Lecture 1 Outline: Introduction – Energy in Transportation

- I. Thoughts on the future of transportation
 - a. Mass electrification vs. biofuels vs. fuel cells vs. nuclear fusion?
- II. Energy use in the USA
 - a. Thought exercise
 - i. Typical energy use on a car
 - b. Vehicle energy model
 - i. Braking energy
 - ii. Energy conversion losses
 - iii. Aerodynamic drag
 - iv. Rolling resistance
 - 1. Comparison to bicycle and train
 - c. Transportation efficiency calculation
 - i. Comparison to aircraft, trains, buses, rockets
- III. Propulsion system efficiency
 - a. Brief introduction
- IV. Administrative issues
 - a. Course objectives
 - b. Grading/assignments/participation
 - c. Topics covered
 - d. Assignments

Lecture 2 Outline: Energy & Thermodynamics

- I. 1st law of thermodynamics
 - a. Conservation of energy
 - b. Carnot cycle
 - c. Heat engines
- II. 2nd law of thermodynamics
 - a. Entropy conservation
- III. Example problem
 - a. Piston-membrane-dual gas problem
- IV. Example problem II
 - a. Similar to problem 1
- V. Example problem III
 - a. Brayton cycle

Lecture 3 Outline: Internal Combustion Engines I

- I. Introduction
 - a. Otto vs. Diesel vs. Brayton
- II. Otto Cycle specifics

- a. Animation
- b. PV diagram
- c. Comparison to ideal Carnot efficiency
- III. Diesel Cycle specifics
 - a. Animation
 - b. PV diagram
 - c. Comparison to ideal Carnot efficiency
- IV. Otto vs. Diesel
 - a. Key differences
 - i. Mechanical components
 - ii. Efficiencies
- V. Brayton Cycle specifics
 - a. Animation
 - b. PV diagram
 - c. Comparison to ideal Carnot efficiency
- VI. Engine Applications: Gasoline
 - a. Light vehicles and machinery
- VII. Engine Applications: Diesel
 - a. Heavy machinery
- VIII. Engine Applications: Brayton
 - a. Aircraft
 - b. Stationary power generation
 - c. Some heavy machinery

Lecture 4 Outline: Internal Combustion Engines II

- I. Piston engines
 - a. 2 stroke vs. 4-stroke
 - b. Improvements
 - i. Turbo and super-charging
 - ii. Direct Injection
 - 1. HCCI
 - iii. Variable valve timing
 - c. Emissions
 - i. Emissions types
 - ii. On-board vehicle controls
 - 1. Catalytic converters
 - 2. Particulate traps
 - 3. Gasoline vs. Diesel differences
 - iii. Government regulations
- II. Vehicle improvements
 - a. Transmissions

- i. Introduction to DSG, CVT, 7 and 8 speed automatics
- b. Start/stop
- III. Transition to hybrid/electric drivetrains

Lecture 5 Outline: Road Vehicle Engineering & Components I (Vehicle Dynamics, Powertrain & Components)

- I. Model for vehicle power demand
 - a. Thermodynamic efficiency
 - b. Vehicle Mass
 - c. Aerodynamic drag
 - d. Rolling Resistance
- II. Vehicle Dynamics
 - a. Geometry
 - i. Wheelbase and track width
 - ii. Steering and suspension angles
 - b. Mass Distribution
 - i. Roll Centers
 - c. Traction
 - i. Center of traction
 - d. Aerodynamics
 - i. Center of pressure
 - e. Vehicle Response
 - i. Under/Oversteer
 - ii. Weight transfer
 - iii. Speed wobble
 - f. Advanced control

Lecture 6 Outline: Road Vehicle Engineering & Components II

- III. Powertrain components
 - a. Manual transmission
 - b. Automatic transmission
 - c. CVT
- IV. Materials
 - a. Steel
 - b. Aluminum
 - c. Magnesium
 - d. Composites
- V. Manufacturing processes
 - a. Stamping
 - b. Welding

- VI. Electronics / Communication
 - a. CANbus

Lecture 7 Outline: Electric & Hybrid Vehicles I (Consumer Electric Vehicles)

