16.885J/ESD.35J Aircraft Systems Engineering

Introduction to Aircraft Performance and Static Stability

Prof. Earll Murman September 18, 2003

Today's Topics

- Specific fuel consumption and Breguet range equation
- Transonic aerodynamic considerations
- Aircraft Performance
 - Aircraft turning
 - Energy analysis
 - Operating envelope
 - Deep dive of other performance topics for jet transport aircraft in Lectures 6 and 7
- Aircraft longitudinal static stability

Thrust Specific Fuel Consumption (TSFC)

- Definition: $TSFC \square \frac{\text{lb of fuel burned}}{(\text{lb of thrust delivered})(\text{hour})}$
- Measure of jet engine effectiveness at converting fuel to useable thrust
- Includes installation effects such as
 - bleed air for cabin, electric generator, etc..
 - Inlet effects can be included (organizational dependent)
- Typical numbers are in range of 0.3 to 0.9. Can be up to 1.5
- Terminology varies with time units used, and it is not all consistent.
 - TSFC uses hours
 - "c" is often used for TSFC
 - Another term used is

lb of fuel burned

(lb of thrust delivered)(sec)

Breguet Range Equation

- Change in aircraft weight = fuel burned $dW = -c_{t}Tdt \Box c_{t} TSPC/3600 T\Box thrust$
- Solve for dt and multiply by V_{∞} to get ds

$$ds \Box V_{\infty} dt = -\frac{\underline{V}_{\infty} dW}{c_{t}T} - \frac{\underline{V}_{\infty} W}{c_{t}T} - \frac{\underline{V}_{\infty} W}{c_{t}T} - \frac{\underline{V}_{\infty} L}{c_{t}D} \frac{dW}{W}$$

• Set L/D, c_t, V_{∞=}constant and integrate $R \Box \frac{3600}{TSFC} V_{\infty} \frac{L}{D} ln \frac{W_{TO}}{W_{empty}}$

Insights from Breguet Range Equation $R \Box \frac{3600}{TSFC} V_{\infty} \frac{L}{D} \ln \frac{W_{TO}}{W_{empty}}$

 $\frac{3600}{TSFC}$ represents propulsion effects. Lower TSFC is better

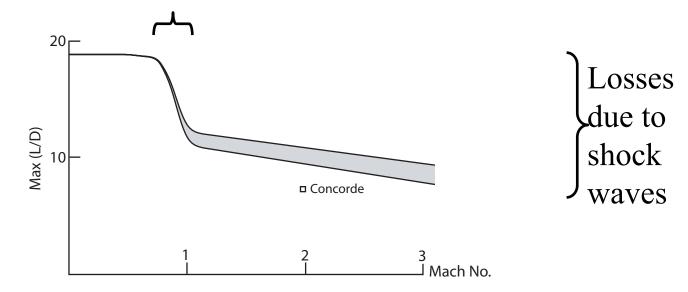
 $V_{\infty}\frac{L}{D}$ represents aerodynamic effect. L/D is aerodynamic efficiency

$$V_{\infty}\frac{L}{D} \quad a_{\infty}M_{\infty}\frac{L}{D}a_{\infty}$$
 is constant above 36,000 ft. $M_{\infty}\frac{L}{D}$ important

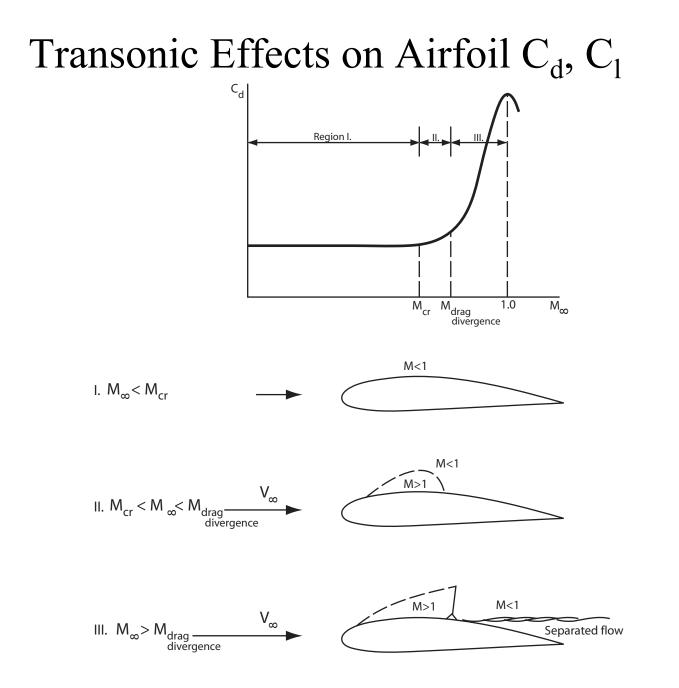
 $\ln \frac{W_{TO}}{W_{empty}}$ represents aircraft weight/structures effect on range

Optimized L/D - Transport A/C

"Sweet spot" is in transonic range.



