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Overview

• Value Functions
• Utility Functions
• Measurement of Utility

– Process
– Bracketing
– CE vs. LEP

• MAUT
– Motivation
– Axioms
– Formula

• Prospect Theory
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• An Attribute… 
– Is a decision-maker perceived metric that 

measures how well a decision maker-defined
objective is met

• A Value metric…
– Converts the attributes of a design into a measure 

of the preference(s) of the decision makers
– Is quantitative, although often dimensionless and 

may be relative
– Aids decision makers in choosing between 

disparate alternatives

Value: Metric of DM Need
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Value Functions

• In General:
– Preference Measure
– PM = f(X)
– where X = vector of attributes

• Semantic Caution: Value
– Value in Exchange
– Value in Use
– “Fair Market Value”
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Measures of Value

• Functional Requirements (binary - satisfy 
requirement or not?)

• Single measures of functionality (how much 
of commodity service is provided?)

• Single-attribute utility (how desirable is a 
given level of a given attribute?)

• Multi-attribute utility (what is the combined 
value of a given set of “independent” 
attributes?)

Progressively more difficult but potentially more useful 
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Single Functions and CPF

• Some systems may have only a single, 
“commodity” function (e.g. Comm. Bandwidth)

• Value can be expressed directly in terms of 
this function (Bandwidth is good)

• Providing this function at low cost becomes 
single metric for evaluation - Cost Per 
Function (CPF)

• May be used for non-commodity attributes 
(e.g. cost per image of science missions)
– Could be over-simplifying: 

What sort of images? Quality? etc. 
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Value Function V(x)

Definition: V(X) is a means of ranking the 
relative preference of an individual for a 
bundle on consequences, X

X, Benefit

Adapted from: de Neufville, Richard. Applied Systems Analysis: Engineering Planning and Technology Management.
 New York: McGraw-Hill Co., 1990.

X, Benefit

Preference
 Measure dX

d(Preference 
Measure)

A Typical Non-Linear Preference Function
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Preference Function

• Risk Preference Also Observed
• (There is no “Law of Diminishing Marginal 

Utility”) However, May Instead Reflect 
“Threshold Effect” (Asymmetric Behavior 
About A Threshold Value)

Threshold

Adapted from: de Neufville, Richard. Applied Systems Analysis: Engineering Planning and Technology Management.
 New York: McGraw-Hill Co., 1990.
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V(X): Basic Axioms 

• Completeness or Complete Preorder
• People have preferences over all Xi

• Transitivity
– If X1 is preferred to X2 ; and X2 is preferred to X3; 

Then X1 is preferred to X3

– Caution: Assumed True for Individuals; NOT 
Groups

• Monotonicity or Archimedean Principle
– For any Xi (X* < Xi < X*) there is a w (0 < w < 1) 

such that V(Xi) = w V(X*) + (1 - w) V(X* )
– That is, More is Better (or Worse)
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V(X): Consequences

• Consequence of V(X) Axioms
– Existence of V(X)
– Ranking only

• Strategic equivalence of many forms of V(X)
• Any monotonic transform of a V(X) is still an 

equivalent V(X)
• For example:

– V(X1, X2)= X1 
2 X2 = 2 log (X1) + log (X2)



Space Systems, Policy, and Architecture Research Consortium ©2004 Massachusetts Institute of Technology 16

Value Functions
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Adapted from: de Neufville, Richard. Applied Systems Analysis: Engineering Planning and Technology Management.
 New York: McGraw-Hill Co., 1990.

Isovalue Contours Demand Function 
(Maximize value given a

 budget constraint)
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The Utility Function

• Utility Function - U(X)
• Definition:

– U(X) is a special V(X),
– Defined in an uncertain environment

• It has a special advantage
– Units of U(X) DO measure relative preference
– CAN be used in meaningful calculations
– Is measured on a Cardinal Scale
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Single Attribute Utility

• Postulate a dimensionless metric that is a function of 
attribute X:  Ui = Ui (X)

• Set Ui = 0 at the least desirable, but still acceptable
value of X

• Set Ui = 1 at the highest (most desirable) value of X
• Ui, the “single attribute utility,” can be used to express 

the relative desirability of values of X

U
til

ity

1

Attribute value

0

Excluded Attribute Values

Excess Attribute Values 
(typically assigned Utility = 1)

