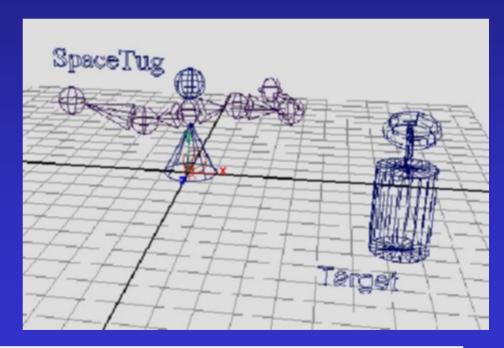
Courtesy of Timothee de Mierry and Gergana Bounova. Used with permission.

Control Algorithms For Space Tug Rendezvous


16.622 Final Presentation
Timothee de Mierry – Gergana Bounova

Advisor: Olivier de Weck Spring 2003

Introduction

- What are we trying to do?
 - Optimize two-dimensional search for an inert target
- How are we accomplishing that?
 - Research search strategies
 - Implement models in code
 - Run the code withLego MindStorms©

Background and Motivation

- The Space Tug (Orbital Servicer) a joint LAI and DARPA project to develop:
 - capability to service satellites
 - economic solution to the high-energy problem in space
 - universal grappling capability
 - find target efficiently
- Our 62x project is a subset of the general problem
 - Has that been done before?

Hypothesis

The use of a semi-autonomous search system with human in the loop is the algorithm that will be the most effective for rendezvous and docking strategies, in terms of time and energy consumption.

Possible Strategies are:

- Random sensor-less search
- Semi-autonomous, human in the loop
- Fully autonomous search

Objectives and Success Criterion

- Develop, implement and test the three different strategies for two-dimensional, non-cooperative target search
- Compare these strategies based on the trade-off costs between time and energy
- Success is a clear definition of whether or not the semi-autonomous search system is the most effective algorithm for rendezvous and docking strategies in terms of time and energy consumption.

Description of Hardware

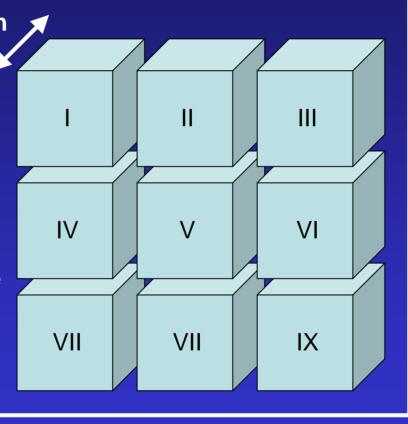
- The Tug uses a Handyboard onboard computer:
 - 4 motor ports
 - 16 analog sensors ports
 - Motorola 68HC11 Processor

- Tug sensors
 - Long range Infrared
 - Short range Infrared
 - Touch

 Tug communicates with command computer through serial port interface

Description of Software

- Matlab Simulations
 - All logic developed in MatLab modules
 - Test cases run in MatLab in parallel with onsite testing
- Tug Control System code
 - Interactive C
 - Using standard C language in addition to some custom functions to use sensors and motors


Test Matrix

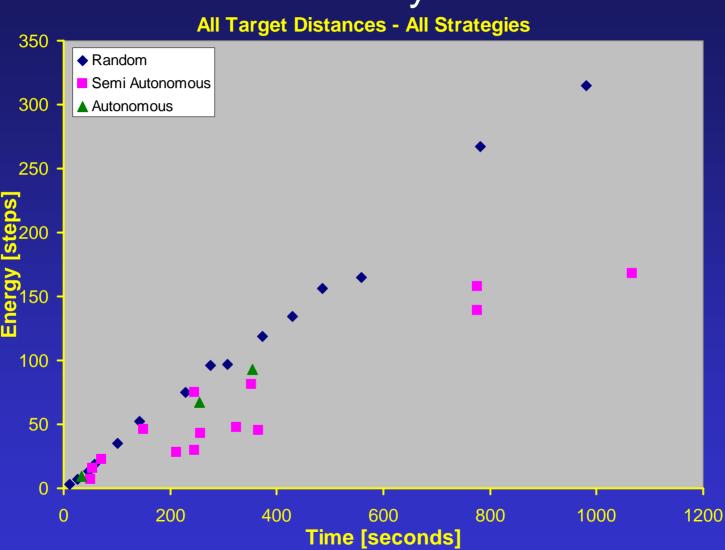
Type of strategy versus Distance to target

