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What is Autonomy?


Autonomous

From the Greek: “auto” + “matos”


“self-willed”


Robot

From the Czech/Polish word: “robota” and “robotnik” 

“labour” and “workman” 
First used in Capek’s play “R.U.R.” 



What is Autonomy?


Autonomy software performs the sophisticated 
reasoning and decision making needed to accomplish 
user goals with limited human intervention. 
Autonomous is much more than Automated


Automated: low-level, mechanical decisions 

(if-then, control law)

designed for a limited class of situations.


Autonomous: sophisticated system-level decisions.

can deal with many situations, including the unexpected.

can deal with situations that automated systems cannot.


Ben Smith, NASA JPL




Unstructured Worlds




Groundhog


Movie courtesy of S. Thrun




Pearl




Why Autonomy?


Inhospitable environments 
Remote environments 
High-precision tasks 
High-fatigue tasks 
Disagreeable tasks 



Fitts’ List

Attribute Machine Human 

Speed Superior Comparatively slow 

Power Output 
Superior in level in consistency Comparatively weak 

Consistency 
Ideal for consistent, repetitive action Unreliable, learning & fatigue a factor 

Information 
Capacity 

Multi-channel Primarily single channel 

Memory 
Ideal for literal reproduction, access 

restricted and formal 
Better for principles & strategies, access 

versatile & innovative 

Reasoning 
Computation 

Deductive, tedious to program, fast & 
accurate, poor error correction 

Inductive, easier to program, slow, 
accurate, good error correction 

Sensing 
Good at quantitative assessment, poor at 

pattern recognition 
Wide ranges, multi-function, judgment 

Perceiving 
Copes with variation poorly, susceptible 

to noise 
Copes with variation better, susceptible 

to noise 

inductive and deductive. Induction is usually described as moving from the specific to the general, while deduction begins with the general and ends with the specific; arguments based on experience or 
observation are best expressed inductively, while arguments based on laws, rules, or other widely accepted principles are best expressed deductively. 

Slide courtesy of M. Cummings Hollnagel, 2000 



Different Kinds of Autonomy


Model-based 
Williams, Latombe 

Control theory 
So many.... 

Reactive 
Brooks 

Behaviour-based 
Arkin, Mataric 

Machine learning, probabilistic models 
Thrun, Leonard 



“Sensor-based” Autonomy


Agent acting in 
the real world 



“Sensor-based” Autonomy


Agent taking 
actions 

Environmental Model 



“Sensor-based” Autonomy


Agent trying to
achieve some 

goal 

Probabilistic State 
Estimation 

Probabilistic 
Decision Making 

Machine Learning 

Environmental 

Model




Minerva


Don’t oversell Minerva – control problem/hci was really simple, interactivity was very minimal. 

Many of you may recognize Minerva, a robot that I had the privilege of working on a few years ago. Minerva was deployed in the Smithsonian in Washington, giving tours of various exhibits to visitors. The 
robot took requests from people for different tours, navigating autonomously from exhibit to exhibit. As you can see, these were some fairly demanding conditions for a mobile robot, crowded and full of 
children. 

Nevertheless, Minerva was able to handle these conditions robustly for a number of reasons. and chief among them… 



Another view of Autonomy


State estimation Decision making


System 
operations 

Mobile 

robotics


Classical 

control


Reconfiguration Fault Diagnosis 

Global position 
estimation, mapping Motion Planning 

Local state estimation Classical control 

Slide courtesy of Brian Williams
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Challenges of Autonomy in the 

Real World


Wide range of sensors 
Noisy sensors 

World dynamics 
Adaptability 

Incomplete information 

Robustness under 
uncertainty 

Possibly add more points under reliability 



Mars Polar Lander Failure


Leading Diagnosis: 

• Legs deployed during descent. 

• Noise spike on leg sensors latched by 
software monitors. 

• Laser altimeter registers 40m. 

• Begins polling leg monitors to determine 
touch down. 

• Latched noise spike read as touchdown. 

• Engine shutdown at ~40m. 

Programmers often make 
commonsense mistakes when 
reasoning about hidden state. 

Slide courtesy of Brian Williams 

Reactive Model-based 
Programming Language (RMPL) 

Support programmers with 
embedded languages that avoid 
these mistakes, by reasoning about 
hidden state automatically. 