Curve TBD
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Cardinal Scales

• Ratio
– Zero value implies an absence of phenomenon e.g., 

Distance, Time note: F’(x) = a F(x) defines an equivalent 
measure (e.g., meters and feet) 

• Ordered Metric
– Zero is relative, arbitrary

• Example: Temperature 
– Need to define two points: 

• 0 degrees C - freezing point of pure water
• 100 degrees C - boiling point of pure water at standard 

temperature and pressure
• 0 degrees F - freezing point of salt water
• 100 degrees F - What?

– Equivalent measures under a positive linear transformation
• Note: f’(x) = a f(x) + b (e.g. F = (9/5) C + 32)
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Utility Axioms

• Value function axioms
– Completeness
– Existence of preference
– Transitivity
– Monotonicity

• Preferences in probability (more likely good)
• Substitutions (expected value)

More Info
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Utility Axiom Consequences 

• Utility exists on an ordered metric scale
– The utilities have meaning only compared with other utilities
– The units of utility have constant relative meaning but no absolute 

meaning
– A linear transformation of a utility function (e.g. changing from °F to 

K) does not change the decisions that will be made 
• To measure, sufficient to

– Scale 2 points arbitrarily
– obtain relative position of others by probability weighting -- Similar 

to triangulation in surveying
• How do we measure utility?

– Since it is empirical -- Measure
– Since it is personal – Measure Individuals

• Solution: some form of an interview
– oral
– computer based
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Measuring Utility

• Psychometric considerations
– Nature of interview
– Context
– Scale of response
– Method obtained (bracketing)
– Consistency and replicability (computer programs)

• Step-by-Step Procedure
– Defining X
– Setting context
– Assessment
– Interpretation
– Numerical approximation More details
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Probs & Outcomes: Lotteries

• Lottery
– A risky situation with outcomes 0j at 

probability pj

• Written as (01, p1; 02, p2; ...)

• Binary Lottery
– A lottery with only two branches, 

entirely defined by XU, pU, XL

• p(XL) = 1 - PU

• Written as (XU , PU ; XL)

• Elementary Lottery
– A lottery where one outcome equals 

zero, that is, the status quo 
• Written as (X,p)
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Utility Measurement (CE)

• Conventional Method
• Certainty Equivalent (CE) - Balance Xi and a lottery

– Define X* - best possible alternative on the range
– Define X * - worst possible alternative on the range

• Assign convenient values - U(X*)=1; U(X*) = 0
• Conduct data collection/interview to find Xi and p
• Note: U(Xi) = p

• For each Xi, vary p until indifferent
Source: de Neufville, Richard. Applied Systems Analysis: Engineering Planning and Technology Management. New York: McGraw-Hill Co., 1990.
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Utility Measurement (LEP)

• New method
• Avoid certainty equivalents to avoid “Certainty Effect”
• Consider a “Lottery Equivalent”

– Rather than comparing a lottery with a certainty
– Reference to a lottery is not a certainty

• Vary “Pe” until indifference between two lotteries.  
This is the Lottery Equivalence More details

Source: de Neufville, Richard. Applied Systems Analysis: Engineering Planning and Technology Management. New York: McGraw-Hill Co., 1990.
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Single Attribute Utility
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Diversity in Latitude (degrees)

• Mapping of 
attributes to 
perceived-
value under 
uncertainty

• Utility is an 
ordered metric 
scale (e.g. °F)

• Not required to 
have “analytic” 
form

More SAU 
Examples Source: X-TOS Final Design Report, MIT 16.89 Spring 2002
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Determining Single 
Attribute Utility

• Interviewing – axiomatically based, but time-consuming
• Sketching – not accurate, but easy 
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Not a permissible Utility
Need to recast attribute definition
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Noise is inevitable

Four utility curves, generated by sketch 
(DRAW1 and DRAW2) and LEP 
interview (MIST1 and MIST 2) 

Both random noise and effect of generation method are evident 
Source: Spaulding, Timothy J. "Tools for Evolutionary Acquisition: A Study of Multi-Attribute Tradespace Exploration (MATE) 

Applied to the Space Based Radar (SBR)." SM, Massachusetts Institute of Technology, 2003.