Distance to target

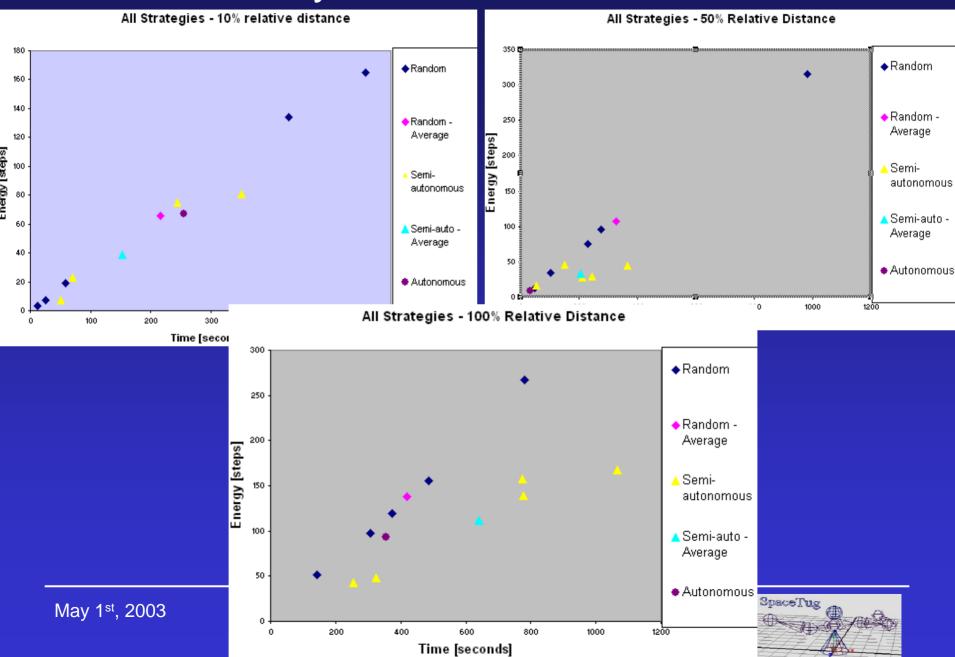
- Strategies range:
 - Random algorithm
 - Semi-autonomous with human in the loop
 - Fully autonomous
- Positions range:
 - Close target: distance within 10 % of search space
 - Half-way: within 50 %
 - Far: at the other end of the table
- Third Dimension:
 - Number of runs = 5

Type of strategy

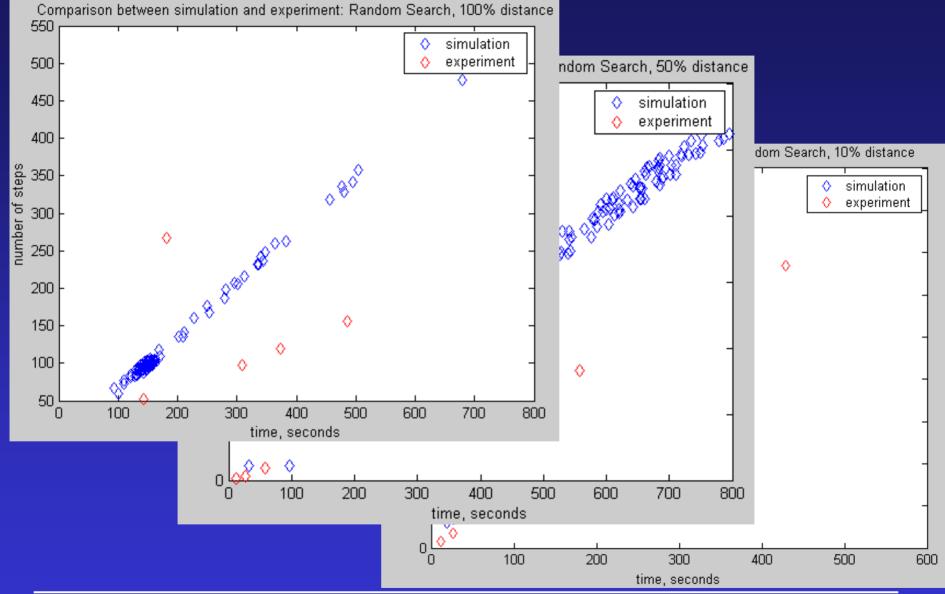
Experiment


SpaceTug (1)

