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Case study 

An automatic document handler (ADH) was 
developed at the SS level. When integrated 
into the total system there were many new 
problems. The TQM Problem Solving 
Process was used, and many problems were 
solved. However, at the Field Readiness 
Test (FRT) before entering production the 
reliability was 15X worse than acceptable. 
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Case study questions 

• What should they do next? 
•	 What should be done in the future to avoid 

the same dysfunctional path? 
• What is the fundamental problem? 
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Bomb alert!
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Proactive improvement
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What is wrong here?
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Rework – how much is enough?
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Build/test/fix – why? 

• Reactive problem solving 
– Too little – limited scope of solutions 
– Too late 

• Design contains many unsolved problems 
• Biggest problem is lack of robustness 

– System works well in favorable conditions 
– But is sensitive to noises – unfavorable 

conditions that inevitably occur 
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Proactive problem solving 

• Must shift from emphasis on build/test/fix 
• Must address effects of noises 

– Erratic performance 
– Leads to delusionary problem solving; 

chases problem from one failure mode to 
another 
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Noises 

• Affect performance – adversely 
• IPDT cannot control – examples: 

– Ambient temperature 
– Power-company voltage 
– Customer-supplied consumables 

• Noises lead to erratic performance 

IPDT: Integrated product development team 
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Failure modes


• Noises lead to failure modes (FM) 
• One set of noise values leads to FM1 

• Opposite set of noise values leads to FM2 

•	 Simple problem solving chases the problem 
from FM1 to FM2 and back again, but does 
not avoid both FMs with the same set of 
design values – endless cycles of 
build/test/fix (B/T/F)
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Performance; favorable conditions
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Simple problem solving
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Simple problem solving
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Simple problem solved
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Much more difficult problem
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Simple solution
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Build/test/fix
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Build/test/fix 
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Build/test/fix 
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Build/test/fix 
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Build/test/fix 
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Build/test/fix 
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Build/test/fix 
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Robustness solves problem
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Robustness makes money


• Robustness reduces performance variations 
• Avoids failure modes 
• Achieves customer satisfaction 
•	 Also shortens development time – 

reduces build/test/fix 
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Noises cause performance variations


•	 Noises are input variations that we cannot 
control 

• They cause performance variations 
– Which cause failure modes 
– Lose customer satisfaction 

•	 Example: temperature – affects performance 
of cars, chips, and many other products 
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Three kinds of noises in products


• Environment – ambient temperature 
•	 Manufacturing – no two units of production 

are exactly alike; machine-to-machine 
variation 

•	 Deterioration – causes further variations in 
the components of the system 
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Manufacturing noise in products


• Unit-to-unit variations 
• Caused by noises in factory; e.g., 

– Temperature and humidity variations 
– Cleanliness variations 
– Material variations 
– Machine-tool and cutting-tool variations 

•	 Factory can be made more robust; reduces 
one type of noise in product
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Role of noises 

• Traditional approach 
– Make product look good early 
– Keep noises small 
– Reactive problem solving does not explicitly 

address noises 
• Proactive problem solving 

– Introduce realistic noises early 
– Minimize effect of noises – robustness 
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Introduction of noises during 

development


• Product 
– Noises are often small in lab 
– Therefore must consciously introduce noises 

• Factory 
– Noises naturally present during production 

trials 
– Operate in natural manner 

Don’t take special care 
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Introduce product noises early


• Drive the performance away from ideal 
•	 Do it early. Don't wait for the factory or 

customers to introduce noises 
•	 IPDT needs to develop the skill of 

introducing these noises 
•	 Management needs to design this into the 

PD process and check that it is done to an 
appropriate degree
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Cultural change


•	 Early introduction of noises goes against 
engineers’ culture of making product look 
good 

• Two most important elements for success: 
– Early introduction of noises 
– Recognition that performance variation must be 

reduced – while noise values are large 
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Problem prevention
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Integration of new technologies
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Robust design


•	 Achieves robustness; i.e., minimizes effects 
of noises 

•	 Proactive problem solving – robustness 
before integration 

•	 Optimize values of critical design (control) 
parameters to minimize effects of noise 
parameters 
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Ideal response 

•	 Want Ideal Response to Signal – usually 
straight-line function 

•	 Actual response is determined by values of 
control factors and noise factors 

•	 If noise factors are suppressed early, then 
difficult problems only appear late 

• Introduce noises early! 
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Robustness 

•	 Keeps the performance (response) of the 
system acceptably close to the ideal 
function 