IMPORTANT: Subjective (i.e. hand drawn) v. Elicited 
preferences result in DIFFERENT 
tradespaces! (See Spaulding (2003))
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MAUT Motivation

• Desire to capture preferences over multiple 
attributes

• Curse of Dimensionality
– Procedure for 1-dimensional utility function can, in 

theory, be applied to an n-dimensional utility 
function

– But, consider the number of points to be assessed 
if we divide a range of N dimensions into quarters

Dimensions Number of points
1 5 – 2 = 3
2 (5)(5) – 2 = 23
3 (5)(5)(5) – 2 = 123
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MAU: Axiomatic Basis (1)

• Preferential Independence - An ordinal 
condition
– The order of preference between any 2 pairs of 

outcomes is constant, regardless of level of other 
outcomes

– If (X1’, X2’) > (X1’’,X2’’) for any (X3’,…XN’)
– Example

• I prefer (1 cup coffee, black) to (2 cups coffee, 
w/sugar), regardless of wealth

– Consequence
• Can compare dimensions two at a time, 

independently of others
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MAU: Axiomatic Basis (2)

• Utility Independence – a cardinal condition
– The relative intensity of value for different amounts 

of one type of outcome is independent of level of 
all other outcomes.

A, B, …X ~

A’, B, … X

A’’, B, … X
True for all consistent sets of B, …X
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MAU: Axiomatic Basis (3)

– Example
• When hungry, I prefer 1 plate of food for sure to 

a 50:50 gamble on 2 plates or none, regardless 
of noise

– Consequence
• Can assess U(Xi) once, and use it for all cross 

sections of U(X), subject to a positive linear 
transformation

• “Shape” of U(Xi) constant
– U’(X) = a U(X) + b

Derivation of Keeney-Raiffa MAUF*

*Source: Keeney, Ralph L., and Howard Raiffa. Decisions with Multiple Objectives--Preferences and Value Tradeoffs. 2nd ed. 
Cambridge: Cambridge University Press, 1993.



Space Systems, Policy, and Architecture Research Consortium ©2004 Massachusetts Institute of Technology 33

• Combine multiple single-attribute utilities Ui
into a single metric U

• May not be possible
• May be simple

– Weighted sum  

– Multiplicative function

– Inverse multiplicative function

• Generalized form - Keeney-Raiffa function

U = kiUi
i=1

n

∑
U = Ui

i=1

n

∏

1−U = 1−Ui( )
i=1

n

∏

KU +1= KkiUi +1( )
i=1

n

∏

Multi-Attribute Utility Fcns

Axiomatic
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MAU Analysis Process

Method:
1. Define attributes
2. Define attribute ranges (worst best case)
3. Compose utility questionnaire (context)
4. Conduct utility interview with Customer/User

• Find single attribute utilities, U(Xi)
• Find “corner weights”, ki

5. Calculate utility function
6. Conduct validation interview
7. Conduct sensitivity analysis
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• A decision maker-perceived metric that measures how 
well a decision maker-defined objective is met

• Complete

• Operational

• Decomposable

• Non-redundant

• Minimal

• Perceived Independent*

• Set of attributes must be:

• “Rule of 7”: Human mind limited to roughly 7 (7 ± 2) 
simultaneous concepts**

* Not strictly necessary, but reduces interview time and complexity.
**Miller, George A. "The Magical Number Seven, Plus or Minus Two: Some Limits on Our Capacity for Processing Information." The Psychological Review 63 
(1956): 81-97.