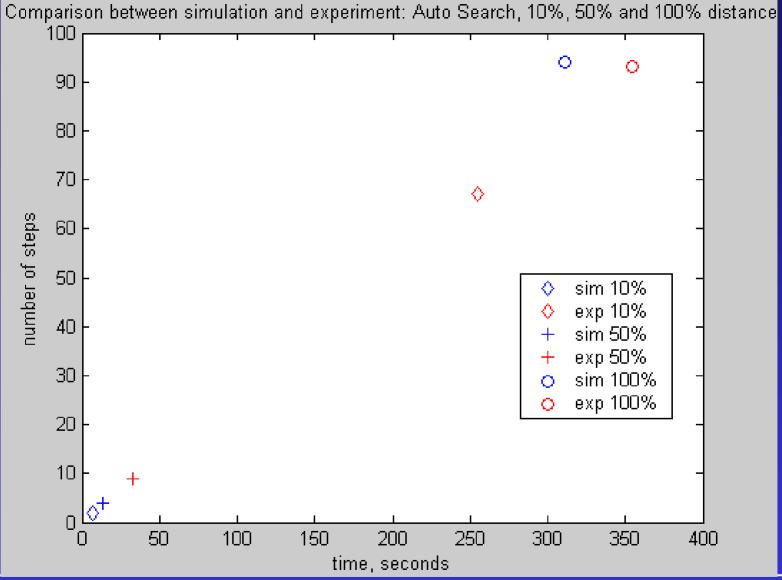
May 1st, 2003


The Data

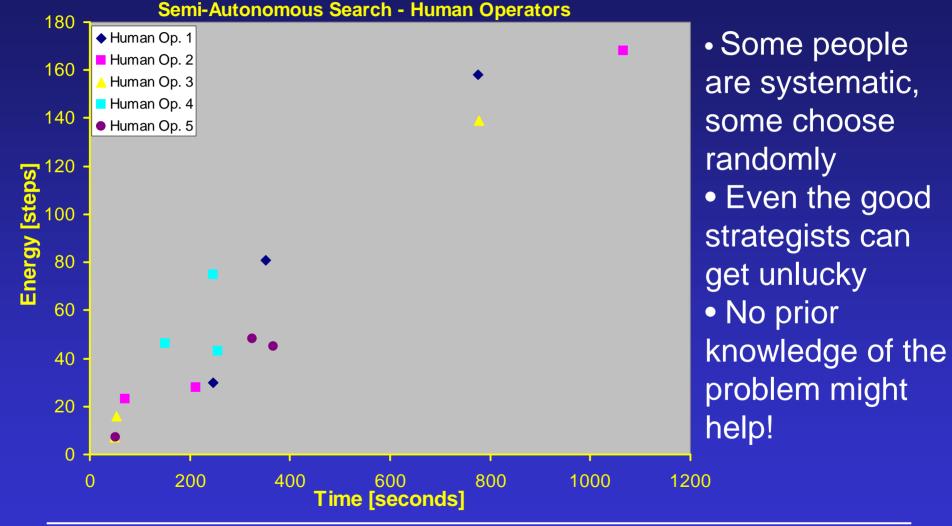
	target @	20 100%	target	@ 50%	target @ 10%						
	time, sec	steps	time, sec	steps	time, sec	steps					
	485.561	156	47.194	13	429.363	134					
random	182.174	267	275.101	96	12.055	3					
search	143.372	52	229.308	75	58.114	19					
	373.704	119	981.1969	315	25.982	7					
	308.311	97	101.552	35	558.075	165					
autonomous	354.35	93	33.05	9	254.9	67					
	775.515	150	245.842	30	352.357	81					
semi-auto	1060.1	168	211.544	28	70.511	23					
search	776.787	139	53.877	16	49	7					
	256.169	43	150.246	46	245.653	75					
	323.986	48	366.007	45	51.133	7					


