

To Learn More...

16.687

- 16.400
- https://www.ntsb.gov/investigations/Accident Reports/Reports/AAR0001.pdf

"It is the pilot's fault"

16.687

- A new \$800,000 four-seat airplane or \$5 million turboprop won't have 1/100th of the intelligence of a \$500 DJI drone
- A \$27 million certified-in-2018 business jet has nearly every knob, button, and dial as a 1944 B-29. Why not one button "configure yourself for takeoff?"
- There is no such thing as regulatory error.
- There is no such thing as engineering error.
- Thus we are left with "pilot error."

5

Practice Question

16.687

A lack of orientation with regard to the position, attitude, or movement of the aircraft in space is defined as

- A. Pilot Error
- B. Oxygen narcosis
- C. Spatial disorientation
- D. Situation awareness

Practice Question

16.687

A lack of orientation with regard to the position, attitude, or movement of the aircraft in space is defined as

- A. Pilot Error
- B. Oxygen narcosis
- C. Spatial disorientation
- D. Situation awareness

7

Outline

16.687

- Aeromedical Factors
- Aeronautical Decision-Making

Private Pilot Ground School

Aeromedical Factors

9

Medical Certificate

16.687

- Private pilots must obtain a medical certificate to exercise privileges
- Aviation Medical Examiners (AME) issue medicals; these are typically doctors who fly
- Three classes of medical certificates (FAR 61.23)
 - Private or CFI: Third class valid for 60 months (5 years) if under 40
 - Commercial flying: Second class, valid for 12 months
 - Airline flying: First class, valid for 12 months if under 40
- Since 2017: fly with up to six people (under 6,000 lbs.) under BasicMed.

Aeromedical Factors

16.687

- Health and Physiological factors affecting pilot performance
 - Hypoxia & Hyperventilation
 - Middle ear and sinus problems
 - Spatial Disorientation and Illusions
 - Vision

11

Hypoxia: Reduced Oxygen

16.687

- insufficient oxygen to the brain
- Types
 - Hypoxic hypoxia: insufficient oxygen available
 - Reduction in partial pressure of oxygen at high altitude
 - Hypemic hypoxia: blood can't transport oxygen to the cells
 - CO poisoning
 - Stagnant hypoxia: oxygen-rich blood not moving to tissue
 - Excessive acceleration of gravity (Gs)
 - Histotoxic hypoxia: cells can't effectively use oxygen
 - · Alcohol and drugs
 - 1 once of alcohol ≈ 2,000 feet physiological altitude

Hypoxia Symptoms

16.687

- Impaired judgment
- Visual impairment
- Decreased reaction time
- Euphoria
- Drowsiness
- Lightheaded or dizzy sensation
- Headache
- Cyanosis (blue fingernails and lips)
- Tingling in fingers and toes
- Numbness

© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/fao-fair-use/

If the pulse oximeter shows less than 90, you're reading your IQ.

13

AEROASTRO

Hypoxia

16.687

© Christopher Cummings on YouTube. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/fao-fair-use.

Carbon Monoxide (CO) Poisoning

16.687

- · Tesla heats the cabin with a wire
- · Toyota Camry heats the cabin with a hot water pipe
- Cessna 172 heats the cabin by running air over the exhaust pipe

What could go wrong? Exhaust pipes corrode and crack.

Symptoms (form of hypoxia):

- Headache
- Blurred Vision
- Dizziness
- Drowsiness
- Loss of muscle power

15

Preventing CO Poisoning

16.687

- CO is a colorless and odorless gas produced by all internal combustion engines
- There are detectors: simple stick-on and built-in electric ones (standard on Robinson R44)
- Careful inspections by mechanics
- Replace components periodically

© Aviation Supplies and Academies, Inc. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/fag-fair-use/

(Not an issue in the turbine world; heat comes from fresh compressed "bleed air.")

CO Poisoning Continued

- 16.687

Symptoms reminder:

- Headache
- Blurred Vision
- Dizziness
- Drowsiness
- Loss of muscle power

Smell exhaust or experience symptoms?

