Lecture 5: Modeling and Exploring the Tradespace Space Systems Architecture

Prof. Daniel Hastings Dr. Hugh McManus

- Set of physical characteristics of the proposed architectures
- Enumerated values to be evaluated are selected
- Strongly effect attributes
 - Typical elements include orbit parameters, characteristics of spacecraft, mission profiles
- Other "design" variables may go in the *constants vector*
 - During study, may elevate "constants" to design vector, or demote non-discriminating design variables to constants

Design Vectors

- X-TOS
 - Altitude of Apogee (km)
 - Altitude of Perigee (km)
 - Inclination (deg)
 - Total Delta-V (m/s)
 - Comm. Sys Type
 - Antenna Gain
 - Propulsion Type
 - Power Sys Type
 - Mission Scenario
- Space Tug
 - Mass of on-board equipment (grapplers, observation equipment, etc)
 - Propulsion system
 - Fuel load

- Space Based Radar
 - Scan Angle
 - Technology Level
 - Aperture Area
 - Orbit Altitude
 - Constellation type
- B-TOS
 - Circular orbit altitude (km)
 - Number of Planes
 - Number of Swarms/Plane
 - Number of Satellites/Swarm
 - Radius of Swarm (km)
 - 5 Configuration Studies

Enumeration of X-TOS Design Vector

Design Variable	Levels	Justification
Altitude of Apogee	200:50:350;	Emphasis on low altitude in utility function,
(km)	650:300:2000*	therefore sample at a higher rate at low altitudes
Altitude of Perigee	150:50:350*	Utility curve declines quite steeply between 150 and
(km)		350 km; will take a significant utility hit if spacecraft
Indination (dog)	0: 20: 70: 00	Covers the possible range of inclinations
Tatal Dalta V (m/a)	0, 50, 70, 90	The law and of the renge is a high sucrease value for
Total Delta-V (m/s)	200:100:1000*	The low end of the range is a high average value for
		low earth orbit satellites. The high end is an estimate
		of the optimistic (on the large side) estimate delta V
		allowed before the spacecraft mass will no longer
		accommodate small and medium sized US launch
		vehicles.
Comm. Sys Type	AFSCN; TDRSS	Discrete choice of systems available
Antenna Gain	High; Low	Discrete choice of systems available
Propulsion Type	Chemical; Hall	high-thrust at low efficiency vs. low-thrust at high
		efficiency
Power Sys Type	Solar; Fuel cells	Only body mounted solar considered due to
		prohibitive drag penalty of wings
Mission Scenario	Single; 2 Series; 2	More than two satellites is computationally
	Parallel	prohibitive since the number of possible multi-
		spacecraft mission grows as N^k where k is number of
		spacecraft in the mission scenario and N is number of
		combinations of the other (spacecraft and orbit
		related) design variables.

*The notation *low* : *inc* : *high* means from *low* to *high* in steps of *inc*.

Attributes	Design Vars	Perigee	Apogee	Delta-V	Propulsion	Inclination	Comm System	Ant. Gain	Power system	Mission Scenario	Total Impact
Data Lifespan		9	9	9	6	0	0	0	6	9	48
Sample Altitude		9	9	0	0	0	0	0	0	9	27
Diversity of Latitudes		0	0	0	0	9	0	0	0	9	18
Time at Equator		0	6	0	0	9	0	0	0	9	24
Latency		3	3	0	0	3	9	9	6	3	36
Total		21	27	9	6	21	9	9	12	39	
Cost		9	9	3	6	6	3	6	6	9	
			/	0	0	0	0	0	0	,	

- Assess (by quick calcs, experience, etc.) effects
- Rate on 9-6-3 or 9-3-1 scale
- Check impacts (low impact attributes or variables should be rethought) and areas to model

Modeling

Modeling principles

- Right level of detail
- Modular, well organized code
- Identify key *intermediate variables*
- Simulate rather than optimize (most of the time)

- Mapping model modules against each other to clarify interactions
- If all the interactions are one way (below the diagonal) iterations can be eliminated (or at least kept within the modules)

				Cost		Mission	Cost	Calc	
$\langle \mathcal{L} \rangle$	Orbit	Spacecraft	Launch	(TFU)	SATDB	Scenarios	(Lifecycle)	Attributes	Utility
Orbit									
Spacecraft	Х								
Launch	Х	Х							
Cost									
(TFU)		Х	Х						
Satellite									
Database	Х	Х	Х	Х					
Mission									
Scenarios	Х	Х		Х	Х				
Cost									
(Lifecycle)		Х	Х	Х	Х	Х			
Calc									
Attributes	Х	Х			Х	X			