Data Analysis I

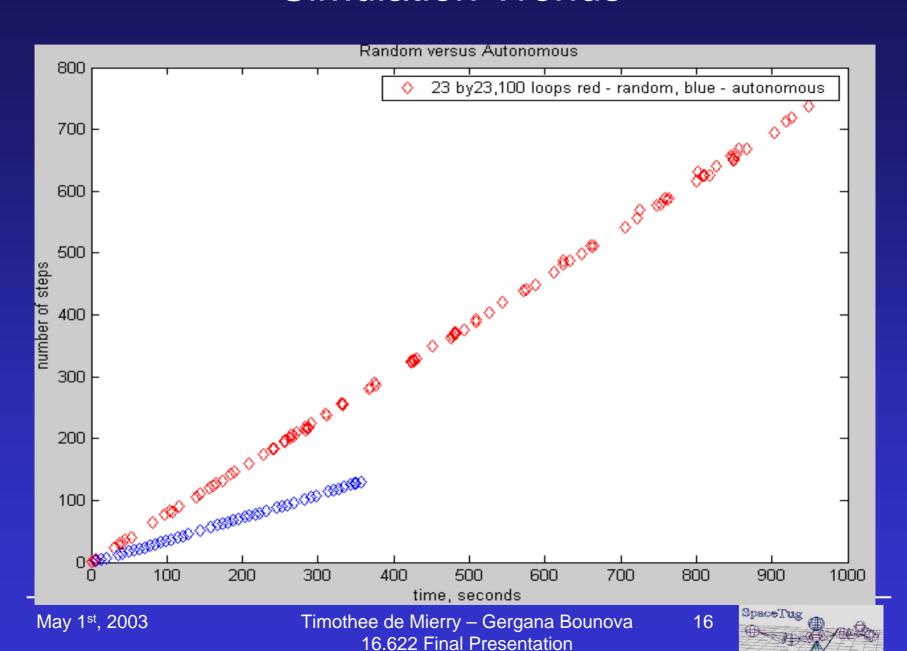
Data Analysis II: The Distance Factor



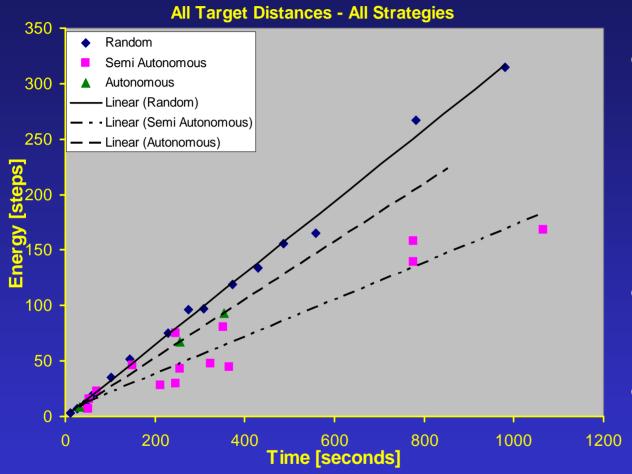
Data Analysis III: The Random Search



Data Analysis III: Autonomous

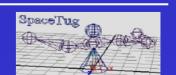


Data Analysis III: Semi-Autonomous

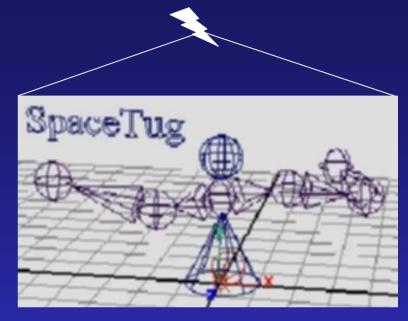


15

Simulation Trends


Back to Data Analysis I

- Semi –
 autonomous
 requires least
 amount of
 energy!
- Random search is overall fastest
- Autonomous for space?