- I. Brief background
 - a. Different types of electric vehicles
 - i. Commercial applications, etc...
 - b. History of the development of the electric car
 - i. 1968 Great Electric Car Race
 - c. "Who killed the electric car" brief mention
- II. Drivetrain comparison
 - a. Conventional vs. Hybrid vs. Battery-Electric
 - b. Efficiency comparison
- III. Technical efficiency ratings
 - a. Terminology
- IV. Benefits
 - a. V2G possibility
 - b. Night-time charging
- V. New energy sources
 - a. Power grid capacity
 - b. Operating costs
 - c. CO2 emissions

Lec 8 Outline: Electric & Hybrid Vehicles II

- VI. Challenges
 - a. Energy density
 - b. Range
 - c. Charge time
 - d. Cost
 - e. Battery life
 - f. Consumer acceptance
 - g. Operating cost
- VII. EV research at MIT

Lecture 9 Outline: Rail Transport: Fossil Fuel, Electric, Urban & High-Speed (Fossil Fuel Rail)

- I. Rail Transportation Overview
- II. Technical Overview of Rail and Energy
 - a. Aerodynamic Drag
 - b. Hertz contact forces

- c. Energy balance vs. automotive
- III. Rail Operations
 - a. Switches
 - b. Track Gauge
 - c. Study of train wear, standards or gauges
- IV. Steam Engine History
 - a. Pre steam engine rail
 - b. Development of Steam Engine, James Watt (1794)
 - c. 1830, first intercity rail opened (Liverpool Manchester)
 - d. 1869, first transcontinental railway completed in US
 - e. Steam dominant in rail from early 1800's till about 1930
- V. Steam Engine Components
 - a. Boiler
 - b. Steam Circuit
 - c. Running Gear
 - d. Couplings
 - Steam Engine Fuel
 - a. Wood (US early), Coal
 - b. Water
- VII. Dieselisation

VI.

- a. Compression ignition patented by Dr. Rudolf Diesel in 1892
- b. Advantages over steam
 - i. Much less pollution / cleaner work environment
 - ii. Can be operated by one engineer
 - iii. Higher thermodynamic efficiency
 - iv. High tractive load
- c. Diesel Cycle
- d. Mechanical Transmissions
 - i. Usually fluid coupling between engine and epicyclic gearbox
 - ii. Transmission can be limiting factor for power and torque output

Lecture 10 Outline: Rail Transport: Fossil Fuel, Electric, Urban & High-Speed (Electric Rail)

- VIII. Diesel Electric
 - a. Classifications
 - i. On-board generation (hybrid diesel electric, gas turbine)
 - ii. On-board storage (battery electric)
 - iii. Off-board generation (third rail, overhead lines)
 - b. Currently almost all locomotives are diesel-electric
 - c. Technical
 - i. Diesel engine to electric generator to electric traction motors

- ii. (power transmission) DC Versions until 1960's
- iii. AC made possible by high capacity silicon-carbide rectifiers
- d. Throttling
 - i. Usually accomplished in discrete steps
- IX. Electric Rail
 - a. Patent by Thomas Edison
 - b. Late 19th century
 - c. Advantages
 - i. >90% efficiency of traction motors
 - ii. Less pollution
 - iii. Efficiency gains from regenerative braking
 - d. DC vs AC
 - i. Allowable voltage ranges
 - ii. Regenerative braking / fail safe motor braking
 - iii. Transition from DC to AC
 - iv. Grids

Lecture 11 Outline: Rail Transport: Fossil Fuel, Electric, Urban & High-Speed (Urban & High Speed Rail)

- X. Urban Rail
 - a. History
 - b. Presence in cities
 - i. United States
 - ii. World
 - c. Technologies
 - i. From coal / steam to electric early on
- XI. Intercity / High Speed Rail
 - a. History
 - i. Japan Shinkansen
 - ii. Europe
 - iii. China
 - iv. United States
 - b. Technology
 - i. High Speed
 - ii. Aerodynamics
 - iii. Safety
 - c. Mag Lev Trains

Lecture 12 Outline: Water Transport: History, Vessels, Port Operations (Water Transport History)

