Context of Robust Design

Don Clausing

© Don Clausing 1998

Case study

An automatic document handler (ADH) was developed at the SS level. When integrated into the total system there were many new problems. The TQM Problem Solving Process was used, and many problems were solved. However, at the Field Readiness Test (FRT) before entering production the reliability was 15X worse than acceptable.

Case study questions

- What should they do next?
- What should be done in the future to avoid the same dysfunctional path?
- What is the fundamental problem?

Too much dependence on reactive improvement

Improvement to avoid bombs

R: requirements C: concept TS: total system SS: subsystem PP: piece parts Fig. 5 © Don Clausing 1998

Proactive improvement

Yea, we think that proactive is good!

What is wrong here?

Rework – how much is enough?

Build/test/fix – why?

- Reactive problem solving
 - Too little limited scope of solutions
 - Too late
- Design contains many unsolved problems
- Biggest problem is lack of robustness
 - System works well in favorable conditions
 - But is sensitive to noises unfavorable conditions that inevitably occur

Proactive problem solving

- Must shift from emphasis on build/test/fix
- Must address effects of noises
 - Erratic performance
 - Leads to delusionary problem solving;
 chases problem from one failure mode to another

Noises

- Affect performance adversely
- IPDT cannot control examples:
 - Ambient temperature
 - Power-company voltage
 - Customer-supplied consumables
- Noises lead to erratic performance

Failure modes

- Noises lead to failure modes (FM)
- One set of noise values leads to FM₁
- Opposite set of noise values leads to FM₂
- Simple problem solving chases the problem from FM₁ to FM₂ and back again, but does not avoid both FMs with the same set of design values – endless cycles of build/test/fix (B/T/F)

Performance; favorable conditions

Simple problem solving

Simple problem solving

Simple problem solving

© Don Clausing 1998

Simple problem solved

Much more difficult problem

Simple solution

Oops!

Fig. 20

B/T/F chases problems from FM₂ to FM₁ – and back again

 M_2

B/T/F chases problems from FM_2 to FM_1 – and back again

© Don Clausing 1998

FM₂

B/T/F chases problems from FM₂ to FM₁ – and back again

© Don Clausing 1998

 M_2

B/T/F chases problems from FM₂ to FM₁ – and back again

© Don Clausing 1998

FM₂

B/T/F chases problems from FM₂ to FM₁ – and back again

© Don Clausing 1998

 M_2

B/T/F chases problems from FM₂ to FM₁ – and back again

© Don Clausing 1998

FM₂

B/T/F chases problems from FM₂ to FM₁ – and back again

 M_2

Robustness solves problem

© Don Clausing 1998

Robustness makes money

- Robustness reduces performance variations
- Avoids failure modes
- Achieves customer satisfaction
- Also shortens development time reduces build/test/fix

Noises cause performance variations

- Noises are input variations that we cannot control
- They cause performance variations
 - Which cause failure modes
 - Lose customer satisfaction
- Example: temperature affects performance of cars, chips, and many other products

Three kinds of noises in products

- Environment ambient temperature
- Manufacturing no two units of production are exactly alike; machine-to-machine variation
- Deterioration causes further variations in the components of the system

Manufacturing noise in products

- Unit-to-unit variations
- Caused by noises in factory; e.g.,
 - Temperature and humidity variations
 - Cleanliness variations
 - Material variations
 - Machine-tool and cutting-tool variations
- Factory can be made more robust; reduces one type of noise in product

Role of noises

- Traditional approach
 - Make product look good early
 - Keep noises small
 - Reactive problem solving does not explicitly address noises
- Proactive problem solving
 - Introduce realistic noises early
 - Minimize effect of noises robustness

Introduction of noises during development

- Product
 - Noises are often small in lab
 - Therefore must consciously introduce noises
- Factory
 - Noises naturally present during production trials
 - Operate in natural manner
 Don't take special care

Introduce product noises early

- Drive the performance away from ideal
- Do it early. Don't wait for the factory or customers to introduce noises
- IPDT needs to develop the skill of introducing these noises
- Management needs to design this into the PD process and check that it is done to an appropriate degree

Cultural change

- Early introduction of noises goes against engineers' culture of making product look good
- Two most important elements for success:
 - Early introduction of noises
 - Recognition that performance variation must be reduced – while noise values are large

Problem prevention

Reduce Variations – then no Problems

Integration of new technologies

A - G present new noises to NT – cause "integration problems." Robustness enables smooth integration; minimizes build/test/fix.