Modelling Complex Behaviours through 

Probabilistic Constraint Automata


Complex, discrete behaviours 
modelled through concurrency, hierarchy and timed transactions 

Anomalies and uncertainty 
modelled by probabilistic transitions 

Physical interactions 
modelled by discrete and continuous constraints 

Slide courtesy of Brian Williams 



The Curse of Dimensionality


Slide courtesy of Brian Williams




Many problems aren’t so hard


Slide courtesy of Brian Williams




Probabilistic State Estimation


Kalman, 1960 

An action 
is taken 

State Space Posterior belief Posterior belief 
Initial belief after an action after sensing 



Monte Carlo Localization


Fox, Dellaert,Burgard &Thrun 2000


Image courtesy of Dieter Fox




Movie courtesy of S. Thrun




Perception and Control


Control 

World state 

Probabilistic 
Perception 

But, these mobile robots haven’t used the same kinds of probabilistic techniques for their control. 

Engineering diagram 

Prob perception -> argmax -> control 

SLAP & CPF not everybody’s doing it. 

For the purposes of the talk, just going to concentrate on the control aspect. 

What usually happens is that the most likely state is assumed to be the correct state. In some cases, the system thresholds the uncertainty of the observation as a way to reject outliers, but it’s really hard to 
actually integrate probabilities into the control loop. 

The question is, why does this matter? 



Reliable Navigation


Conventional 
trajectories may not 
be robust to 
localization error 

Estimated robot position 
True robot position 

Goal position 

Well, sometimes, good state estimation just isn’t good enough. 



Perception and Control


Probabilistic 
Perception 

Model 
P(x) Robust 

Control 

World state 

argmax P(x) 

But, these mobile robots haven’t used the same kinds of probabilistic techniques for their control. 

Engineering diagram 

Prob perception -> argmax -> control 

SLAP & CPF not everybody’s doing it. 

For the purposes of the talk, just going to concentrate on the control aspect. 

What usually happens is that the most likely state is assumed to be the correct state. In some cases, the system thresholds the uncertainty of the observation as a way to reject outliers, but it’s really hard to actually integrate probabilities 
into the control loop. 

The question is, why does this matter? 



Coastal Navigation




POMDPs

Sondik, 1971

States S1

Rewards R1

S2

T(sj|ai, si)

Z2

b1Beliefs

Z1Observations

a1Actions

O(zj|si)

b2

Hidden
Observable



Navigation as a POMDP


Kalman, 1960 

State Space 

State is hidden from the controller 

Action, observation 

Controller chooses actions based 
on probability distributions 



POMDP Advantages


Models information gathering 
Computes trade-off between: 

Getting reward 
Being uncertain 

Am I here, or over there? 





Predicted Health Care Needs


By 2008, need 450,000 additional nurses:

Monitoring and walking assistance 
30 % of adults 65 years and older have fallen this year 

Alexander 2001Cost of preventable falls:

$32 Billion US/year


Intelligent reminding 

Cost of medication non-compliance: 
Dunbar-Jacobs 2000$1 Billion US/year 

Canadian numbers assumed to be similar. 



Dialogue Management 

using POMDPs


Unobserved state space is user’s desired task


Observations are utterances reported from speech 
recognition 
Actions are: robot motion, speech acts 
Reward: maximised for satisfying user task 



Human-Robot Interaction


This movie is a transcript of a speaker-independent voice recognition system, CMU Sphinx. You can see (and hear) that many utterances are just noise. But, with an awareness of the noise level of some 
utterances, a good dialogue manager might be able to handle this kind of input without too many errors. 

So the question is, how can a robot integrate probabilistic reasoning into both its perception and control? 



POMDP Dialogue Manager


This is a 600 state POMDP. The only reason this POMDP is solvable is by using our techniques. Conventional techniques 



Mixed-Initiative Planning


Citations 

Brings to table:

mechanisms for human involvement in plan

generation

language for explaining choices to human

look-ahead search of options and consequences


Lacks 
execution of plans 

Ferguson, et al 1996

Burstein and McDermott, 1996

Pollack and Horty, 1999

Myers, 1996


Slide courtesy of Dave Kortenkamp 



Adjustable Autonomy


Brings to table:

execution of some plans

automatic hand-off to humans


Lacks

full spectrum of control

verification

understanding


Citations

Barber, et al 2000

Bonasso, et al 1997

Dorais, et al 1998

Kortenkamp, et al 2000

Musliner and Krebsbach, 1999

Thurman, et al 1997


Slide courtesy of Dave Kortenkamp 



What you should know


Why use autonomy 
What it can do 
When it’s likely to fail 
Where autonomy stops and human begins 
System Architectures 
Trade-offs: sensors vs . computation

robustness vs. computation 
complexity vs . capability 
adaptability vs . determinism 



What are the big problems?


Large systems 
Multi-agent systems 
Large-scale models 
Long-term models 
Cost 

3-D models 
Dynamic models 
Interacting with people 
Changing the 
environment
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