Ref: Shevell

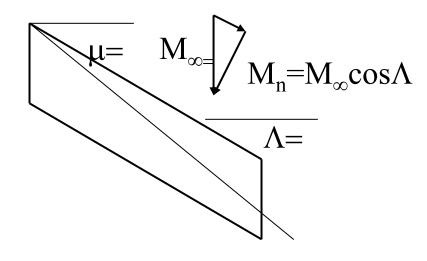


Strategies for Mitigating Transonic Effects

- Wing sweep
 - Developed by Germans. Discovered after WWII by Boeing
 - Incorporated in B-52
- Area Ruling, aka "coke bottling"
 - Developed by Dick Whitcomb at NASA Langley in 1954
 - Kucheman in Germany and Hayes at North American contributors
 - Incorporated in F-102
- Supercritical airfoils
 - Developed by Dick Whitcomb at NASA Langley in 1965
 - Percey at RAE had some early contributions
 - Incorporated in modern military and commercial aircraft

Basic Sweep Concept

• Consider Mach Number normal to leading edge



 $\sin \mu = 1/M_{\infty}$ $\mu = Mach angle,$ the direction disturbances travel in supersonic flow

- For subsonic freestreams, $M_n < M_{\infty}$ Lower effective "freestream" Mach number delays onset of transonic drag rise.
- For supersonic freestreams
 - $M_n < 1$, $\Lambda \Rightarrow \mu$ = Subsonic leading edge
 - $M_n > 1$, $\Lambda =$ Supersonic leading edge
- Extensive analysis available, but this is gist of the concept

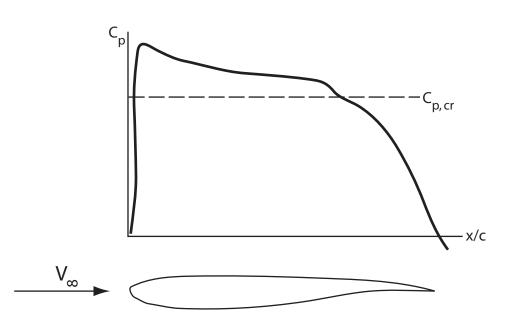
Wing Sweep Considerations $M_{\infty} \ge 1$

- Subsonic leading edge
 - Can have rounded subsonic type wing section
 - Thicker section
 - Upper surface suction
 - More lift and less drag
- Supersonic leading edge
 - Need supersonic type wing section
 - Thin section
 - Sharp leading edge

Competing Needs

- Subsonic Mach number
 - High Aspect Ratio for low induced drag
- Supersonic Mach number
 - Want high sweep for subsonic leading edge
- Possible solutions
 - Variable sweep wing B-1
 - Double delta US SST
 - Blended Concorde
 - Optimize for supersonic B-58

Supercritical Airfoil



Supercritical airfoil shape keeps upper surface velocity from getting too large.

Uses aft camber to generate lift.

Gives nose down pitching moment.

Today's Performance Topics

- Turning analysis
 - Critical for high performance military a/c. Applicable to all.
 - Horizontal, pull-up, pull-down, pull-over, vertical
 - Universal M-ω±urn rate chart, V-n diagram
- Energy analysis
 - Critical for high performance military a/c. Applicable to all.
 - Specific energy, specific excess power
 - M-h diagram, min time to climb
- Operating envelope
- Back up charts for fighter aircraft
 - M-ω=diagram "Doghouse" chart
 - Maneuver limits and some example
 - Extensive notes from Lockheed available. Ask me.

Horizontal Turn

 $W = L \cos\phi$, $\phi =$ bank angle

Level turn, no loss of altitude

 $F_r = (L^2 - W^2)^{1/2} = W(n^2 - 1)^{1/2}$

Where $n \equiv \frac{1}{\cos\phi}$ is the <u>load</u> <u>factor</u> measured in "g's".