- Turn off any heater
- open fresh air vents and windows
- use supplemental oxygen

17

Hypoxia Recap

16.687

- insufficient oxygen to the brain
- Types
 - Hypoxic hypoxia: insufficient oxygen available
 - Reduction in partial pressure of oxygen at high altitude
 - Hypemic hypoxia: blood can't transport oxygen to the cells
 - CO poisoning
 - Stagnant hypoxia: oxygen-rich blood not moving to tissue
 - Excessive acceleration of gravity (Gs)
 - Histotoxic hypoxia: cells can't effectively use oxygen
 - · Alcohol and drugs
 - 1 once of alcohol ≈ 2,000 feet physiological altitude

G-Induced Loss of Consciousness (G-LOC)

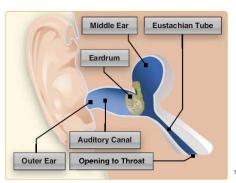
16.687

© texnguy on YouTube. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/helo/fao-fair-use/

19

Hyperventilation

16.687


- Excessive rate and depth of respiration leading to abnormal loss of carbon dioxide from the blood
- Symptoms:
 - Visual impairment, Unconsciousness, Lightheaded or dizzy sensation, Tingling sensations, Hot and cold sensations, Muscle spasms
- Pilots encountering and unexpected stressful situation may subconsciously increase their breathing rate
 - If flying at higher altitudes, a pilot may have a tendency to breathe more rapidly than normal, which often leads to hyperventilation
- To recover → breath normally (slow breathing rate), breath into a paper bag, talk aloud

Middle Ear and Sinus Problems

16.687

- climbs and descents → pressure inside of body must equalize
 - If gas escape is impeded, painful pressure builds
 - If the pilot has a cold, ear infection, or sore throat, it may not be possible to equalize the pressure

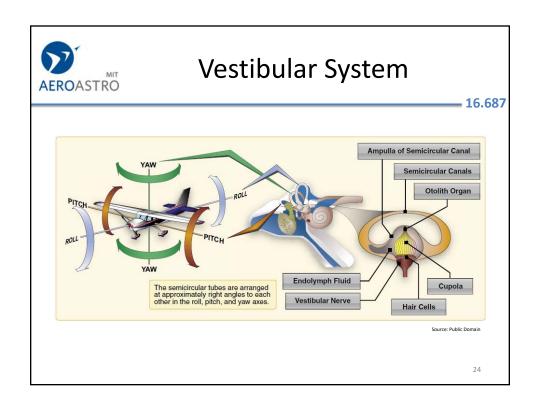
iource: Public Domain

21

Spatial Disorientation and Illusions

16.687

- Lack of orientation with regard to the position, attitude, or movement of the airplane in space
- Your body uses three systems working together to ascertain orientation and movement in space
 - Visual system
 - Vestibular system: organs in the inner ear used to determine balance
 - Somatosensory system: nerves in the skin, muscles, and joints which sense position based on gravity and feeling → "seat of the pants"



Spatial Disorientation

16.68°

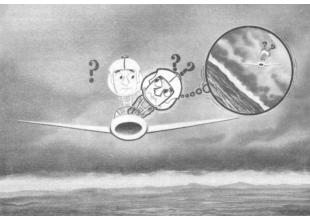
- When flying in VMC, your eyes are your major orientation source
- When flying in IMC, the visual cues are removed and false sensations can cause disorientation
 - The body can't distinguish between acceleration forces due to gravity and those resulting from maneuvering the aircraft