Robust design

- Achieves robustness; i.e., minimizes effects of noises
- Proactive problem solving robustness before integration
- Optimize values of critical design (control) parameters to minimize effects of noise parameters

The engineered system

Ideal response

- Want Ideal Response to Signal usually straight-line function
- Actual response is determined by values of control factors and noise factors
- If noise factors are suppressed early, then difficult problems only appear late
- Introduce noises early!

Actual response

Fig. 43

Robustness

- Keeps the performance (response) of the system acceptably close to the ideal function
- Minimizes effect of noise factors
- Key to proactive improvement

Parameter design

Purpose – to optimize the nominal values of critical system parameters; for example:
– Capacitor is selected to be 100 pF
– Spring is selected to be 55 N/mm

Improves performance so that it is close to ideal – under actual conditions

Signal/noise ratio

- Measure of deviation from ideal performance
- Based on ratio of deviation from straight line divided by slope of straight line
- Many different types depends on type of performance characteristic
- Larger values of SN ratio represent more robust performance

Critical control parameters

- Strongly affect performance of the system
- IPDT can control (select) the value
- Fault trees help IPDT to identify
- Complex systems have hundreds of critical control parameters

Note: IPDT is Integrated Product Development Team

Important noise strategy

- Not all sources of noise need to be used
- Identify key noise functional parameter; e.g.
 - Interface friction in paper stack
 - EM radiation in communications
- Specific source is not important
- Magnitude enables quick optimization
 - Specs on noise are not important
 - Worse noise in field is not important

Successful noise strategy

- Enables quick optimization
- Provides best performance inherent in concept
 - Even when future noise sources change
 - Even when future noises are larger
 - Even when spec changes
- Performance is as robust as possible
- Future improvements will require new

Fig. 50 concept

© Don Clausing 1998

Important steps in parameter design

- Define ideal performance
- Select best SN definition
- Identify critical parameters
- Develop sets of noises that will cause performance to deviate from ideal
- Use designed experiments to systematically optimize control parameters

Critical parameter drawing for paper feeder

Optimized values of critical parameters guide the detailed design Fig. 52 © Don Clausing 1998

Culture change

- Emphasize
 - Ideal function
 - Noise strategy
 - Parameter design
- Do it early! Be proactive!

Improvement activities

- Robust design minimize variation
 - Parameter design optimization of nominal values of critical design parameters
 - Tolerance design economical precision around the nominal values
- Mistake minimization
- Three activities requiring very different approaches

Tolerance design

- Select economical precision
- Determines typical machine-to-machine variation around optimized nominal value
- Primary task is selection of production process (or quality of purchased component) – determines variation of production
- Then put tolerance on drawing

Mistake Minimization

- Mistakes are human errors
 - Diode is backwards
 - Cantilevered shaft has excessive deflection
- Mistake minimization approach:
 - Mistake prevention
 - Mistake elimination

Summary of improvement activities

- Robust design
 - Parameter design optimization of nominal values of critical design parameters
 - Tolerance design economical precision around the nominal values
- Mistake minimization

Planning for improvement – schedule

- Accept only robust technologies
- Complete optimization early
 - Critical parameter drawing displays requirements for detailed design
 - Detailed design objective is to make low-cost design that achieves optimized nominal values
- Do tolerance design during detailed design
- Also plan mistake minimization

Technology development

Robust design timing

- PD PARAMETER DESIGN, NEW PRODUCT & PROCESS TECHNOLOGIES
- SPD SYSTEM (PRODUCT) PARAMETER DESIGN
- TD TOLERANCE DESIGN
- SVT SYSTEM VERIFICATION TEST
- PPD PROCESS PARAMETER DESIGN
- Fig. 60 QC ON LINE QUALITY CONTROL (FACTORY FLOOR)

Inspection for robustness

- Have noises been applied?
- Have all failure modes been exercised?
- Has optimization made the failure modes more difficult to excite?
- Has head-on comparison been made with benchmark?
 - Same set of noises applied to both

- Our system (or subsystem) has better robustness

© Don Clausing 1998

Fig. 61

Mistake minimization

REACTIVE

Quality and reliability

- Robust design plus mistake minimization is the effective approach to the improvement of quality/reliability - usually also leads to the lowest total cost
- Q & R are not separate subjects manage robust design and mistake minimization and Q & R are the result

Summary

- Early development of **robustness** is key to proactive improvement
 - Early application of noises
 - Optimize robustness avoid all failure modes
- Supplement with **tolerance design** and **mistake minimization**

Benefits of robust design

- Shorter time to market
- Customer satisfaction performance closer to ideal
- Reduced manufacturing cost
- Flexible integration of systems responsiveness to the market

End