But
$$F_r = (W/g)(V_{\infty}^2/R)$$

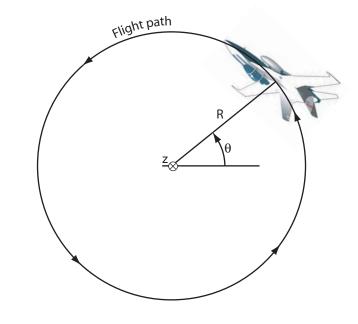
So radius of turn is

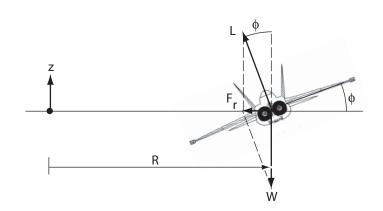
 $R = V_{\infty}^2 / g(n^2 - 1)^{1/2}$

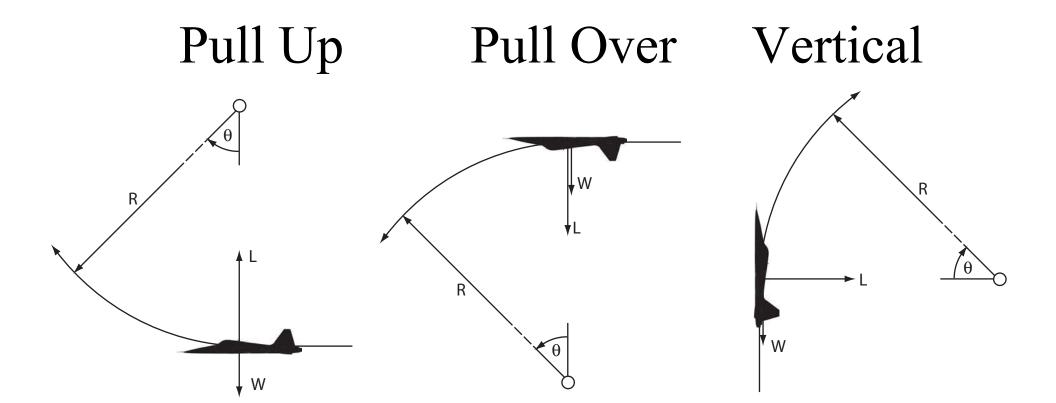
And turn rate $\omega = V_{\infty}/R$ is

$$\omega = g(n^2 - 1)^{1/2} / V_{\infty}$$

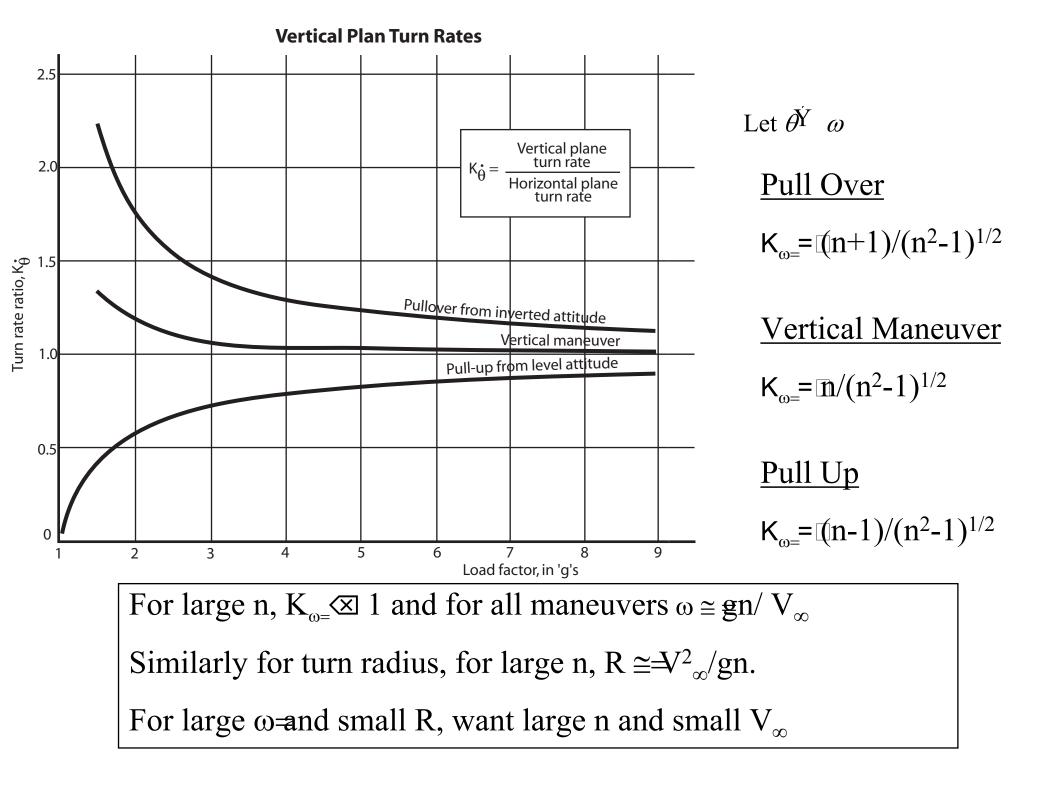
Want high load factor, low velocity







 $F_{r} = (L-W) = W(n-1) \qquad F_{r} = (L+W) = W(n+1) \qquad F_{r} = L = Wn$ $= (W/g)(V_{\infty}^{2}/R) \qquad = (W/g)(V_{\infty}^{2}/R) \qquad = (W/g)(V_{\infty}^{2}/R)$ $R = V_{\infty}^{2}/g(n-1) \qquad R = V_{\infty}^{2}/g(n+1) \qquad R = V_{\infty}^{2}/gn$ $\omega = g(n-1)/V_{\infty} \qquad \omega = g(n+1)/V_{\infty} \qquad \omega = gn/V_{\infty}$



 $\omega \cong gn/V_{\infty} = gn/a_{\infty}M_{\infty} \text{ so } \omega \sim 1/M_{\infty} \text{ at const } h \text{ (altitude) \& } n$ Using $R \cong V_{\infty}^2/gn$, $\omega \cong V_{\infty}/R = a_{\infty}M_{\infty}/R$. So $\omega \sim M_{\infty}$ at const h & R