23

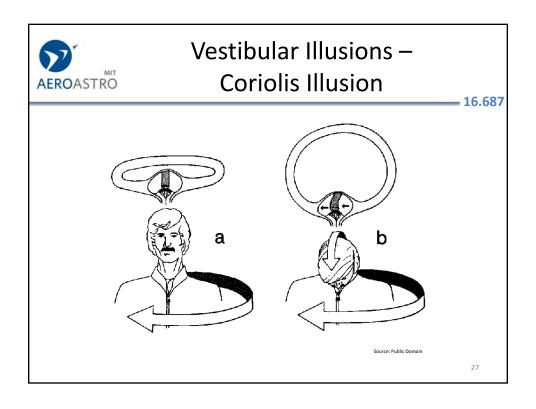
Spatial Disorientation

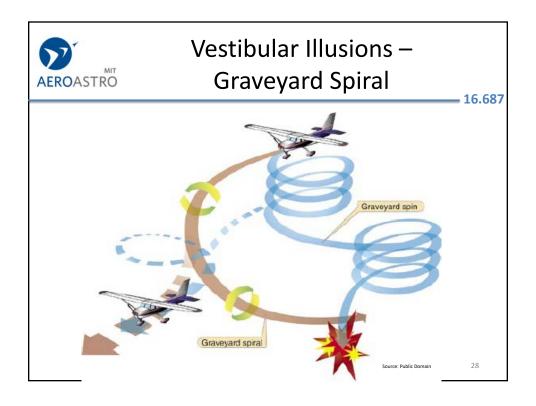
16.687

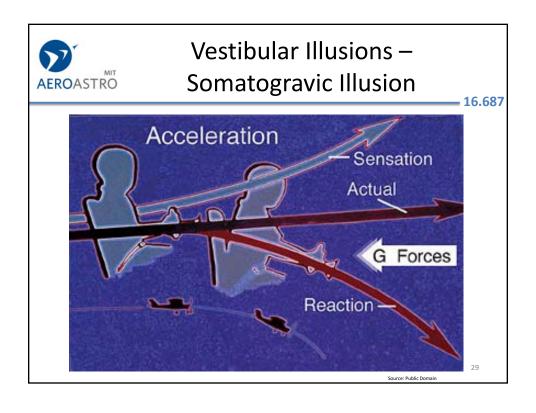
- Solution:
 - Prevention → flight should be avoided in reduced visibility or at night when the horizon is not visible
 - Training → Instrument rating
 - Awareness → Understand the types of illusions

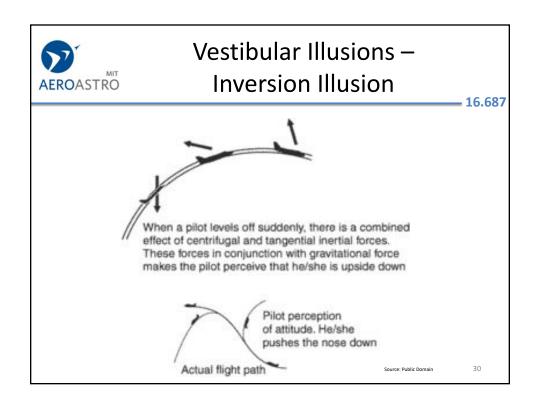


25

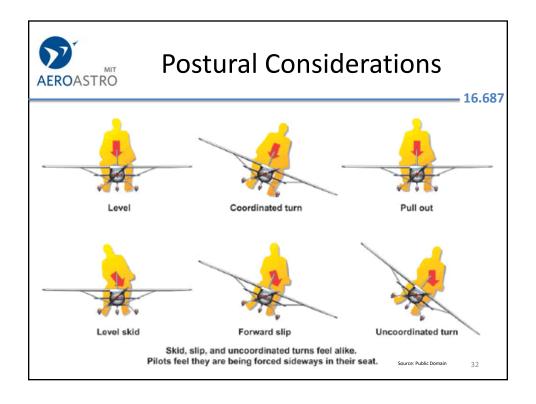

AEROASTRO


Vestibular Illusions – The Leans


16.687



© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/fao-fair-use/



Spatial Disorientation and Illusions

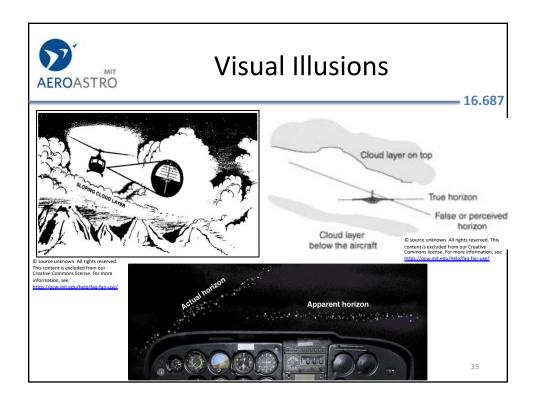
16.687

- Lack of orientation with regard to the position, attitude, or movement of the airplane in space
- Your body uses three systems working together to ascertain orientation and movement in space
 - Visual system
 - Vestibular system: organs in the inner ear used to determine balance
 - Somatosensory system: nerves in the skin, muscles, and joints which sense position based on gravity and feeling → "seat of the pants"

