Lecture 6: Integrated Concurrent Engineering (ICE) and MATE-CON Space Systems Architecture

Prof. Daniel Hastings Dr. Hugh McManus

A process creating preliminary designs very fast

- ICE (and other names) practiced at Caltech, JPL, Aerospace, ESA, and many other places
- Linked analytical tools with human experts in the loop
- Very rapid design iterations
- Result is conceptual design at more detailed level than seen in architecture studies
- Allows understanding and exploration of design alternatives

Relation to MATE:

Allows rapid reality check on chosen architectures

Aids transition to detailed design

ICE Process (CON with MATE)

- Directed Design Sessions allow very fast production of preliminary designs
- Traditionally, design to requirements
- Integration with MATE allows *utility* of designs to be assessed real time

Example ICE Analysis Block Diagram

Typical Result: Bipropellant GEO Tug

- Approx. 1300 kg dry mass, 11700 kg wet mass
- Quite big (and therefore expensive); not very practical (?);

Scale for all

images:

Electric Propulsion RT GEO Tug

- Approx. 700 kg dry mass, 1100 kg wet mass
- Includes return of tug to safe orbit
- A reasonable, versatile system

- Lower Utility, lower cost systems
- Can't go to GEO (though can work there if inserted)
- 700-1000 kg dry mass; 1000-4000 kg wet mass
- A family of potential vehicles with reasonable sizes and mass fractions

Mass Distribution Comparison

- Low ISP fuel requires very large mass fraction to do mission
- Other mass fractions reasonable, with manipulator system, power system, and structures and mechanisms dominating

More Than Mass Fractions

Space Systems, Policy, and Architecture Research Consortium and the MIT Space Systems Laboratory

Synergies Between Methods Results in Powerful Conceptual Design Capability

MATE-CON Benefits

Revised

Capture Preference Change

MATE-CON can...

- Guide engineers to higher value solutions in a concurrent environment
- Allow for rapid re-evaluation in the face of changing preferences
- Enable direct comparisons of vastly different concepts

Re-evaluate Solution Spaces

Trade Space Check - GEO missions ICE results plotted on MATE tradespace

The GEO mission is near the "wall" for conventional propulsion

Trade Space Check - Tender missions

The Tender missions are feasible with conventional propulsion

- Linked method for progressing from vague user needs to conceptual/preliminary design very quickly
- MANY architectures, several/many designs considered
- Understanding the trades allows selection of robust and adaptable concepts, consideration of policy, risk.