For high Mach numbers, the turn radius gets large

R_{min} and ω_{max}

Using $V_{\infty} = (2L/\rho_{\infty}SC_L)^{1/2} = (2nW/\rho_{\infty}SC_L)^{1/2}$ $R \cong V_{\infty}^2/gn$ becomes $R = 2(W/S)/g\rho_{\infty}C_L$ W/S = wing loading, an important performance parameterAnd using $n = L/W = \rho_{\infty}V_{\infty}^2SC_L/2W$

 $\omega \cong gn/V_{\infty} = g \rho_{\infty} V_{\infty} C_L/2(W/S)$

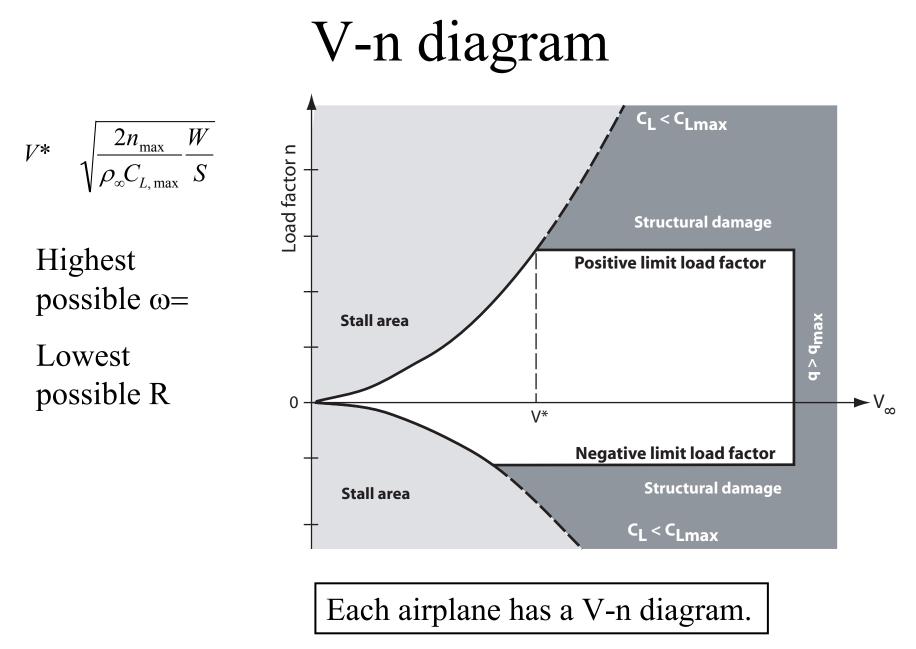
For each airplane, W/S set by range, payload, V_{max} .

Then, for a given airplane

$$R_{\min} = 2(W/S) / g\rho_{\infty}C_{L,\max}$$
$$\omega_{\max} = g \rho_{\infty}V_{\infty}C_{L,\max} / 2(W/S)$$

Higher C_{L,max} gives superior turning performance.

But does n $_{CL,max} = \rho_{\infty} V_{\infty}^2 C_{L,max}/2(W/S)$ exceed structural limits?



Summary on Turning

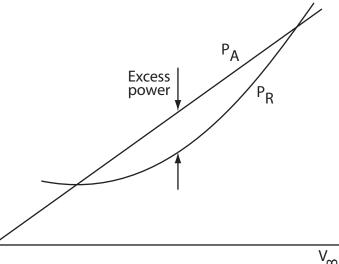
- Want large structural load factor n
- Want large C_{L,MAX}
- Want small V_{∞}
- Shortest turn radius, maximum turn rate is "Corner Velocity"
- Question, does the aircraft have the power to execute these maneuvers?

Specific Energy and Excess Power Total aircraft energy = PE + KE $E_{tot} = mgh + mV^2/2$ Specific energy = (PE + KE)/W $H_e = h + V^2/2g$ "energy height" Excess Power = (T-D)VSpecific excess power* = (TV-DV)/W $= dH_{e}/dt$ $P_s = dh/dt + V/g dV/dt$

P_s may be used to change altitude, or accelerate, or both * Called specific power in Lockheed Martin notes.

Excess Power

 $P_{R} = DV_{\infty} = q_{\infty}S(C_{D,0} + C_{L}^{2}/\pi ARe)V_{\infty}$ $= q_{\infty}SC_{D,0}V_{\infty} + q_{\infty}SV_{\infty}C_{L}^{2}/\pi ARe$ $= \rho_{\infty}SC_{D,0}V_{\infty}^{3}/2 + 2n^{2}W^{2}/\rho_{\infty}SV_{\infty}\pi ARe \square$ Parasite power
Induced power



Power Available

required

required

 $P_A = TV_{\infty}$ and Thrust is approximately constant with velocity, but varies linearly with density.