Conclusions: The Space Problem

- The hypothesis is disproved but....
 - Semi-autonomous expends the least energy (fuel in space)
 - But communication takes much longer (even worse in space)
 - Conclusion: the semi-autonomous search is great for conserving energy, but maybe not the most efficient in space
 - Hybrid search (semi-auto + autonomous) would be better depending on time and energy mission requirements
- The search strategies show strong trends (quasilinear behavior)
- The 3-D problem is extendable due to additional knowledge of orbital dynamics (problem reducible to special 2D cases)

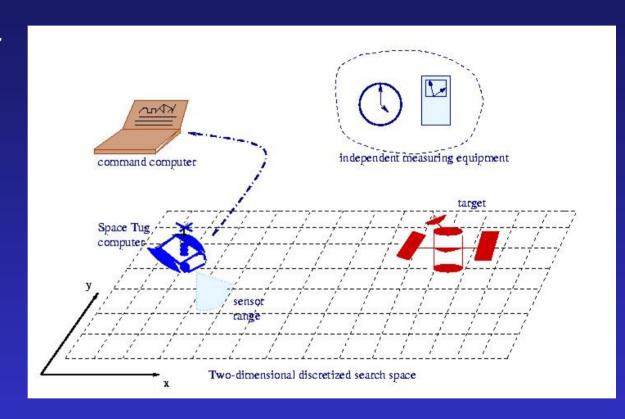
Perspectives

- Model a target moving in a circle around the robot (the Hill's frame)
- Randomize the target location

- Include metrology to close the control loop
- Develop a human factors experiment from the semi-autonomous strategy
- Build a higher-fidelity simulation

Budget

Item	Acquire from	Cost
Lego MindStorms © Computer + parts	Lego	\$ 200
Ultrasonic Range Sensor	HiTechnic	\$ 80
Infrared Proximity Sensor	HiTechnic	\$ 40
Touch Sensor Multiplexor	HiTechnic	\$ 19
Search space building materials	Home Depot	\$ 50
Batteries	RadioShack	\$ 100
Video Tape	RadioShack	\$6
	Total	\$ 495

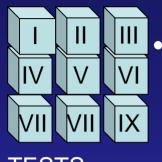


A Random Walk

Backup Slide 1: Experimental Overview

- Area dimensions for search space based on actual size ratios
- Using sensors, the Tug computer searches for the target
- Command computer used to transmit orders to the Tug

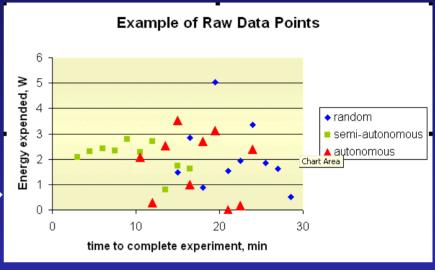
 Time and energy are measured for each search strategy



Backup Slide 2: Experimental Variables

- Variables measured by the human operator
 - Time elapsed for the entire mission: t total
 - Energy expended for the mission: E total
- Variables measured by the robot
 - Target relative position: X_r (t)
 - Target relative velocity: Vr(t) (Hill's frame case)
- Independent Variables
 - Initial target relative position (input): X_r (0)
 - Type of search strategy (input)
- Dependent Variables
 - Time and Energy for the mission: t total ,E total

Backup Slide 3: Measurement, Errors and data analysis


• Time Measurement:

- Very accurate
- Computer Internal Clock

TESTS

Energy Measurement

 Accuracy depends on device

PLOTS

In semi-autonomous search the human operator cannot know which test is being

run Receive & Process Data

→ Avoid bias in decision making

Backup Slide 4: Schedule

Task	Start	End ·	Feb-03			Mar-03				Apr-03				May-03			
			3Feb	10-Feb	17-Feb	24Feb	34Mar	104Mar	174Mar	24-Mar	31-Mar	7-Apr	14.Apr	21 ./ pr	28-Apr	5-May	124May
Building Tug andtarget	2/303	2/14/03															
Coding	2/303	37/03															
Random	2/303	2/11/03		-													
Seni⊦autonomous	2/11/03	2/1903						1									
Autoronousalgorithm	2/2003	2/28/03				ļ											
Debugging and testing	2/1003	37/03															
Progress review1	2/11/03	2/11/03		₿													
Experiment	2/24/03	4/18/03															
Random	2/24/03	3/13/03									•						
Semi-autonomous	91403	4/3/03										Ţ					
Autonomaus	4/4/03	4/18/03											+				
Cral progress report	3/4/03	34/03					\tau										
Progress review2	4/1/03	4/1/03									\\\\						
Analysis &presentation	4/1803	5/13/03															
Data analysis	4/1603	4/30/03															
Written report	4/30/03	5/13/03															
Final oral report	5/1/03	5/1/03													₿		
Last day totakedata	4/1803	4/18/03											Ŭ				

