Airplane Design Issues with Formation Flying

Massachusetts Institute of Technology 16.899 Air Transportation Systems Architecting

Bob Liebeck March 11, 2004

Cargo Vehicle Designs

- Ships
 - very large displacement ships
 - semi-planing ships, fast catamarans
 - hydrofoils
- Airships
 - pure displacement
 - lifting body
 - hybrid (wing-body)
- Conventional Airplanes
- Modular/Convertible Airplanes
- Formation Flying
 - multiple airplanes in formation with one another
 - wing-in-ground-effect (airplane in formation with itself)

Airships

- Airship performance increases
 with size
 - Fast and efficient airships are big
- Lifting body or wing-body airships can provide improved operational characteristics
 - Variation in load, altitude
 - Improved cargo handling
 - But:

BOEING PHANTOM WORKS

- No hover at higher weights
- Little change in cruise performance

Comparison of Freighters

Existing Conventional Freighters

747-400F

MD-11F All Derivatives of Commercial Airliners

Super Transporter

747 Lower Hold Capability

Basic

* Maximum gross weights (MGW) shown are based on lower hold running load capability (116 lb/in), subject to overall airframe structural limits

747 Main Deck Capability

Volumes are based on SAE Aerospace Standard, AS 1825

* Maximum height varies from 78 to 86 in (198 to 218 m), depending on airplane type (e.g., 707, 727, 757, DC-8)

Intermodal Transport Studies

Definition of Selected Concepts — V-9 "Strong Back" Module Definition, Loading and Transport

Intermodal Transport Studies

Intermodal Transport Studies

Definition of Selected Concepts — V-11 "Cassette" Module Definition, Loading & Transport

JSC R.E. Alexeiev Central Hydrofoil Design Bureau "KM"

JSC R.E. Alexeiev Central Hydrofoil Design Bureau "KM"

Land-Based WIG "Pelican ULTRA"

- Conventional wing-body-tail configuration
- Turboprop
- Unpressurized except crew station
- Numerous fuselage-mounted landing gear
- Anhedral to enhance ground effect
- Dimensions and weights:
 - 500 ft span, 400 ft length overall
 - 6.00 MIb MTOGW
 - 2.16 Mlb OEW
 - 2.80 Mlb maximum payload
 - 2.20 Mlb maximum fuel
- 10,000 nm range w/ 1.5 Mlb payload in ground effect at 20 ft (over water only)
- 6500 nm range w/ 1.5 Mlb payload out of ground effect

Land-Based WIG "Pelican ULTRA"

- High efficiency
 - Low empty weight fraction
 - High L/D
 - 21 out of ground effect
 - 36 at 20 feet
 - High propulsive efficiency
- ISO container cargo
 - Exploits existing ground cargo infrastructure
 - 20 and 40 ft containers
 - Loads through nose into:
 - Main deck (two high)
 - Upper deck
 - Inboard wing

The "Pelican" Container Cargo Aircraft concept has arisen from a request by Gerry Janicki of Market Development to investigate air vehicles to carry a million pounds a long way". This paper describes a preliminary effort to identify promising candidates for this mission and to explore the potential of one promising concept we have dubbed "Pelican". The Pelican has the potential to create a large new business in commercial cargo transport and to practically resolve a shortfall in military deployment and sustainment capability.

