is moving with respect to the inertial frame I. Again:

$$
{ }^{P I} \vec{r}={ }^{1} \vec{r}+{ }^{2} \vec{r}+{ }^{3} \vec{r} \equiv{ }^{1} \vec{r}+{ }^{P 1} \vec{r}
$$

Now compute the desired velocity:

$$
\begin{aligned}
P I \dot{\vec{r}}^{I} & ={ }^{1} \dot{\vec{r}}^{I}+{ }^{P 1} \dot{\vec{r}}^{I} \equiv{ }^{P I} \vec{v} \\
& ={ }^{1} \dot{\vec{r}}^{I}+{ }^{P 1} \dot{\vec{r}}^{1}+\left({ }^{1} \vec{\omega} \times{ }^{P 1} \vec{r}\right) \\
& ={ }^{1} \dot{\vec{r}}^{I}+\left[{ }^{2} \dot{\vec{r}}^{1}+\left({ }^{3} \dot{\vec{r}}^{2}+{ }^{2} \vec{\omega} \times{ }^{3} \vec{r}\right)\right]+{ }^{1} \vec{\omega} \times\left({ }^{2} \vec{r}+{ }^{3} \vec{r}\right) \\
& ={ }^{1} \dot{\vec{r}}^{I}+{ }^{2} \dot{\vec{r}}^{1}+{ }^{3} \dot{\vec{r}}^{2}+{ }^{1} \vec{\omega} \times{ }^{2} \vec{r}+\left({ }^{1} \vec{\omega}+{ }^{2} \vec{\omega}\right) \times{ }^{3} \vec{r}
\end{aligned}
$$

And acceleration:

$$
\begin{aligned}
P I \ddot{\vec{r}}^{I}= & { }^{1} \ddot{\vec{r}}^{I}+{ }^{P 1} \ddot{\vec{r}}^{I} \equiv{ }^{P I} \vec{a} \\
= & { }^{1} \ddot{\vec{r}}^{I}+\frac{d^{I}}{d t}\left[P 1 \dot{\vec{r}}^{I}\right] \\
= & { }^{1} \ddot{\vec{r}}^{I}+\frac{d^{I}}{d t}\left[{ }^{P 1} \dot{\vec{r}}^{1}+\left({ }^{1} \vec{\omega} \times{ }^{P 1} \vec{r}\right)\right] \\
= & { }^{1} \ddot{\vec{r}}^{I}+\left({ }^{P 1} \ddot{\vec{r}}^{1}+{ }^{1} \vec{\omega} \times{ }^{P 1} \dot{\vec{r}}^{1}\right)+{ }^{1} \dot{\vec{\omega}}^{I} \times{ }^{P 1} \vec{r} \\
& \quad+{ }^{1} \vec{\omega} \times\left[{ }^{P 1} \dot{\vec{r}}^{1}+{ }^{1} \vec{\omega} \times{ }^{P 1} \vec{r}\right]
\end{aligned}
$$

- Now substitute and condense.

$$
\begin{aligned}
P^{P I} \ddot{\vec{r}}^{I}= & { }_{\overrightarrow{\vec{r}}}{ }^{I}+{ }^{P 1} \ddot{\vec{r}}^{1}+2\left({ }^{1} \vec{\omega} \times{ }^{P 1} \dot{\vec{r}}^{1}\right)+{ }^{1} \dot{\vec{\omega}}^{I} \times{ }^{P 1} \vec{r}+{ }^{1} \vec{\omega} \times\left({ }^{1} \vec{\omega} \times{ }^{P 1} \vec{r}\right) \\
= & { }^{1} \ddot{\vec{r}}^{I}+ \\
& \left\{{ }^{2} \ddot{\vec{r}}^{1}+\left({ }^{3} \ddot{\vec{r}}^{2}+2\left({ }^{2} \vec{\omega} \times{ }^{3} \dot{\vec{r}}^{2}\right)+{ }^{2} \dot{\vec{\omega}}^{1} \times{ }^{3} \vec{r}+{ }^{2} \vec{\omega} \times\left({ }^{2} \vec{\omega} \times{ }^{3} \vec{r}\right)\right)\right\} \\
& +2\left({ }^{1} \vec{\omega} \times\left\{{ }^{2} \dot{\vec{r}}^{1}+{ }^{3} \dot{\vec{r}}^{2}+{ }^{2} \vec{\omega} \times{ }^{3} \vec{r}\right\}\right) \\
& +\dot{\overrightarrow{\vec{\omega}}}^{I} \times\left\{{ }^{2} \vec{r}+{ }^{3} \vec{r}\right\}+{ }^{1} \vec{\omega} \times\left({ }^{1} \vec{\omega} \times\left\{{ }^{2} \vec{r}+{ }^{3} \vec{r}\right\}\right) \\
= & \ddot{\overrightarrow{\vec{r}}}^{I}+{ }^{2} \ddot{\vec{r}}^{1}+{ }^{3} \ddot{\vec{r}}^{2}+2\left(\left[{ }^{1} \vec{\omega}+{ }^{2} \vec{\omega}\right] \times{ }^{3} \dot{\vec{r}}^{2}\right)+2\left({ }^{1} \vec{\omega} \times{ }^{2} \dot{\vec{r}}^{1}\right) \\
& +{ }_{\vec{\omega}}{ }^{1} \times{ }^{2} \vec{r}+\left[{ }^{1} \dot{\vec{\omega}}^{I}+{ }^{2} \dot{\vec{\omega}}{ }^{1}\right] \times{ }^{3} \vec{r} \\
& +{ }^{2} \vec{\omega} \times\left({ }^{2} \vec{\omega} \times{ }^{3} \vec{r}^{1}\right)+{ }^{1} \vec{\omega} \times\left({ }^{1} \vec{\omega} \times\left[{ }^{2} \vec{r}+{ }^{3} \vec{r}\right]\right)+2^{1} \vec{\omega} \times\left({ }^{2} \vec{\omega} \times{ }^{3} \vec{r}\right)
\end{aligned}
$$

- This final expression looks messy, but it is really just two nested versions of what we have seen before.
- The nesting can continue to more levels and can be automated.
- Note that this type of expression is very easy to get wrong if not done carefully and systematically.
- The hardest term to capture here is the $2^{1} \vec{\omega} \times\left({ }^{2} \vec{\omega} \times{ }^{3} \vec{r}\right)$ which comes from the $2\left({ }^{1} \vec{\omega} \times{ }^{P 1} \dot{\vec{r}}^{1}\right)$ term.
$-{ }^{P 1} \dot{\vec{r}}^{1}$ is the relative velocity of P with respect to the origin of frame 1 as seen by an observer in the rotating frame 1.
- Example: acceleration of the tip of the tail rotor on a helicopter:
- The helicopter body is rotating.
- The tail rotor is rotating as well, but the base is attached to the body.

