

16.682 - Prototyping Avionics Spring 2006

LECTURE 5 February 22, 2006

DEPARTMENT OF AERONAUTICS AND ASTRONAUTICS Alvar Saenz-Otero

- Power Regulation
 - Transformers
 - Rectifiers
 - Linear Regulators
 - Switching Regulators
- How much power?

Transformers

- Exchange voltage for current to reduce potential difference (voltage) across two points
 - The difference in number of turns between the two windings determines the ratio of voltage input to voltage output

- Note: no conductive element between v_1 and v_2 !

Transformers: Multiple Types

 v_1

- Single-tap
 - One voltage output
- Multiple-taps/windings •
 - **Provide multiple voltage outputs**
 - Multiple taps
 - Must share common point
 - **Multiple windings** —
 - Can use in series (like a tap) to get multiple voltages or in parallel to increase current output

Vpos

→ Vneg

 \rightarrow Vpos

>>∨0

→> Vneg

Rectifiers

ac

Note: Volts AC is

- DC vs AC
 - DC = Direct Current: used in most electronics & batteries
 - AC = Alternating Current: used during common electricity
 generation (power plants, motors with rotating magnets) -¹
 - Preferred method to transmit over long distances

Full Wave Rectifier

- A full-wave bridge rectifier effectively provides abs(Vac) at the output
 - A capacitor "flattens" the sinusoidal AC signal for a relatively flat DC output
 - The output will always have some *ripple*, must use a regulator to fully flatten the signal

Massachusetts Institute of Technology

16.682 - Prototyping Avionics

Linear Regulators

- Regulate an input voltage to:
 - Reduce voltage to exact needs
 - Provide constant output
 - No ripple
 - Regardless of load (even changing load)
- Simplest design of all regulators
 - Only needs capacitors as external components, no high-frequency elements
- Input voltage (abs) MUST be higher than output voltage (abs)
 - Linear regulators cannot increase or invert voltage
- Power lost in regulator is linear WRT current pull and voltage drop (V_{in}-V_{out})
 - Useful for small current_{and/or} small voltage drop
- Efficiency is <u>linearWRT</u> the voltage drop (V in-V_{out})
 - Most efficient with small voltage drop...

Linear Regulator Model

• The simplest model of a linear regulator is a *variable resistor:*

- The effective resistance of the circuit, R_{load}, determines the necessary current

The input current must be the same as the output current

• Example:

• $P_{reg} = 0.2W$, $P_{tot} = 0.7W$, eff =71% reasonable use, no heatsink

- P_{reg}= 2W, P tot= 7W, eff=71% NEED heatsink to dissipate 2W!
- V_{in}=20V,V_{out} =5V, i=100mA
 - P_{reg}= 1.5W, P_{tot} = 2W, eff=25% UNreasonable use, a lot of power wasted, low efficiency!

Switching Regulators

C17 4.7uF

VCC(15V)

- Regulate an input voltage to:
 - Decrease, increase, and/or invert a voltage
 - Allow for large input/output voltage differentials
 - Can only increase or ٠ decrease voltage, not both
 - Practically get rid of ripple
- **Complex design**

۲

- Uses many external components
- Design uses an inductor to create the necessary voltage by driving current through it at high frequencies (~100-500kHz)
 - Utilizes feedback of both current (through sense resistor) and voltage (at output)
 - Output voltage has small noise at operating frequency, usually insignificant
- Usually 80-95% efficiency, dependent on current pull ۲
 - Driving the high-frequency signal requires a minimum constant power input, even if the output is disconnected (no current)

9

Current

Switching Regulator Model

- No simple model
 - It is a feedback loop where the sensor drives the "current switch" as necessary
- For design purposes can assume that power in equal power out, plus the efficiency factor
 - For design one *must* know the necessary current supply for V_{in}

$$v_{in}i_{in} = P_{in} = P_{out} = v_{out}i_{out}$$
$$i_{in} = \frac{v_{out}i_{out}}{v_{in}} \cdot \frac{1}{eff}$$

- Example: from datasheet, since the model of a switching regulator is not always the same
 - Note different curves for different input voltages
 - Note very low efficiency for low output currents

How much power do you need?

- Remember it is very simple:
 - P = IV, always as far as we're concerned
 - Power can be added
 - If you know the power of individual components, and are given the voltage & current for others, add the power together!
 - Account for regulator efficiency
 - Select the best type of regulator for your needs, consider both design (linear is simple) and efficiency/power dissipation (usually switching is better)
 - Allow for at least 20% margin
 - After considering regulator efficiency