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Integrated Concurrent Engineering

• ICE (and other names) practiced at Caltech, JPL, Aerospace,
ESA, and many other places

• Linked analytical tools with human experts in the loop
• Very rapid design iterations
• Result is conceptual design at more detailed level than seen in

architecture studies
• Allows understanding and exploration of design alternatives

A process creating preliminary designs very fast

Relation to MATE:

Allows rapid reality check on chosen architectures

Aids transition to detailed design
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ICE Process (CON with MATE)
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• Directed Design Sessions
allow very fast production
of preliminary designs

• Traditionally, design to
requirements

• Integration with MATE
allows utility of designs to
be assessed real time
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 Example ICE Analysis Block Diagram
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• Payload design and mission objectives
• Handled by graduate students
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Typical Result: Bipropellant GEO Tug

• Approx. 1300 kg dry mass, 11700 kg wet mass
• Quite big (and therefore expensive); not very practical (?);
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Electric Propulsion RT GEO Tug

• Approx. 700 kg dry mass, 1100 kg wet mass
• Includes return of tug to safe orbit
• A reasonable, versatile system

The “Electric Cruiser”
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Bi-prop Tender Designs

• Lower Utility, lower cost systems
• Can’t go to GEO (though can work there if inserted)
• 700-1000 kg dry mass; 1000-4000 kg wet mass
• A family of potential vehicles with reasonable sizes and mass fractions



Space Systems, Policy, and Architecture Research Consortium and the MIT Space Systems Laboratory ©2004 Massachusetts Institute of Technology  8

Mass Distribution Comparison
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Electric Cruiser Biprop one-way

• Low ISP fuel requires very large mass fraction to do mission
• Other mass fractions reasonable, with manipulator system,

power system, and structures and mechanisms dominating
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More Than Mass Fractions
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Power System Mass Breakdown
Solar array 

mass
66%

Battery mass
19%PMAD mass

9%

Cabling mass
6%

Minimum efficiency 24.5 %
Maximum efficiency 28.0 %
Nominal temperature 28.0 C
Temperature loss 0.5 %/deg C
Performance degredation 2.6 % / year
Minimum temperature 0.5 C
Maximum temperature 85.0 C
Energy density 25.0 W / kg

Solar array mass 150.6685167 kg
Total solar array area 9.965098159 m^2
# of solar arrays 2 #
Individual solar array area 4.98254908 m^2

LEO Tender 1
mass summary

Detailed information can be
drawn from subsystem sheets,
including efficiencies,
degradations
temperature tolerances, and areas

Select solar array material: 6Triple Junction (InGaP/GaAs/Ge)
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Synergies Between Methods Results in
Powerful Conceptual Design Capability
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Family concepts,
multi-mission tender
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MATE-CON is the merging of MATE and
ICE, using a MATE-CON or Utility Chair
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MATE-CON Benefits

MATE-CON can…
• Guide engineers to higher value

solutions in a concurrent environment
• Allow for rapid re-evaluation in the face

of changing preferences
• Enable direct comparisons of vastly

different concepts
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Trade Space Check - GEO missions
ICE results plotted on MATE tradespace

The GEO mission is near the “wall” for conventional propulsion
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Trade Space Check - Tender missions

The Tender missions are feasible with conventional propulsion
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MATE-CON: Emerging Capability

User
Needs

Robust
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ICE
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Evaluation

• Linked method for progressing from vague user needs to
conceptual/preliminary design very quickly

• MANY architectures, several/many designs considered
• Understanding the trades allows selection of robust and adaptable

concepts, consideration of policy, risk.