Excess power depends upon velocity, altitude and load factor

Altitude Effects on Excess Power $P_R = DV_{\infty} = (nW/L) DV_{\infty}$ $= nWV_{\infty} C_D/C_L$ From $L = \rho_{\infty}SV_{-\infty}^2 C_L/2 = nW$, get $V_{\infty} = (2nW/\rho_{\infty}SC_L)^{1/2}$

Substitute in P_R to get

 $P_R = (2n^3W^3C^2_{\ D} / \ \rho_\infty SC^3_{\ L})^{1/2}$

So can scale between sea level "0" and altitude "alt" assuming C_D, C_L const.

$$V_{alt} = V_0 (\rho_0 / \rho_{alt})^{1/2}, P_{R,alt} = P_{R,0} (\rho_0 / \rho_{alt})^{1/2}$$

Thrust scales with density, so

 $P_{A,alt} = P_{A,0}(\rho_{alt}/\rho_0)$

Summary of Power Characteristics

- H_e = specific energy represents "state" of aircraft. Units are in feet.
 - Curves are universal
- $P_s = (T/W-D/W)V=$ specific excess power
 - Represents ability of aircraft to change energy state.
 - Curves depend upon aircraft (thrust and drag)
 - Maybe used to climb and/or accelerate
 - Function of altitude
 - Function of load factor
- "Military pilots fly with P_s diagrams in the cockpit", Anderson

A/C Performance Summary

Factor	Commercial	Military	Fighter	General Aviation
	Transport	Transport		
Take-off	Liebeck			
	$h_{obs} = 35'$	$h_{obs} = 50'$	$h_{obs} = 50'$	$h_{obs} = 50'$
Landing	Liebeck			
	$V_{app} = 1.3 V_{stall}$	$V_{app} = 1.2 V_{stall}$	$V_{app} = 1.2 V_{stall}$	$V_{app} = 1.3 V_{stall}$
Climb	Liebeck			
Level Flight	Liebeck			
Range	Breguet Range		Radius of action*.	Breguet for prop
			Uses refueling	
Endurance,	E (hrs) = R (miles)/V(mph), where $R = Breguet Range$			
Loiter				
Turning,	Emergency handling		Major	Emergency
Maneuver			performance	handling
			factor	
Supersonic	N/A	N/A	Important	N/A
Dash				
Service	100 fpm climb			
Ceiling				

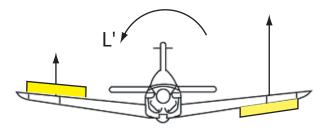
Lectures 6 and 7 for commercial and military transport

* Radius of action comprised of outbound leg, on target leg, and return.

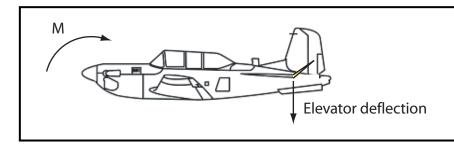
Stability and Control

- Performance topics deal with forces and translational motion needed to fulfill the aircraft mission
- Stability and control topics deal with moments and rotational motion needed for the aircraft to remain controllable.

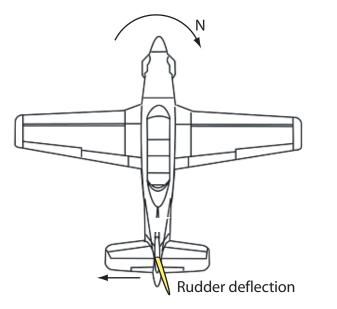
S&C Definitions



- L' rolling moment
- Lateral motion/stability



- M pitching moment
- Longitudinal motion/control



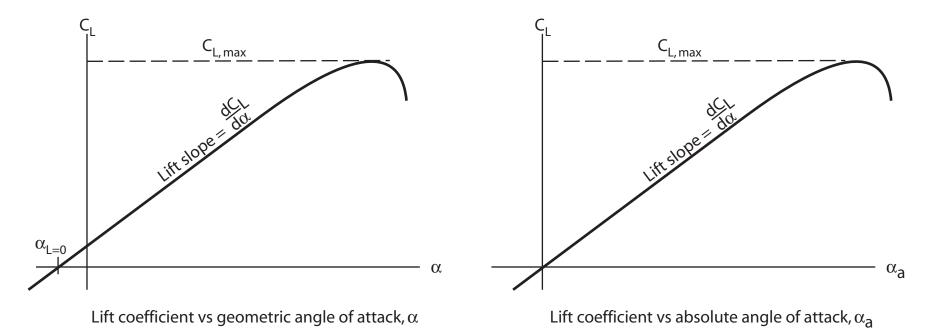
- N rolling moment
- Directional motion/control