• In the limit ranges converge to a 
point, the attributes become 
requirements

Attribute Characteristics

• Definition

• Units

• Range (least-most 
acceptable)

Attributes as Decision Metrics
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Procedure for U(X)

• Establish the range of each dimension
– Xi* to Xi

*

• Set X* = (X1*, …, Xn*) U(X*) = 0
X* = (all the best) U(X*) = 1

• Establish the relative value of each 
dimension:

(X1*, … Xi*, …Xn*) ~

X all best

X all worst

ki
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Multi-Attribute Utility Function

( )∏
=

+=+
N

i
ii XUKkXKU

1

1)(1)(

Normalization 
constant

Multi-attribute 
utility function Single attribute 

utility
Relative “weight”

Multi-Attribute Utility Function*

*Keeney, Raiffa, 1976.
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Solving for K

• Set U(X) = U(X*) = 1, then U(Xi) = U(Xi
*) = 1

• Guidelines:
– If the sum of all ki < 1 K > 0
– If the sum of all ki > 1 -1 < K < 0
– If the sum of all ki = 1 K = 0

U(X) = Σ ki Ui(Xi)

( )∏
=

+=+
N

i
iKkK

1

11
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Behavior of MAU’s
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Prospect Theory

• Questions rational utility theory
• Proposed by psychologists Kahneman and 

Tversky in 1979
• Incorporates how people actually make 

decisions
– Comparisons
– Biases
– Heuristics

[ ]{ }
⎪⎭
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⎬
⎫

⎪⎩

⎪
⎨
⎧

⎟⎟
⎠

⎞
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⎛
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ij
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Source: Kahneman, D. and Tversky, A. (1979). "Prospect Theory: An Analysis of Decisions under Risk." Econometrica 47: 263-291.
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PT: Prospect Value Function

• Empirical research has shown λ ≈ 2. Meaning people value 
losses about twice as much as gains. (Loss aversion)

• Parameters α and β are defined such that people are risk 
seeking in the loss domain and risk averse in the gain domain. 

• (Note that x is defined relative to some reference level.)

Value function Subjective probability
Value of outcome xi

Loss aversion constant

Prospect Value Function

∑
−=

=
n

mi
ii xvfV )()( π

0,
0,

)(
)(

<
≥

⎩
⎨
⎧

−−
=

x
x

x
x

xv
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PT: Subjective Probability

• The probability weighting 
function, πi=w(pi), has been 
estimated to be either:

,(1)
• with empirical evidence 

showing α = 0.7 and β = 1†, 
or

,(2)
• with empirical evidence 

showing γ = 0.61 – 0.69*.

Sources: † Kahneman, D. and Tversky, A. (1992). Advances in Prospect Theory: Cumulative Representation of Uncertainty. 
Choices, Values, and Frames. D. Kahneman and A. Tversky. New York, Cambridge University Press: 44-65.
* Fox, C. R. and Tversky, A. (1998). A Belief-based Account of Decision under UncertaintyIbid.: 118-142.

))ln(exp()(1
αβ ppw −−=

γλγ

γ

12 ))1((
)(

pp
ppw
−+

=

• Overweight low probabilities: i.e. 0.01% ~ 1%

• Underweight high probabilities: i.e. “certainty bias”
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PT: Decision-making 
Heuristics 

• “Availability”
– the tendency of people to weight the probability of an event 

by the ease with which some relevant information comes to 
mind; other information, although relevant, is ignored simply 
because it does not come to mind so quickly.

• “Representativeness”
– the tendency to ignore good probabilistic information on the 

basis of information that is irrelevant in fact, but that is 
believed by the decision maker to be representative of 
relevant information.

• “Anchoring”
– the tendency of many people, even after learning that they 

have based probability estimates on worthless information, 
to continue to be influenced by the earlier assessments.

Source: Kahneman, D., Slovic, P., et al., Eds. (1982). Judgment Under Uncertainty: Heuristics and Biases. New York, Cambridge 
University Press.
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Utility v. Prospect Theory

• Prescriptive v. Descriptive
• Desire for rational decision-making?

