
Massachusetts Institute of Technology 
Department of Aeronautics and Astronautics 

16.682 – Special Subjects in Aeronautics and Astronautics 
“Prototyping Avionics” 

Homework #3 
Out: Wed Mar 8, 2006 
Due: Wed Mar 15, 2006 

Topics: 
• Digital Logic elements 

• Basic Logic 
• Multiplexers 
• Latches, Flip-Flops, & Registers 

• “Thinking Digital” 
• Notation and bases 
• Bitwise vs. Wordwise 
• Shifting 
• Data types, 2’s complement 

Problem 1 – Basic Logic 

First, lets make sure that you have a quick feeling for how the basic two-input logic 
gates work. 

Using 2-input AND, NAND, OR, and NOR gates make: 

1) a 2-input XOR gate 

Using only 2-input logic gates (AND, NAND, OR, NOR, or XOR) make: 

1) a 5-input AND gate 
2) a 5-input OR gate 

Show the truth-tables for both gates with as few rows as possible. 
(tip: try to use a lot of “don’t care” x’s) 

The idea to take with you is to see how:

a) Complex circuits are a lot of simple ones put together

b) To make complex design you start to use a lot of logic gates (many transistors)
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Problem 2 – Multiplexers 

In class we saw a 2-input and a 4-input multiplexer.  Now it is your turn to show how a 
6-input multiplexer would look like: 

1) How may “select” control lines are needed?


2) Draw the symbol for a six input multiplexer – a single symbol, do not use many

multiplexers to create this one.


3) Show the truth table as simple as possible… do you have extra rows?


4) What is the number of inputs needed to use all select lines?


5) What if you used a 2-input and 4-input multiplexer, and then combined the

signal, would you use all the select lines?


Problem 3 – Latches, Flip-Flops, and Registers 

1) Latches 

The most simple latch out there is one that only has only three connections: set, reset, 
output: 

S 
Q 

R 

The signal Q goes high when Set is asserted, and it goes low when R is asserted. 

a) Draw the truth table for this latch --- point out any states you’re not sure about 

b) Create this latch by using the latch we saw in class (inputs: D, S, R; output: Q) 
and connecting the input signals as needed. The diagram below illustrates this 
question. 
(Tip: don’t over think it, this part should take 10 seconds, the answer is extremely 
simple!) 

S 

R 
Q 

S 

R 

Q 

D 
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Lets re-visit the timing problem with latches. 

First, assume that you have a microcontroller which must have a stable input when its 
input clock is low. We want to read a signal during this period. 

a) Lets setup the latch using the signals as follows (try for output Q to not change 
when the clock is low): 

S=CLK


D=Sig 

R=0


Draw Q, the output, and show when the data was captured correctly and when 
the data is missed. 

b) Lets try this setup now (never miss data, and reset to 0 when clock is high): 

S=Sig 

D=1


R=CLK


Once again, draw the output Q and show when the data is good and bad. 

c) Try at least one other setup which you think may work… 
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Latches are still useful for many things, especially those which really don’t require any 
special timing (no synchronization) or where the timing is very slow (example, a person 
pushing a button to turn a light on (set) and then another button to turn the light off 
(reset); in this case the person reacts very slowly compared to the speed of the latch, so 
nothing is lost). But the latch is not a great interface to things that work in a 
synchronized way with fast clocks. 

In the second case, an option would be to have reset come back from the processor, 
instead of the clock, but that would be cheating. We don’t want to use processor time to 
capture a signal, we should be able to do a good job without it. 

Like it was mentioned in lecture, a big problem here is that the latch is “level” triggered, 
so the data must hold valid for a long time and any change in data/signal creates a 
response we may not want. Therefore, we have… 

2) Flip-Flops 

Remember how a flip-flop works: when the clock input (the triangle) has a “rising edge” 
(goes from low to high) the value of data at that time is stored in Q until the next rising 
edge. Here is how the flip-flop looks: 

D 
Q 

Lets use the same timing diagrams as for the latch: 

a) Draw Q, the output, and show when the data is valid and invalid. 

CLK 

D=Sig 

R=0


Is this any better than for the latch? 
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b) Draw the output Q and show when the data is valid and invalid for the second 
setup: 

CLK=Sig 

D=1


R=CLK 

Is this one better or worse?


c) Lets solve this problem completely by using two flip-flops, instead of just one:


1 

Sig 

D1

Q1 Q2 

D2 

CLK 

R1 

Use the same signals as in the previous part. 