• Minimizes effect of noise factors 
• Key to proactive improvement 
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Parameter design 

Purpose – to optimize the nominal values of 
critical system parameters; for example: 

– Capacitor is selected to be 100 pF 
– Spring is selected to be 55 N/mm 

Improves performance so that it is close to 
ideal – under actual conditions 
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Signal/noise ratio


•	 Measure of deviation from ideal 
performance 

•	 Based on ratio of deviation from straight 
line divided by slope of straight line 

•	 Many different types – depends on type of 
performance characteristic 

•	 Larger values of SN ratio represent more 
robust performance
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Critical control parameters 

• Strongly affect performance of the system 
• IPDT can control (select) the value 
• Fault trees help IPDT to identify 
•	 Complex systems have hundreds of critical 

control parameters 

Note: IPDT is Integrated Product Development Team 
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Important noise strategy


• Not all sources of noise need to be used 
• Identify key noise functional parameter; e.g. 

– Interface friction in paper stack 
– EM radiation in communications 

• Specific source is not important 
• Magnitude enables quick optimization 

– Specs on noise are not important 

Fig. 48 
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Fig. 49 

INPUT 
NOISE 

NIN 

OUTPUT 
NOISE 
NOUT 

SYSTEM 

NOISE 
SOURCE 

STRATEGY 
• HOLD NIN CONSTANT 
• MINIMIZE NOUT 

NOT IMPORTANT 
• SPECIFIC SOURCE 
• MAGNITUDE OF NIN 

Noise strategy 

© Don Clausing 1998




Successful noise strategy


• Enables quick optimization 
•	 Provides best performance inherent in 

concept 
– Even when future noise sources change 
– Even when future noises are larger 
– Even when spec changes 

• Performance is as robust as possible 
• Future improvements will require new 
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Important steps in parameter 

design


• Define ideal performance 
• Select best SN definition 
• Identify critical parameters 
•	 Develop sets of noises that will cause 

performance to deviate from ideal 
•	 Use designed experiments to systematically 

optimize control parameters 
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Critical parameter drawing for paper feeder
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Culture change 

• Emphasize 
– Ideal function 
– Noise strategy 
– Parameter design 

• Do it early! Be proactive! 

Fig. 53
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Improvement activities 

• Robust design – minimize variation 
– Parameter design – optimization of nominal 

values of critical design parameters 
– Tolerance design – economical precision 

around the nominal values 
• Mistake minimization 
•	 Three activities requiring very different 

approaches 
Fig. 54 © Don Clausing 1998 



Tolerance design


• Select economical precision 
•	 Determines typical machine-to-machine 

variation around optimized nominal value 
•	 Primary task is selection of production 

process (or quality of purchased 
component) – determines variation of 
production 

• Then put tolerance on drawing
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Mistake Minimization 

• Mistakes are human errors 
– Diode is backwards 
– Cantilevered shaft has excessive deflection 

• Mistake minimization approach: 
– Mistake prevention 
– Mistake elimination 
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Summary of improvement activities


• Robust design 
– Parameter design – optimization of nominal 

values of critical design parameters 
– Tolerance design – economical precision 

around the nominal values 
• Mistake minimization 
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Planning for improvement – schedule


• Accept only robust technologies 
• Complete optimization early 

– Critical parameter drawing displays 
requirements for detailed design 

– Detailed design objective is to make low-cost 
design that achieves optimized nominal values 

• Do tolerance design during detailed design 
• Also plan mistake minimization 
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Technology development
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Inspection for robustness


• Have noises been applied? 
• Have all failure modes been exercised? 
•	 Has optimization made the failure modes 

more difficult to excite? 
•	 Has head-on comparison been made with 

benchmark? 
– Same set of noises applied to both 
– Our system (or subsystem) has better

Fig. 61 
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Mistake minimization
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Quality and reliability


•	 Robust design plus mistake minimization is 
the effective approach to the improvement 
of quality/reliability - usually also leads to 
the lowest total cost 

•	 Q & R are not separate subjects – manage 
robust design and mistake minimization and 
Q & R are the result 

Fig. 63 © Don Clausing 1998 



Summary 

•	 Early development of robustness is key to 
proactive improvement 
– Early application of noises 
– Optimize robustness – avoid all failure modes 

•	 Supplement with tolerance design and 
mistake minimization 
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Benefits of robust design


• Shorter time to market 
•	 Customer satisfaction – performance closer 

to ideal 
• Reduced manufacturing cost 
•	 Flexible integration of systems – 

responsiveness to the market 
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