

16.682 - Prototyping Avionics Spring 2006

LECTURE 6 February 27, 2006

DEPARTMENT OF AERONAUTICS AND ASTRONAUTICS Alvar Saenz-Otero

- Transistors
 - Introduction
 - NPN/PNP
 - MOSFETs
- Digital Logic Introduction

Transistor Introduction

- We want an electronic switch which allows us to open or close a circuit...
 - The diode could do that if we reversed voltage:

- But can we do it by commanding a separate voltage, instead of the input voltage?
 - That is what a transistor is for:

$$v_{B} \xrightarrow{B} C \xrightarrow{V_{E}} E \xrightarrow{V_{E}} V_{E} \xrightarrow{B} i_{BE} \xrightarrow{C} C \xrightarrow{i_{CE}} Short \xrightarrow{C} On \xrightarrow{B} i_{CE} \xrightarrow{C} i_{CE} \xrightarrow{C} On \xrightarrow{C} On \xrightarrow{B} i_{BE} \xrightarrow{C} i_{CE} \xrightarrow{C} On \xrightarrow{$$

Massachusetts Institute of Technology

16.682 - Prototyping Avionics

Bipolar Transistors

- PNP and NPN *Bipolar* Transistors
 - Current "amplification" components
 - $i_C = \alpha i_B$ **\alpha ~ 40-200**
 - Have three connections:
 - Base he "control" of the transistor
 - Emitter the connection that emits current
 - Collector the connection that *collects* current
 - Have a "diode" between the <u>Base and the</u>

Emitter

- Determines polarity: PNP or NPN
- Turns "on" when <u>current</u> can flow through the diode
- The <u>current is amplified</u> between the collector and the emitter

Bipolar Transistors

• Example with an NPN transistor:

Transistor Use

- Driving a high-current, separate voltage load
 - Vin does not have to be the same as Vpwr
 - A large Vin saturates V_{BE}

$$v_E = 0$$

 $v_{in} = 3.3 V$
 $i_B = (3.3V - 0.6V) / 2k = 1.35 ma$
 $i_C \approx 100 ma$

- Negative input (inverse signal)
 - Must be able to drive V_{in} @ V_{pwr}
 - $V_{in=} V_{pwr}$ means transistor is OFF
 - V_{in}= 0V means transistor is ON

Transistor Use

• Current Source

$$v_B = V_{in} \left(\frac{R_2}{R_1 + R_2} \right)$$

$$v_E \cong v_B - 0.6V$$

$$i_{ref} = \frac{v_B - 0.6V}{R_{ref}}$$
if $i_B \approx 0 \ (\alpha = 100) \rightarrow i_L = i_{ref}$

- Example: R_{ref} =10 Ω , V_B =1.6V

$$v_B = 1.6V$$

$$v_E \approx 1.0V$$

$$i_{ref} = \frac{v_B - 0.6V}{R_{ref}} = \frac{1}{10} = 100mA$$

$$i_B \approx 1mA \text{ (Need R1 \& R2 such that } i_B \approx 0 \text{ WRT } i_R\text{)}$$

Note limits: V_B=10.6V then i_B=100mA, too large!

7

MOSFET Transistors

- "Voltage" Transistors
 - FET = Field-effect transistor = "voltage" transistor
 - Gate/Source/Drain instead of BCE
 - Voltage turns transistor on/off
 - $i_{SD} = \alpha V_{DS}$
 - Need very small current (almost 0) at the gate

– V_{GS}= 0 -> OFF

-4

2SJ50 (Hitachi)

MOSFETS in use

• Driving many "lines" from a single voltage

Massachusetts Institute of Technology

16.682 - Prototyping Avionics

Basic Gates