Demonstration of Spatial Disorientation

16.687

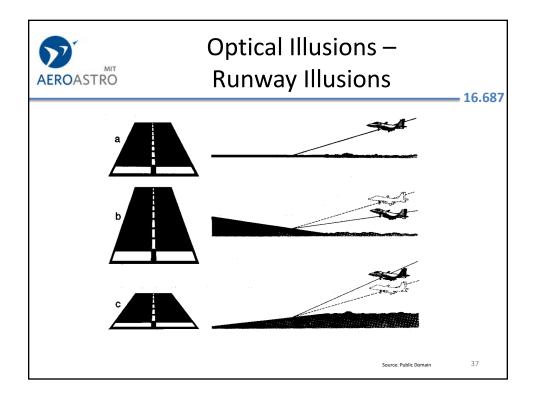
- Controlled aircraft maneuvers to experiment with spatial disorientation
 - Climbing while accelerating
 - Climbing while turning
 - Diving while turning
 - Tilting to Right or Left
 - Reversal of Motion
 - Diving or Rolling Beyond the Vertical Plane


33

Coping with Spatial Disorientation

16.687

- Understand the causes of illusions and remain alert for them
- · Obtain a preflight weather briefing
- Obtain training and maintain proficiency before flying in marginal visibility
- Do not continue flight into adverse weather conditions unless proficient
- Avoid sudden head movements
- Be physically ready to fly: rest, diet, night adaptation
- Become proficient and rely on your flight instruments



Visual Illusions - Autokinesis

16.687

- In the dark, a stationary light will appear to move about when stared at for many seconds
- Could cause loss of aircraft control in attempting to align it with the false movements of this light

Featureless Terrain Illusion

16.687

- An absence of ground features, as when landing over water, darkened areas, and terrain made featureless by snow, can create the illusion that the aircraft is at a higher altitude than it actually is.
- The pilot who does not recognize this illusion will fly a lower approach.

 $https://www.faa.gov/pilots/safety/pilotsafetybrochures/media/spatiald_visillus.pdf and a state of the control of the control$

 $https://www.faa.gov/regulations_policies/handbooks_manuals/aviation/helicopter_flying_handbook/media/hfh_ch13.pdf$

Optical Illusions

16.68

- Water Refraction: rain on the windscreen can create the illusion of being at a higher altitude
- Haze: atmospheric haze can create an illusion of being at a greater distance and height from the runway
- Fog: flying into fog can create an illusion of pitching up
- Ground Lighting Illusions: lights along straight paths can be mistaken for runway and approach lights

39

Optical Illusion Prevention

16.687

- Anticipate the possibility of visual illusions during approaches at unfamiliar airports
- Make frequent reference to the altimeter
- Use VASI or PAPI systems for visual reference

Motion Sickness

16.687

- Caused by the brain receiving conflicting messages about the state of the body
- Symptoms include
 - General discomfort
 - Nausea
 - Dizziness
 - Paleness
 - Sweating
 - Vomiting
- · Let your instructor know!

Good news: You will build up a tolerance. (Bad news: you may lose it if you don't fly for weeks.)