- Mapping model modules against each other to clarify interactions
- If all the interactions are one way (below the diagonal) iterations can be eliminated (or at least kept within the modules)

				Cost		Mission	Cost	Calc							
	Orbit	Spacecraft	Launch	(TFU)	SATDB	Scenarios	(Lifecycle)	Attributes	Utility						
Orbit															
Spacecraft	Х					X	[*] ab	ove dia	gona	al"					
Launch	Х	Х					interactions would								
Cost							require iteration of								
(TFU)		Х	Х				requ	require iteration of							
Satellite							enti	entire model (not good)							
Database	Х	Х	Х	X											
Mission															
Scenarios	Х	Х		Х	Х										
Cost															
(Lifecycle)		Х	Х	Х	Х	X									
Calc										•					
Attributes	Х	Х			Х	Х									

Exploring the Tradespace

Assessment of the utility and cost of a large space of possible system architectures

Tradespace Exploration

Point - turn data generated by model into knowledge

Techniques:

- Plot utility vs cost and determine Pareto Front
- Examine effects of design variables and attributes
- Parametrical (what if) explorations of uncertain elements
- Dive a little deeper into some designs
- Advanced explorations (to be revisited in coming weeks)

Pareto Front

- If an architecture is the best performance for a given cost, or the lowest cost for a given perfomance, it is on the *Pareto front*
- Other architectures are said to be *dominated*
- Moving along the Pareto front = making real trades (e.g. cost for utility)
- Focus (but not exclusive focus!) of exploration

(\$M2002)

Warning - Pareto front is not always in the upper left (read the axes!)

Spacetug Tradespace Propulsion System as a Discriminator

Highest performance systems require high ISP propulsion

Capability (mass of observation and grappler equipment) as Discriminator

Key Physical Limits and Dangers

Hits a "wall" of either physics (can't change!) or utility (can)

Tradespace Reveals Promising Designs

Focus on Specific Designs

- TPF Pareto front looks good many choices of cost/utility
- On the front, lots of little archs with local minima
- Individual (local optimal) designs are in differing architectural families so once a choice is made, very difficult to change!

TPF Architectures on the Pareto Front

Parametric Study: Sensitivities to shifts in user needs

Space Systems, Policy, and Architecture Research Consortium and the MIT Space Systems Laboratory

Changing Weightings -Capability stressed

Changing Weightings -Response Time Stressed

Using the Trade Space to Evaluate **Point Designs**

TPF System Trade Space **Terrestrial Planet** • Dominated Architectures 2400 Finder - a large Pareto Optimal Architectures Minimum CPF Family of Architectures astronomy system 2200 • Design space: 2000 Designs from traditional process Apertures Lifecycle Cost (\$M) separated or 800 connected, 2-D/3-\$2M/Image/ \$1M/Image/ 600 D, sizes, orbits \$0.5M/Image Images vs. cost 400 1200 1000 \$0.25M/Image 800 1500 2000 2500 3000 3500 4000 0 500 1000 Performance (total # of images) From Jilla, 2002

[Beichman et al, 1999]

TPF

Questioning User Desires

- Best low-cost mission do only one job well
- More expensive, higher performance missions require more vehicles
- Higher-cost systems can do multiple missions
- Is the multiple mission idea a good one?

Color scale: Life Cycle Cost, 1380 data points, grid: 75x75, density: 0.08

A-TOS

- Swarm of very simple satellites taking ionospheric measurements
- Several different missions

Changes in User Preferences Can be Quickly Understood

Using Architecture Models to Consider Technical Uncertainty

TechSat

- Constellation of satellites doing observation of moving objects on the ground
- Uncertainties driven by instrument performance/cost

[[]Martin, 2000]

SSPARC Tradespace Exploration with Uncertainties

- Often learn a lot by simple examination
- Better: *Explicitly* look at sensitivity of models to uncertainties
- Uncertainties can be market (shown), policy, or technical
- Mitigate with portfolio, real options methods

- Pareto front shows trade-off of accuracy and cost
- Determined by number of satellites in swarm
- Could add satellites to increase capability

Using Architecture Models to Understand Policy Impacts

Space Systems, Policy, and Architecture Research Consortium and the MIT Space Systems Laboratory