Moment coefficient: $C_{M\square}$ $\overline{q_sSc}$

Aircraft Moments

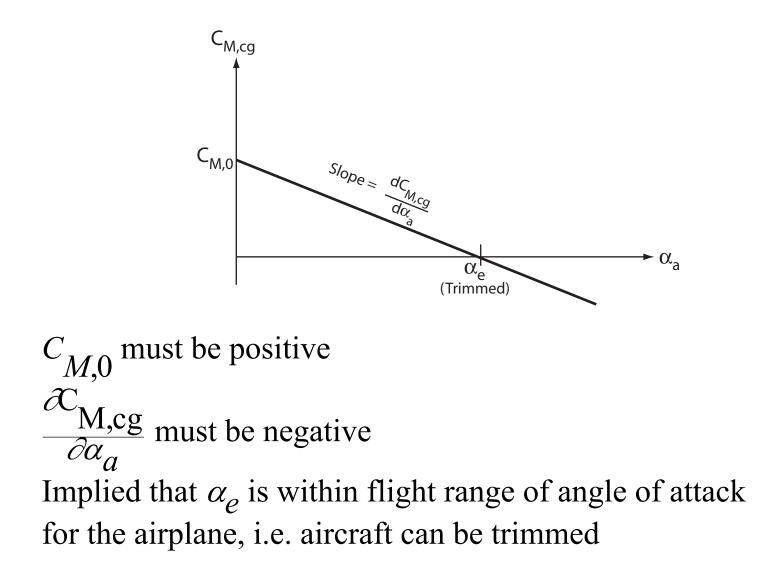
- Aerodynamic center (ac): forces and moments can be completely specified by the lift and drag acting through the ac plus a moment about the ac
 - $C_{M,ac}$ is the aircraft pitching moment at L = 0 around any point
- Contributions to pitching moment about cg, $C_{M,cg}$ come from
 - Lift and C_{M,ac}
 - Thrust and drag will neglect due to small vertical separation from cg
 - Lift on tail
- Airplane is "trimmed" when $C_{M,cg} = 0$

Absolute Angle of Attack



- Stability and control analysis simplified by using the absolute angle of attack which is 0 at $C_{L} = 0$.
- $\alpha_a = \alpha \Rightarrow \alpha_{L=0}$

Criteria for Longitudinal Static Stability



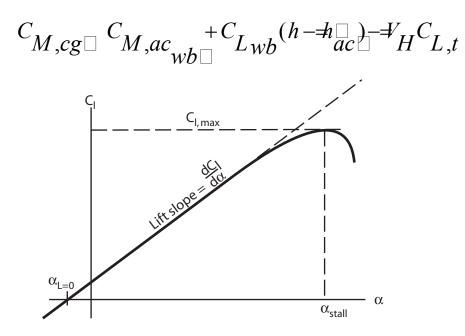
Moment Around cg

$$M_{cg} \square M_{ac} + \#_{wb}(hc \boxplus h_{ac}^{c}) - \#_{t}^{L} L_{t}$$

Divide by $q_{\infty}Sc$ and note that $C_{L,t} = \frac{L_{t}}{q_{\infty}S_{t}}$

$$C_{M,cg} \square C_{M,ac} + C_{Lwb}(h - \#_{ac}) - \#_{cS}^{L} L_{t}, \text{ or }$$

$$C_{M,cg} \square C_{M,ac} + C_{Lwb}(h - \#_{ac}) - \#_{H}^{c} L_{t}, \text{ or }$$



$$C_{L_{wb}} \quad \frac{dC_{L_{wb}}}{d\alpha} = \alpha_{a,wb} \quad a_{wb}\alpha_{a,wb}$$

$$C_{l,t\Box} \quad a_t \alpha_{t\Box} \quad a_t (\alpha_{wb\Box} = i_{t\Box} - \varepsilon)$$

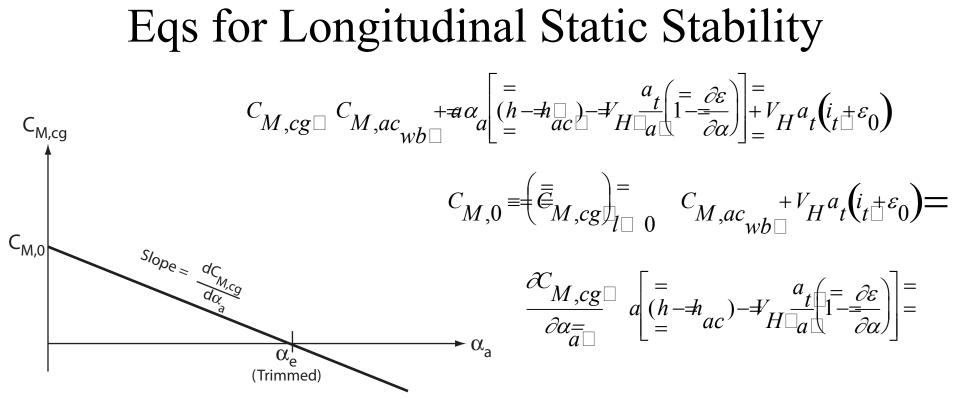
where ε is the downwash at the tail due to the lift on the wing

$$\varepsilon = \varepsilon_0 + \left(\frac{\partial \varepsilon}{\partial \alpha}\right) = \alpha_{a,wb}$$

$$C_{L,t\Box} = a_t \alpha_{a,wb} \left(1 - \frac{\partial \varepsilon}{\partial \alpha}\right) = a_t (i_{t\Box} + \varepsilon_0)$$

At this point, the convention is drop the *wb* $on a_{wb}$

$$C_{M,cg\Box} C_{M,ac} + = \alpha \alpha \begin{bmatrix} = & a_t (= \partial \varepsilon) \\ (h - = h\Box) - = V_H \Box_a \Box = \partial \varepsilon \\ = & ac \Box = H \Box_a \Box = \partial \alpha \end{bmatrix} = V_H a_t (i_t + \varepsilon_0)$$