41

Stress

16.687

- Stressors in aviation
 - Physical stress (noise or vibration)
 - Physiological stress (fatigue)
 - Psychological stress (difficult work or personal situations)
- Must monitor yourself and not fly if you are experiencing chronic stress
 - Performance falls off rapidly at certain chronic stress levels

Fatigue

16.687

- Effects of fatigue include:
 - Degradation of attention and concentration
 - Impaired coordination
 - Decreased ability to communicate
- Physical fatigue results from:
 - Sleep loss
 - Exercise
 - Physical work
- Mental fatigue results from:
 - Stress
 - Prolonged performance of cognitive work

© JDA Journal. All rights reserved. This content is excluded from our Creative Commons license. For more information, https://ocw.mit.edu/help/fag-fair-use/

12

Fatigue

16.687

- · Acute fatigue can affect performance
 - Timing disruptions: pilot performs each component as though it were separate instead of integrated
 - Disruption of the perceptual field: concentrating attention in the center of vision and neglecting those in the periphery
- Prevent acute fatigue by:
 - Proper diet and adequate rest and sleep
- No amount of training or experience can overcome the detrimental effects of fatigue
 - Stay on the ground

Dehydration and Heat Stroke

- 16.687

- Flying for long periods in hot summer temperatures or at high altitudes increases your susceptibility
- Some aircraft have a canopy or roof window that heats up in the sun

45

Alcohol and Drugs

16.687

- Alcohol impairs the efficiency of the human body
 → decreases performance
 - Pilots experiencing a hangover are still under the influence of alcohol according to the FAA
 - 14 CFR part 91 limits blood alcohol level and time since the last drink
- Both prescription and over-the-counter medications can degrade performance
 - 14CFR prohibits pilots from performing crewmember duties while using any medication that affects the body in any way contrary to safety

91.17 - Alcohol or Drugs

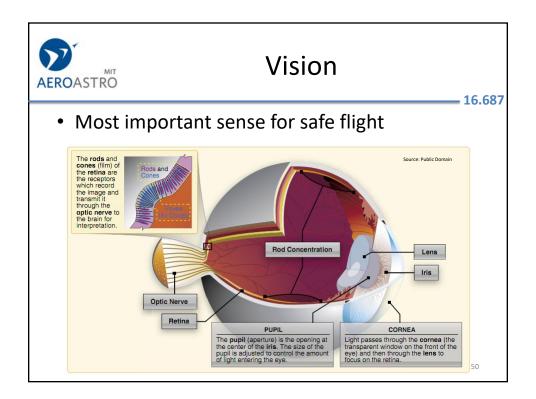
16.687

- 8 hours "bottle to throttle" (12 for most air carriers)
- Cannot operate under the influence
- Cannot operate with BAC >= 0.04 (0 for most air carriers)
- Intoxicated or drugged individual not allowed onboard
 - Exception 1: emergency
 - Exception 2: medical patient under care

47

91.17 - Alcohol or Drugs

16.683


- Must submit to alcohol test if requested by law enforcement
- FAA, with reasonable grounds, can request results of medical alcohol or drug tests performed within 4 hours of operation or attempted operation

91.19 - Carriage of Drugs

16.687

- Not allowed to carry drugs
 - Exception if allowed by Federal or State law

Vision

- 16.687

- Empty-Field Myopia
 - With nothing specific to focus on (above the clouds) \rightarrow eyes relax and focus at a range of 10 to 30 feet
 - Looking without seeing → dangerous for flying
 - Use a series of short, regularly spaced eye movements to search each 10-degree sector

51

Private Pilot Ground School

Aeronautical Decision-Making

Aeronautical Decision-Making

16.687

- Decision-Making
- Hazards
- Risk
- Personal Checklists

53

Aeronautical Decision-Making (ADM)

L6.687

- Roughly 80% of aviation accidents related to human factors → many occur during landing (24.1%) and takeoff (23.4%)
- ADM "Systematic approach to the mental process used by pilots to consistently determine the best course of action in response to a given set of circumstances"

Philosophy: Good judgment can be taught.