– Agreement with axioms
– Better off in “long run”

• Prospect Theory gives insight into actual
decision-making processes to help to avoid
making bad decisions

• Conclusion: use Utility Theory
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Multiple Stakeholders

• There is no optimum solution to a problem 
where multiple stakeholders have conflicting 
needs

• In practice, need to negotiate
• Knowledge of tradespace greatly aids 

negotiation
– Finding the win-win changes (moving toward the 

pareto front
– Finding the real trades (on the pareto front)
– Negotiation advantage for stakeholders who 

understand tradespace
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Summary

• Not a perfect system 
– Difficult, to confirm all conditions

– Noise and biases

• Probably the best available (like democracy…)

• Needs to be used as a tool for tradespace exploration

• Should not be used mechanistically (e.g. as an objective 
function for MDO)

Utility theory translates system attributes into user preferences

Users/stakeholders should stay in the 
loop as tradespace exploration proceeds 
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Extra Slides

Further Details…
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Requirements for 
Single Attribute Utility

• For a utility function to exist:
– The user must have a preference for a given value of the 

attribute over other values of the attribute
– The preferences must be transitive
– The preferences must be monotonic

• Single attribute utilities are “ordered metric scales”
– The utilities have meaning only compared with other utilities
– The units of utility have constant relative meaning but no 

absolute meaning
– A linear transformation of a utility function (e.g. changing 

from °F to K) does not change the decisions that will be 
made 
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Lottery Equivalent 
Probability (LEP)

• Set up a questionnaire with hypothetical questions 
• User must choose between “lotteries” (uncertain 

outcomes) e.g. 40% chance of x(1) vs  60% chance 
of x(2)

• Teases out preference in a (relatively) unbiased way
• Requires:

– The attributes must have meaning in the presence of 
uncertainty, i.e. the statement “there is a 10% probability that
the system will have attribute xi” must be meaningful

– The user must have preference under uncertainty, i.e. must 
prefer a higher probability of a desirable result over a lower 
probability

– The user’s preference must be linear with probability, at least 
within the bounds of the problem stated in the LEP interview
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Utility Analysis
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Utility of Accuracy (AOA)
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• AOA accuracy is the range of certainty of the angle of arrival 
measurement.

B-TOS: Accuracy (AOA)
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Utility of Instant Global Coverage
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• Instantaneous global coverage is the percentage of the globe 
over which measurements are taken within the time resolution 
of the system.

B-TOS: Instant. Global 
Coverage
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U(X): Basic Axioms (1)

• Probability
– Probabilities exist - can be quantified
– More is better
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U(X): Basic Axioms (2)

• Preferences
– Linear in Probability
(substitution/independence) - Equals can be substituted if a 

subject is indifferent between A and B

Not a good assumption for small p 
(high consequences) !
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Interview Issues

• Put person at ease
– this individual is expert on his values
– their opinions are valued
– there are no wrong answers
– THIS IS NOT A TEST!!

• Scenario relevant to
– person
– issues to be evaluated

• Technique for obtaining equivalents:
– BRACKETING
– Basic element for measurement: LOTTERIES
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Utility Interview Software 
(MIST)

*MIST created by Satwik Seshasai, MIT 2002

Interviews require interaction with decision makers to determine utility functionsInterviews require interaction with decision makers to determine utility functions
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Approach to Determining 
Utility

• Attributes framed by 
“scenarios”—meant to 
take each attribute in 
isolation

• MIST uses “lottery 
equivalent probability” to 
create a curve

• User first rates each 
attribute individually, 
then balances each 
against the others
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• Weighted sum requires Ui to be fully independent and 

• Multiplicative function accounts for simple interaction 
(e.g. need all Ui to approach 1 before U approaches 
one)

• Inverse multiplicative function accounts for opposite 
interaction (all Ui need to approach 0 before U
approaches 0)

• Keeney-Raiffa accounts for single interaction - depends 
on K
– requires that the value of any Ui perform no more than a linear 

transform on the values of other Ui - which doesn’t change the 
decisions!

ki
i=1

n

∑ =1

These conditions may not be met, and are hard to prove rigorously

Conditions for MAU 



Space Systems, Policy, and Architecture Research Consortium ©2004 Massachusetts Institute of Technology 61

X-TOS User Attributes

(5)(4)(3)

(2)(1)
1) Data Life Span
2) Data Altitude
3) Maximum Latitude
4) Time Spent at Equator
5) Data Latency

km
Km

2004 2005

DATA
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Single Attributes 
Aggregated

• Depicts the 
relative 
importance of 
each attribute to 
the decision 
maker

• Resolution of 
±0.025

• User interviewed 
for ~2 hours
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