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S SPARC Integrated Concurrent Engineering

A process creating preliminary designs very fast

* ICE (and other names) practiced at Caltech, JPL, Aerospace,
ESA, and many other places

e Linked analytical tools with human experts in the loop
e Very rapid design iterations

e Result 1s conceptual design at more detailed level than seen in
architecture studies

e Allows understanding and exploration of design alternatives

Relation to MATE:
Allows rapid reality check on chosen architectures
Aids transition to detailed design
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ICE Process (CON with MATE)

Directed Design Sessions
allow very fast production
of preliminary designs
Traditionally, design to
requirements

Integration with MATE
allows utility of designs to
be assessed real time
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Pre processmg i « Payload design and mission objectives !
Architecture « Handled by graduate students |
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ﬁgSPARC Typical Result: Bipropellant GEO Tug

e Approx. 1300 kg dry mass, 11700 kg wet mass

e Quite big (and therefore expensive); not very practical (?);

Solar Panels
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/ System

Spacecraft Bus
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/

Propulsion System
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N\
%&SPARC Electric Propulsion RT GEO Tug |

* Approx. 700 kg dry mass, 1100 kg wet mass
 Includes return of tug to safe orbit

* A reasonable, versatile system
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_— SSPARC 2 -
Iy Bi-prop Tender Designs
e Lower Utility, lower cost systems

e Can’t go to GEO (though can work there if inserted)

e 700-1000 kg dry mass; 1000-4000 kg wet mass

« A family of potential vehicles with reasonable sizes and mass fractions

Space Systems, Policy, and Architecture Research Consortium and the MIT Space Systems Laboratory ©2004 Massachusetts Institute of Technology 7



N\

% QSPARC Mass Distribution Comparison
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Electric Cruiser Biprop one-way

e Low ISP fuel requires very large mass fraction to do mission

e Other mass fractions reasonable, with manipulator system,
power system, and structures and mechanisms dominating
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More Than Mass Fractions

Select solar array material:

[ Tripte Junc@*m (InGaP/GaAs/Ge)|

=t

Minimum efficiency 24.5|%
Maximum efficiency 28.0|%
Nominal temperature 28.0(C
Temperature loss 0.5(%/deg C
Performance degredation 2.6|% / year
Minimum temperature 0.5(C
Maximum temperature 85.0(C
Energy density 25.0(W / kg
Solar array mass 150.6685167 |kg

Total solar array area 9.965098159|m"2

# of solar arrays 2|#
Individual solar array area 4.98254908|m"2
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= Synergies Between Methods Results in
ﬁg SPARC Powerful Conceptual Design Capability

MATE
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MATE-CON is the merging of MATE and
ICE, using a MATE-CON or Utility Chair
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% SSPARC MATE-CON Benefits
AN )
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:>S SDARE Trade Space Check - GEO missions
AN ICE results plotted on MATE tradespace
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— SSPARC
/NN

MATE-CON: Emerging Capability

e Linked method for progressing from vague user needs to

conceptual/preliminary design very quickly

e MANY architectures, several/many designs considered

e Understanding the trades allows selection of robust and adaptable

concepts, consideration of policy, risk.

User
Needs

'|'

MATE
Archltecture
Evalqatlon

JCE"
Conceptual
Des1gn

Adaptable

> Robust

Concepts

Space Systems, Policy, and Architecture Researc

h Consortium and the MIT Space Systems Laboratory

assachusetts Institute of Technology 15