- I. Energy efficiency:
 - a. BTU per ton-mile:
 - i. Rail: 341
 - ii. Water: 510
 - iii. Heavy Trucks: 3,357
 - iv. Air freight: 9,600
- II. Most are propelled by diesel
 - a. 2-stroke turbo
 - i. Largest run on heavy fuel oil (little distillation required)
 - b. Nuclear is insignificant
 - i. A few experiments in the '60's; Russia has a few nuclear ice-breakers, not much else
 - c. Single engine, single-screw is generally preferred
 - i. Reliability and economy
- III. 3-year engine overhaul schedule

Lecture 13 Outline: Water Transport: History, Vessels, Port Operations (Water Transport: Vessels)

- I. 7.4 billion tons of cargo carried in 2007, globally (Source: wiki)
 - a. Vs.
- II. Bulk
- III. Passenger
- IV. Tanker
 - a. Oil
 - b. LPG
 - c. Chemicals
 - d. Food
- V. Reefer ships
 - a. Temperature controlled
- VI. RORO (roll on / roll off) ships
 - a. Ferries, for automobiles, etc...
- VII. Cruise ships
 - a. Many have propulsion by azimuth thrusters large electric motors in pods
 - b. Diesel-electric
 - i. Electrical losses: ~8%
 - 1. Vs. shaft/mechanical losses at 2%
- VIII. Improvements currently considered: counter-rotating propellers at pods
- IX. Energy use per item carried

- a. Also per ton
- X. Compared to other transportation methods

Lecture 14 Outline: Water Transport: History, Vessels, Port Operations (Port Operations)

- I. Containerization
 - a. TEU twenty foot equivalent unit, 20*8.0*8.5 feet
 - b. Most today are 40-foot containers (2 TEU containers)
 - c. Since 1960's containerization (also interface with rail and road)
- II. Big organizational hurdle:
 - a. Movement:
 - i. Ships
 - ii. Containers
 - iii. Cargo
 - b. Loading/unloading
 - c. Smaller ships tugs
 - d. Storage warehousese
 - e. Cashflow + pricing
 - f. Information management
 - g. Customs
 - h. Marketing and competition
 - i. Safety+security
 - j. Environment and sustainability
- III. Example from 15.053 operational research algorithms
 - a. Maximum flows
 - i. Math problems
- IV. Stats:
 - a. Port flows

Lecture 17 Outline: Aircraft Types

- I. Intro to Chapter 1 History
 - a. Balloons/Dirigibles
 - b. Heavier than air
 - c. Commercial Air transport
 - d. Helicopters
 - e. Conquest of space
 - f. Commercial use of space
- II. Current uses of aircraft
 - a. Manufacturers overview
 - i. Equipment volume / market share

- b. Transportation efficiency per given payload
- III. Airport considerations
 - a. Traffic and logistics
 - i. Relationship to port operations
- IV. Fuels
 - a. Sources/volume
 - b. Future possibilities
 - c. Consumption increase / industry growth
- V. Maintenance Intervals

Lectures 18 & 19 Outlines: Fixed-Wing Aircraft Aerodynamics I & II

- I. Lift:
 - a. Buoyancy lift
 - b. Lift from fluid air motion
- II. Sources of Drag:
 - a. Profile Drag
 - b. Induced Drag
 - c. Effects on Drag
- III. 2-D Aircraft model
 - a. Equations of motion
- IV. Steady Flight:
 - a. Thrust-velocity curves
 - b. The stalling speed of an aircraft
 - c. Maximum lift-to-drag ratio
 - d. Endurance and range of an aircraft
 - e. Gliding flight
 - f. Technical:
 - i. Basic equations governing flight applied with examples relating to different aircraft geometry
 - g. How Helicopters Work

Lectures 20 Outline: Aircraft Engines

Goal: Understand the principles that guide their design for varying applications. Basic combustion process has already been covered).