Crew Resource Management

16.687

- Captains as lone heroes made a lot of bad decisions
- Airlines pioneered Crew Resource Management (CRM) in the 1980s. Adds the following:
 - First Officer (co-pilot)
 - Dispatcher (available via radio)
 - Air Traffic Controller
 - Maybe the flight attendants

Image removed due to copyright restrictions

FAR 121.419 requires CRM

55

Single-Pilot Resource Management (SRM)

16.687

Are you actually a Crew of 1? Consider:

- Instructor or pilot friend to help plan and dispatch flights beyond the local area
- Autopilot
- Air Traffic Controller
- Passenger right next to you

FAA emphasizes single-pilot GA, but turboprop, bizjet, and charter world is all Pilot Flying+Pilot Monitoring going from checklist to checklist. You can do the same with an instructor or pilot friend!

Good Decision-Making

16.687

- Identifying personal attitudes hazardous to safe flight
- 2. Learning behavior modification techniques
- 3. Learning how to recognize and cope with stress
- 4. Developing risk assessment skills
- 5. Using all resources
- 6. Evaluating the effectiveness of one's ADM skills

57

Hazards and Risk

- 16.687

- Two defining elements of ADM
 - Hazard: Real or perceived condition, event, or circumstance that a pilot encounters
 - Risk: An assigned value to the potential impact of the hazard by the pilot
- Risk Management: "Part of the decision making process which relies on situational awareness, problem recognition, and good judgment to reduce risks associated with each flight"

Hazardous Attitudes

- 16.687

- Attitudes affect the quality of decisions
 - Every pilot is subject to hazardous attitudes
 - Solution: Recognize the attitude, label it, and state the antidote

 O Aircraft Owners and Pilots Association. All rights reserved. This content is excluded from our Creative Commons license. I more information, see https://occommit.edu/philos/flag-fair-use/

	NAME	DESCRIPTION	ANTIDOTE
	Antiauthority	"Don't tell me"	Follow the rules; they're usually right
	Impulsivity	*Do something quickly!*	Not so fast-Think first!
	Invulnerability	"It won't happen to me"	It could happen to me!
	Macho	"I can do it."	Taking chances is foolish.
	Resignation	"What's the use?"	I'm not helpless.

Assessing Risk **AERO**ASTRO 16.687 **Risk Assessment Matrix** Likelihood High High Probable High Serious Medium Serious Low · Likelihood of an event Severity of an event Mitigating risk 60

IMSAFE Checklist

16.687

The *pilot* is responsible for determining whether he/she is fit for a particular flight

- I Illness
- M Medication
- S Stress
- A Alcohol
- F Fatigue
- E Emotion

Experienced single-pilot turboprop and light jet owners often take a co-pilot when using the plane for an all-day business trip. The co-pilot will be fresh for the return trip.

61

PAVE Checklist

16.687

- PAVE checklist divides the risks of flight into four categories:
 - P Pilot-in-command (PIC)
 - A Aircraft
 - V enVironment
 - E External Pressures

PAVE Checklist (P&A)

16.687

- PIC
 - Can use IMSAFE
 - Also need to look at experience, recency, and currency
- Aircraft
 - Specific aircraft
 - Type of aircraft

63

PAVE Checklist (V)

- 16.687

EnVironment

- Weather
- Terrain
- Airport
- Airspace
- Nighttime

PAVE Checklist (E)

- 16.687

External Pressures

- Need to get to scheduled event
- Must wait for late passenger (JFK, Jr. to MVY)
- Return plane to flight school
- Avoid missing work

Remember that airliners are deiced and fly above the weather. Even the best pilot in a Cessna 172 may need to wait an extra day or two.

65

The SRM Five "P" Check

16.687

Scheduled review of 5 Ps during critical points: preflight, takeoff, cruise, descent, final

- 1. The Plan: the mission or task
- 2. The Plane
- 3. The Pilot: IMSAFE
- 4. The Passengers: may not understand the risks
- 5. The Programming: automation and avionics

Resources

16.68

- FAA Pilot Handbook Chapter 17 (Aeromedical Factors)
- FAA Pilot Handbook Chapter 2 (Aeronautical Decision Making)

67

Summary

16.683

- The newest airplanes are essentially products of the 1950s.
- Therefore, you are the weakest link.
- If you know that you won't be at your best, grab a co-pilot or CFI!

MIT OpenCourseWare https://ocw.mit.edu/

16.687 Private Pilot Ground School IAP 2019

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.