- $C_{M,acwb} \leq 0, V_H > 0, \alpha_t \geq 0 \Rightarrow i_t \geq 0$ for $C_{M,0} \geq 0$ - Tail must be angled down to generate negative lift to trim airplane
- Major effect of cg location (h) and tail parameter $V_H = \Box$ (*lS*)_t/(*cs*) in determining longitudinal static stability

Neutral Point and Static Margin

$$\frac{\partial C_{M,cg}}{\partial \alpha_{a_{\square}}^{=}} a \begin{bmatrix} = & a_{t} \\ (h - \neq_{ac}) - \neq_{H \square a} \begin{bmatrix} = & \partial \varepsilon \\ 1 - = & \partial \alpha \end{bmatrix} = \\ = & a_{a_{\square}} \end{bmatrix} = b_{A} \begin{bmatrix} = & \partial \varepsilon \\ 1 - = & \partial \alpha \end{bmatrix} = b_{A} \begin{bmatrix} = & \partial \varepsilon \\ 1 - = & \partial \alpha \end{bmatrix} = b_{A} \begin{bmatrix} = & \partial \varepsilon \\ 1 - = & \partial \alpha \end{bmatrix} = b_{A} \begin{bmatrix} = & \partial \varepsilon \\ 1 - = & \partial \alpha \end{bmatrix} = b_{A} \begin{bmatrix} = & \partial \varepsilon \\ 1 - = & \partial \alpha \end{bmatrix} = b_{A} \begin{bmatrix} = & \partial \varepsilon \\ 1 - = & \partial \alpha \end{bmatrix} = b_{A} \begin{bmatrix} = & \partial \varepsilon \\ 1 - = & \partial \alpha \end{bmatrix} = b_{A} \begin{bmatrix} = & \partial \varepsilon \\ 1 - = & \partial \alpha \end{bmatrix} = b_{A} \begin{bmatrix} = & \partial \varepsilon \\ 1 - = & \partial \alpha \end{bmatrix} = b_{A} \begin{bmatrix} = & \partial \varepsilon \\ 1 - = & \partial \alpha \end{bmatrix} = b_{A} \begin{bmatrix} = & \partial \varepsilon \\ 1 - = & \partial \alpha \end{bmatrix} = b_{A} \begin{bmatrix} = & \partial \varepsilon \\ 1 - = & \partial \alpha \end{bmatrix} = b_{A} \begin{bmatrix} = & \partial \varepsilon \\ 1 - = & \partial \alpha \end{bmatrix} = b_{A} \begin{bmatrix} = & \partial \varepsilon \\ 1 - = & \partial \alpha \end{bmatrix} = b_{A} \begin{bmatrix} = & \partial \varepsilon \\ 1 - = & \partial \alpha \end{bmatrix} = b_{A} \begin{bmatrix} = & \partial \varepsilon \\ 1 - = & \partial \alpha \end{bmatrix} = b_{A} \begin{bmatrix} = & \partial \varepsilon \\ 1 - = & \partial \alpha \end{bmatrix} = b_{A} \begin{bmatrix} = & \partial \varepsilon \\ 1 - = & \partial \alpha \end{bmatrix} = b_{A} \begin{bmatrix} = & \partial \varepsilon \\ 1 - = & \partial \alpha \end{bmatrix} = b_{A} \begin{bmatrix} = & \partial \varepsilon \\ 1 - = & \partial \alpha \end{bmatrix} = b_{A} \begin{bmatrix} = & \partial \varepsilon \\ 1 - = & \partial \alpha \end{bmatrix} = b_{A} \begin{bmatrix} = & \partial \varepsilon \\ 1 - = & \partial \alpha \end{bmatrix} = b_{A} \begin{bmatrix} = & \partial \varepsilon \\ 1 - = & \partial \alpha \end{bmatrix} = b_{A} \begin{bmatrix} = & \partial \varepsilon \\ 1 - = & \partial \alpha \end{bmatrix} = b_{A} \begin{bmatrix} = & \partial \varepsilon \\ 1 - = & \partial \alpha \end{bmatrix} = b_{A} \begin{bmatrix} = & \partial \varepsilon \\ 1 - = & \partial \alpha \end{bmatrix} = b_{A} \begin{bmatrix} = & \partial \varepsilon \\ 1 - = & \partial \alpha \end{bmatrix} = b_{A} \begin{bmatrix} = & \partial \varepsilon \\ 1 - = & \partial \alpha \end{bmatrix} = b_{A} \begin{bmatrix} = & \partial \varepsilon \\ 1 - = & \partial \alpha \end{bmatrix} = b_{A} \begin{bmatrix} = & \partial \varepsilon \\ 1 - = & \partial \alpha \end{bmatrix} = b_{A} \begin{bmatrix} = & \partial \varepsilon \\ 1 - & \partial \alpha \end{bmatrix} = b_{A} \begin{bmatrix} = & \partial \varepsilon \\ 1 - & \partial \alpha \end{bmatrix} = b_{A} \begin{bmatrix} = & \partial \varepsilon \\ 1 - & \partial \alpha \end{bmatrix} = b_{A} \begin{bmatrix} = & \partial \varepsilon \\ 1 - & \partial \alpha \end{bmatrix} = b_{A} \begin{bmatrix} = & \partial \varepsilon \\ 1 - & \partial \alpha \end{bmatrix} = b_{A} \begin{bmatrix} = & \partial \varepsilon \\ 1 - & \partial \alpha \end{bmatrix} = b_{A} \begin{bmatrix} = & \partial \varepsilon \\ 1 - & \partial \alpha \end{bmatrix} = b_{A} \begin{bmatrix} = & \partial \varepsilon \\ 1 - & \partial \alpha \end{bmatrix} = b_{A} \begin{bmatrix} = & \partial \varepsilon \\ 1 - & \partial \alpha \end{bmatrix} = b_{A} \begin{bmatrix} = & \partial \varepsilon \\ 1 - & \partial \alpha \end{bmatrix} = b_{A} \begin{bmatrix} = & \partial \varepsilon \\ 1 - & \partial \alpha \end{bmatrix} = b_{A} \begin{bmatrix} = & \partial \varepsilon \\ 1 - & \partial \alpha \end{bmatrix} = b_{A} \begin{bmatrix} = & \partial \varepsilon \\ 1 - & \partial \alpha \end{bmatrix} = b_{A} \begin{bmatrix} = & \partial \varepsilon \\ 1 - & \partial \alpha \end{bmatrix} = b_{A} \begin{bmatrix} = & \partial \varepsilon \\ 1 - & \partial \alpha \end{bmatrix} = b_{A} \begin{bmatrix} = & \partial \varepsilon \\ 1 - & \partial \alpha \end{bmatrix} = b_{A} \begin{bmatrix} = & \partial \varepsilon \\ 1 - & \partial \alpha \end{bmatrix} = b_{A} \begin{bmatrix} = & \partial \varepsilon \\ 1 - & \partial \alpha \end{bmatrix} = b_{A} \begin{bmatrix} = & \partial \varepsilon \\ 1 - & \partial \alpha \end{bmatrix} = b_{A} \begin{bmatrix} = & \partial \varepsilon \\ 1 - & \partial \alpha \end{bmatrix} = b_{A} \begin{bmatrix} = & \partial \varepsilon \\ 1 - & \partial \alpha \end{bmatrix} = b_{A} \begin{bmatrix} = & \partial \varepsilon \\ 1 - & \partial \alpha \end{bmatrix} = b_{A} \begin{bmatrix} = & \partial \varepsilon \\ 1 - & \partial \alpha \end{bmatrix} = b_{A} \begin{bmatrix} = & \partial \varepsilon \\ 1 - & \partial \alpha \end{bmatrix} = b_{A} \begin{bmatrix} = & \partial \varepsilon \\ 1 - & \partial \alpha \end{bmatrix} = b_{A} \begin{bmatrix} = & \partial \varepsilon \\ 1 - & \partial \alpha \end{bmatrix} = b_{A} \begin{bmatrix} = & \partial \varepsilon \\ 1 - & \partial \alpha \end{bmatrix} = b_{A} \begin{bmatrix} = & \partial \varepsilon \\ 1 - & \partial \alpha \end{bmatrix} = b_{A} \begin{bmatrix}$$