- I. Inlet
- II. Compressor
- III. Combustor
- IV. Power Turbine
- V. Nozzles
- VI. Engine Types

- a. Turbojet
- b. Turbofan
- c. Turboprop
- d. Afterburning turbojets
- e. Ramjets
- f. Ultra high bypass engines / Future possibilities

Lectures 21 Outline: Helicopters

- I. Basic mechanics
 - a. Swashplate + blade pitch control
 - b. Physics behind tail rotor and twin rotor helicopters
- II. Power plants
- III. Efficiencies quick overview: homework problem
- IV. Uses
- V. Role in transportation

Lectures 22 Outline: Radar

- I. History
- II. Principle of operation
- III. Configurations and types
- IV. Role in transportation today

Lecture 24 Outline: Navigation Module (Navigation)

- I. History
 - a. Improvements leading up to the GPS era
 - i. Celestial navigation
 - ii. Original mapping techniques
 - 1. Compass invention
 - iii. Piloting
 - iv. Dead reckoning

Lecture 25 Outline: Navigation module (Global Positioning System GPS)

- I. GPS History
 - a. LORAN and Decca Navigator WWII ground based nav
 - b. Observation of Doppler effect on Sputnik (1957)
 - c. First satellite nav system Transit, US Navy, 1960
 - d. GPS developed in response to nuclear age SLBM fixing, etc
 - e. 1973 Navstar GPS program created, combining multiple military projects
 - f. Pres Reagan made GPS available for civilians after 1983 Korean Air disaster

- g. Satellites launched between 1989 and 1994
- h. Pres Clinton disables selective availability in 2000
- II. GPS Technology Basics
 - a. System Architecture
 - i. DOD operated
 - ii. Space Segment
 - 1. 24 to 32 satellites in medium earth orbit (~20000 km)
 - 2. 6 planes of 4 satellites each
 - 3. >= 6 satellites always within line of sight from anywhere on earth
 - iii. Control Segment master control station and monitor stations
 - iv. User segment military and civilian users of GPS
 - v. Atomic clocks, corrections for relativity
 - b. Competition to GPS
 - i. EU, China, Russia
 - c. Message Transmission
 - i. Time of Message
 - ii. Precise Orbital Information (Ephemeris)
 - iii. Almanac of all GPS satellites
 - d. Position and Velocity Calculation
 - i. Trilateration using propagation time of signal
 - ii. Usually requires at least 4 satellites
 - iii. Time delays create sphere's of possible location from each satellite. Intersection of spheres indicates position
 - e. Accuracy
 - i. After SA disabled, civilian accuracy improved from 300 meters to 20 meters
 - ii. Receiver clock major source of error
- III. Possibilities and Limitations
- IV. GPS Applications
 - a. Navigation, Map Making, Surveying
 - b. Integration with cellular telephony
 - c. Geofencing
 - d. Geotagging
 - e. Missile and projectile guidance
 - f. Reconnaissance, Search and Rescue
 - g. GPS Satellites US Nuclear Detonation Detection System

Lecture 26 Outline: Navigation Module (Global Information System GIS)

- V. GIS Overview
 - a. Definition (data linked to locations)
 - b. History
 - i. 1854 John Snow Cholera outbreak

- ii. 1960's computer mapping applications for nukes
- iii. Roger Tomlinson father of GIS Canada GIS
- iv. 1980's/1990's consolidation of available platforms

VI. GIS Data Representation

- a. Spatio-temporal location is key index variable
- b. Two Abstractions
 - i. Discrete Data (houses, etc)
 - ii. Continuous Data (rainfall, elevations, etc)
- c. Raster Images
- d. Vectors
- e. Image processing, raster to vector translation
- f. Point Clouds (3D points with RGB information)
- VII. Data Capture
 - a. Digitizing Map and Survey Data
 - b. Photography
 - c. Satellite remote sensing
 - d. Processing, error removal
- VIII. Geocoding
- IX. Reverse Geocoding
- X. Advantages / Disadvantages
 - a. Uncertainties come when combining data from many different sources
 - b. Quick analysis and representation of complex data sets
 - c. Visualization of nonhomogenous entities
 - d. Crazy consumer apps
- XI. Open Geospatial Consortium (OGC) Standards
 - a. 384 companies, agencies, etc
 - OpenGIS Specifications => geo-enable web apps, enable use of complex spatial information
- XII. GIS Applications
 - a. Web Maps (Google Maps, etc)
 - b. Business planning (store locations, etc)
 - c. Monitoring Climate Change (Polar ice caps map overlay)
 - d. Hydrological Modeling
 - e. Automated Cartography
 - f. Geostatistics

Lecture 27 Outline: Navigation Module (Modern Mapping Techniques)

- I. History of cartography
- II. Satellite ownage.

16.682 Technology in Transportation Spring 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.