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”‘;\\\\SSPARC Architecture Trade Space Exploration

A process for understanding complex solutions to complex problems

 Model-based high-level assessment of system capability
e Ideally, many architectures assessed

e Avoids optimized point solutions that will not support

evolution in environment or user needs
* Provides a basis to explore technical and policy uncertainties

* Provides a way to assess the value of potential capabilities

Allows informed “upfront” decisions and planning
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~ SSPARC Integrated Concurrent Engineering

A process creating preliminary designs very fast

e State-of-the-art rapid preliminary design method

* Design tools linked both electronically and by co-located

humans
* Design sessions iterate/converge designs in hours

e Requires ready tools, well poised requirements

Allows rapid reality check on chosen architectures
Aids transition to detailed design
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VAN

Emerging Capability

* Linked method for progressing from vague user needs to

conceptual/preliminary design very quickly

e MANY architectures, several/many designs considered

e Understanding the trades allows selection of robust and

adaptable concepts, consideration of policy, risk.

User
Needs

I\/IATE
Archltec‘ture
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_— SSPARC What is an Architecture Trade Space?

DESIGN VARIABLES: The architectural
trade parameters

. Orbital Parameters

~  Apogee altitude (km) ~ 150-1100
—  Perigee altitude (km) 150-1100
0, 30, 60, 90

- Orbit inclination

. Physical Spacecraft Parameters
- Antenna gain
- communication architecture
- propulsion type
—  power type
—  delta_v
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"lfSSPARC Developing A Trade Space

., Attributes
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Understanding who cares -
Stakeholders

/ I_:\SISPARC
* Many interested parties in a complex system
* Each “customer” has a set of needs

* They are different, and can be contradictory

Customer
Acauirer

Shareholders
Enterprise

Employees
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Concept Selection: Bounding
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[SSPARC Scoping
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_— SSPARC Attributes
/NN

Internet-in-the-Sky

e “what the decision makers need to
consider”

* (and/or what the user truly cares about) e

e Examples: Billable minutes = 5
GINA metr ICS 1

ARNIND

 TPF Pictures =
camera performance metrics

e Rescue/move satellites =
mass moving, grappling capability,
timeliness
— Could have sub-cartoons for above

[Beichman et al, 1999]
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_%,/ SSPARC XTOS Attributes
N |

1) Data Life Span

2) Data Altitude

3) Maximum Latitude

4) Time Spent at Equator
5) Data Latency

3)
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%S PARC

Utilities

e “What the attributes are WORTH to the decision

makers”’

e Single Attribute utility maps attribute to utility

e Multi-attribute utility maps an architecture (as
expressed by its attributes) to utility

1

Good ->

0

Attribute
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" §SPARC Single Attribute Utilities
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SSPARC Multi-Attribute Utility

~ Y v

Weight Factors of each Attribute
k values

Lifespan  Latitude Latency  Equator  Altitude

Total Lifecycle Cost ($M 2002
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~ SSPARC XTOS Design Vector

e “Parameters of the Trade Space™

Variable:

First Order Effect:

Orbital Parameters:

*Apogee altitude (200 to 2000 km)

Lifetime, Altitude

*Perigee altitude (150 to 350 km)

Lifetime, Altitude

*Orbit inclination (0 to 90 degrees)

Lifetime, Altitude

Latitude Range

Time at Equator

Physical Spacecraft Parameters:

*Antenna gain (low/high) Latency
«Comm Architechture (TDRSS/AFSCN) Latency
*Propulsion type (Hall / Chemical) Lifetime
*Power type (fuel / solar) Lifetime
*Total AV capability (200 to 1000 m/s) Lifetime
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'1‘;\\\SSPARC Scoping-QFDs

’

Identify key
2 . .
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Data Lifespan Of 9] 9] 6] Of Of O] 6] 9] 48

Sample Altitude 9f 9] O] O] O Of O] O] 9} 27
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Time at Equator Of 6/ O] O] 9 O O] O] 9] 24

Latency 3] 3] O] O] 3] 91 9 6] 3} 36

Total 211 27 9 6 21 9| 9| 12| 39

Cost 9] 9] 3 6] 6] 3] 6/ 6/ 9
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/

Sums i1dentify attributes and Design Variables
that are likely to be (or not be) distinguishers
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- SSPARC

/

XTOS Simulation Software Flow Chart
Orbits

All variations : ..
on design Spacecraft Satellite Mission
vector database Scenario

Launch

Mission scenarios with
acceptable satellites
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-":\\SSPARC Exploring the Tradespace

Cadillac |
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~ SSPARC The Pareto Front

/\'\

o Set of “best’” solutions

* “Dominated” solutions are more expensive or less
capable
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Using the Trade Space to Evaluate

ﬁgs PARC

Point Designs

TFF System Trade Space
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D\ Understanding Limiting

SSPARC : .. .
Fh Physical or Mission constraints
4000.00
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3000.00
~ 2500.00
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Utility (dimensionless)

Hits a “wall” of either physics (can’t change!) or utility (can)
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P SSPARC Questioning User Desires

* Best low-cost mission do only one job well

* More expensive, higher performance missions require
more vehicles

* Higher-cost systems can do multiple missions
e [s the multiple mission idea a good one?

Color scale: Life Cycle Cost, 1380 data points, grid: 75x75, density: 0.08
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;}\S SPARE Changes in User Preferences Can be
AN Quickly Understood

Weight Factors of each Attribute (k values)
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-‘“/;_S\‘SPARC Integrated Concurrent Engineering (ICE)

* ICE techniques from Caltech and JPL

* Linked analytical tools with human experts in
the loop

e Very rapid design iterations

e Result 1s conceptual design at more detailed
level than seen in architecture studies

e Allows understanding and exploration of design
alternatives

* A reality check on the architecture studies - can
the vehicles called for be built, on budget, with
available technologies?
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~ SSPARC ICE Process (CON with MATE)

ICE Process . .
Leader * Directed Design
“Chairs” consist of Key system
computer tool AND attributes passed to 1
human expert MATE chair, helps to SeSSIOnS allow Very

drive design session

fast production of
preliminary designs

%

— e — e Traditionally, design

| Power i Propulsion\ ) y’ g

Thermal ICE-Maker Communication tO requlrements

Structures Sefer conﬁgurationl\ e Integration with

T P\ ) iy | MATE llows wiliy
' of designs to be

Electronic
communication
between tools and

server synchronizes actions

bal li h .
e < assessed real time
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— SSPARC ICE Result - XTOS Vehicle

VAN

e Early Designs had
\ excessively large fuel
' : tanks and bizarre
.’ g shapes

* Showed limits of
coarse modeling done
in architecture studies

* Vehicle optimized for
best utility - maximum
life at the lowest
practical altitude
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SPACETUG Tug Family
(designed in a day)

Bipropellant

Wet Mass: 11689 kg

Electric — One way

"

Wet Mass: 997 kg

Space Systems, Policy, and Architecture Research Consortium

Cryogenic

Wet Mass: 6238 kg

Electric — Return Trip

A

Wet Mass: 1112 kg
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SSPARC Trade Space Check

500
450
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—e— Storable Biprop
350 —a—Cryo

Electric

300

—— Muclear

Cost

A Biprop GEO tug
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O
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1 Electric GEO Tug

1040

50

Utility
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ﬁf"“; SSPARC What yvou will learn
y

e Trade space evaluation allows efficient quantitative
assessment of system architectures given user needs

» State-of-the-art conceptual design processes refine
selected architectures to vehicle preliminary designs

e Goal 1s the right system, with major 1ssues understood

(and major problems ironed out) entering detailed
design
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