- The slope of the moment curve will vary with *h*, the location of cg.
- If the slope is zero, the aircraft has neutral longitudinal static stability.
- Let this location be denote by $h_{n\square}$ $h_{ac\square} + V_{H\square} \frac{a_t}{a\square} \left(\begin{array}{c} = \partial \varepsilon \\ 1 = \\ \partial \alpha \end{array} \right) = \\ \bullet \text{ or } \frac{\partial C_{M,cg\square}}{\partial \alpha = \\ a\square} a \left(h \#_n \right) = -a \left(h_n \# \right) = -a \times \text{ static margin} \\ \end{array}$
- For a given airplane, the neutral point is at a fixed location.
- For longitudinal static stability, the position of the center of gravity must always be forward of the neutral point.
- The larger the static margin, the more stable the airplane

Longitudinal Static Stability

Aerodynamic center location moves aft for supersonic flight

cg shifts with fuel burn, stores separation, configuration changes

- "Balancing" is a significant design requirement
- Amount of static stability affects handling qualities
- Fly-by-wire controls required for statically unstable aircraft

Today's References

- Lockheed Martin Notes on "Fighter Performance"
- John Anderson Jr., *Introduction to Flight*, McGraw-Hill, 3rd ed, 1989, Particularly Chapter 6 and 7
- Shevell, Richard S., "Fundamentals of Flight", Prentice Hall, 2nd Edition, 1989
- Bertin, John J. and Smith, Michael L., Aerodynamics for Engineers, Prentice Hall, 3rd edition, 1998
- Daniel Raymer, *Aircraft Design: A Conceptual Approach*, AIAA Education Series, 3rd edition, 1999, Particularly Chapter 17
 - Note: There are extensive cost and weight estimation relationships in Raymer for military aircraft.