To figure this one out, follow the next steps: 

i) Look for the first rising edge of the signal “sig”, that should make Q1 go 
high. 

ii) Since Q1 is D2, the next time the CLK signal has a rising edge, the 
output Q2 will go high 

iii) When Q2 goes high, it forces the first flip-flop to reset, making Q1 low 

iV) On the next rising edge of CLK Q2 will go low, and the first flip-flop can 
operate again. 
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Note: it takes some finite amount of time for signals to get through a flip-flop, 
therefore when figure out the timing account for some small amount of time 
between a signal going into the flip-flop and the change being visible in Q. 

d) The resulting signal has something very special related to the CLK signal, 
what? 

e) Why would you not be able to do this with a latch? 

3) Registers 

If you understand latches/flip-flops, you basically understand registers, so this question 
goes into an a common application. 

Many systems use counters to check either time or number of events that occur, and 
want to store that value at specific known times. Assume that you have an 8-bit counter 
which you want to store whenever a sensor is triggered (signal goes from low to high). 

Find an actual 8-bit register with a rising edge clock and using its connection diagram 
describe how you would store the counter value until the next time the sensor triggers. 
Ask for help if you’re overwhelmed by the number of registers out there! 

Problem 4 – Thinking Digital 

1) Binary and Hexadecimal: Masking 

Lets apply the bitwise operations we learned in class in one of the most useful things to 
do with bytes/words: masking. A “mask” is a value you use to keep some things the 
same and other things different. For example:

0xFF AND 0xXX 
where 0xXX is a random hexadecimal value, always returns 0xXX – 0xFF is a mask. 

Lets figure out how to use other masks and the logical operations AND, OR, and XOR 
to modify the hexadecimal random value 0xXY. All your answers will be of the form: 

0xXY [AND, OR, XOR] <mask> 

a) Make X all 0’s and keep Y the same.


b) Keep X the same and make Y all 1’s.


c) Make the second least-significant bit (LSB) 0, keeps everything else the same.


d) Invert X and keep Y the same.


e) Returns all 0’s (a logical false) if the fourth LSB is 0
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2) Shifting data 

A very important use of shifting is to create “serial” data.  An 8-bit byte is “parallel” data, 
all of the data exists at the same instant in time.  In serial data, only one bit exists at a 
time, followed by the next bit, and the next bit. 

Say you have the hexadecimal value
0x36 

stored in a register, and you want to “shift” the byte into a serial line.  To do this, we will 
use the following procedure: 

a) Write the number in binary 

b) Start a timing diagram which has two traces, a clock and a signal; draw a 
square wave for the clock with at least 10 full cycles 

c) On the rising edge of the clock do the following in order:


i) In the signal trace draw the LSB of the byte in the register

then


ii) Shift the signal right by 1, assuming a circular-buffer shift 

Repeat this until you have shifted the whole byte 

d) Examine the timing diagram: for each full-clock cycle write whether the signal 
is a 1 or a 0. How does this relate to the original hexadecimal value? 

Microcontrollers are much better at figuring out how the first bit works than trying to 
access a random bit in a byte, therefore this is many times the way to serialize data or 
otherwise analyze individual bits inside a byte. 

3) Shifting: math 

It is also important that you have the basic concept of how shifting performs 
mathematical operations, specifically multiplication and division by two. Therefore, using 
as many shifts as you need (you can store the value between shifts as many times as 
you need separately from the original value) but at most one addition or subtraction, 
explain how you would: 

a) Multiply an integer number by 7


b) Multiply an integer number by 12


c) Divide an integer number by 16
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4) Data types (& thinking digital as a whole!) 

Data types have a maximum range (8bit, 16bit, etc), but many times these days 
memory is larger than the data-type. 

Assume that our memory is 32-bit wide, and that we’ll use the conventions that:
Data Type Size 
char/uchar 8 bit 
int/uint 16bit 

a) We want to use our memory as efficiently as possible: how many char type 
variables should we store in each memory space? 

b) Lets do it using the masking and shifting functions: 

i) Assuming that the memory space is
mem_val=0xXXXXXXXX 

create the necessary masks to insert the value
char_val=0xYY 

so that the final result is: 
mem_val=0xXXXXXXYY 

Tip: you will need to use two instructions. 

ii) Now we want to insert 0xZZ so that

mem_val=0xXXXXXXYY


becomes 
char_val=0xXXXXZZYY 

iii) Repeat for 0xWW and 0xVV so that you end up with 
mem_val=0xVVWWZZYY 

c) Now lets deal with signed and unsigned values. Assume that the actual value 
in digital is:

1001 1000 0110 0011 0101 0101 1010 0111 

i) If we assume an unsigned character value which looks at the least-
significant byte (LSB, to the right), what is its decimal or hexadecimal 
(your choice) value? 

ii) What if it is an normal character (ie, signed), what is its decimal value? 

iii) If we had signed integers, what is the sign of the lower-16-bit integer? 

iv) For the higher 16-bit integer, what is its sign? What is its magnitude? 
Use binary/hexadecimal only to get the magnitude (not decimal). 
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