16.89J / ESD.352J Space Systems Engineering Spring 2007

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

MINERVA Critical Design Review

Mission Statement

Establish an enabling space infrastructure that will support the exploration of Mars.

16.89 May 8, 2000 Department of Aeronautics and Astronautics Massachusetts Institute of Technology

Agenda

- Introduction
- General mission overview
- Detailed design
- System level issues
- Lessons learned and conclusions

Introduction

Motivation for Mission

- Dramatically enhance the value of future Mars missions
- Infrastructure at Mars provides major increase in science return
 - Pathfinder: 30 MB/sol → MINERVA: 10 GB/sol
 - Support for up to 10 Mars Surface Elements (MSEs)
 - Accurate location information
- Robotic mission designers can focus on science mission
- Enhanced probability of mission success
- More science for the taxpayer's dollar!

User Needs

- MINERVA system shall provide enabling infrastructure to support exploration of Mars.
- The infrastructure shall provide Mars Surface Elements (MSEs) with:
 - Communication services between Mars surface and Earth Ground Stations (EGS)
 - Their position on the surface of Mars, without imposing additional design constraints on MSEs.

Mars Orbiting (S)

Earth Based (E)

Payload (P)

General Mission Overview

Design Summary

Mars-orbiting constellation

- Number of spacecraft: 4
- Number of orbit planes: 2
- Altitude: 2000 km
- Inclination: 27°
- Spacecraft wet mass: 470 kg
- System cost: \$297.9 M
 - Drivers: software development, launch

Launch

Launch date	18 Aug 2007	
Launch window	± 1 sec, every	
	1 sidereal day from	
	3–18 Aug 2007	
Launch site	Cape Canaveral	
	Air Station	
Launch vehicle	Delta III	
Vehicle provider	Boeing	
Total mass	1974 kg	
Shared payload	Possible, but not	
	necessary	
Configuration	Four stacked	
	spacecraft	

Transit Overview

Launch	18 Aug 2007	
Departure burn	T+ 0d 3:23	
Separation	T+ 0d 3:29	
Deploy arrays	T+ 0d 6:01	
Initial checkout	T+ 0d 6:05	
Alignment burn	T+ 2d 16:39	
Correction burn	T+ 122d 16:00	
Insertion burn	T+ 285d 14:29	
Circularization	T+ 290d 8:22	
Deploy antenna	T+ 290d 8:24	
Test/calibration	T+ 296d 12:00	
IOC	10 Jul 2008	

Day in the Life: Communication

Day in the Life: Communication

End of Life: Disposal

- Satellite has capability to insert into a disposal orbit
 - Boost to 2150 km altitude
 - Requires only 40 m/s ΔV
- Allows constellation replenishment

Detailed Design

Design Iteration Process

Integrated Concurrent Engineering (ICE)

ICE Design Sessions

Identified best launch scenario

- Direct to Mars transfer over LEO parking orbit
- Switch to chemical propulsion over electric
- Identified best constellation altitude
 - 2000 km for four spacecraft
 - Minimizes system cost
- Discovered minimal cost saving with three spacecraft
 - Sacrificing availability and robustness
- Tweaked inclination orbit
 - Significantly reduces maximum revisit time

Detailed Design: Orbit Analysis

Orbits Requirements

- MO04 MINERVA shall have a maximum revisit time of less than 3 hours.
- MO05 MINERVA shall provide a coverage of
 - ± 15° latitude band around the equator.
- S001 Constellation shall have a minimum of 2 spacecraft in view of the Earth at all times.
- \$ \$007 MINERVA shall have a crosslink availability of 90%.

Transit Method Trade Study

- Proposed methods for the interplanetary segment
 - Chemical propulsion
 - Electric propulsion
- Design discriminators from an orbit standpoint
 - Total ΔV for all phases of the mission
 - Time of flight for transit to Mars

	Earth		Interplanetary		Mars	
	ΔV	Time	ΔV	Time	ΔV	Time
	(km/s)	(d h)	(km/s)	(d h)	(km/s)	(d h)
Chemical	3.80	2d 17h	0.17	282d 23h	1.60	3d 17h
Electric	7.38	421d 14h	5.66	323d 3h	2.63	150d 1h
Using 185km parking orbit						

Transit Method Trade Study

21

Transit Method Selection

Considerations

- Chemical propulsion provides fast transfer for smaller ΔV
- Electric propulsion is more benign
 - More time to react to problems
 - Smaller forces exerted during maneuvers
- Conclusion: from orbit standpoint, chemical propulsion is recommended
- Other groups are involved in this trade
 - Bus Group
 - System Group (Cost)

Launch Opportunities

- Each Earth-Mars launch window has a slightly different \Delta V requirement
- The MINERVA design can accommodate all three launch opportunities investigated
- The launch window in 2009 may be used as a backup opportunity, with system IOC on 23 Sep 2010

Launch	Departure ∆V	Capture ∆V	Time of Flight
2005	3.726 km/s	1.742 km/s	278d 15h 35m
2007	3.799 km/s	1.601 km/s	290d 8h 22m
2009	3.712 km/s	1.753 km/s	278d 21h 54m

Delta III Launch Sequence

Transit - Departure

T+ 3:23:20	Departure burn (second stage) $\Delta V = 3.799$ km/s Duration = 5.59 min
T+ 3:29:30	Start release sequence Interval = 50.15 min
T+ 6:01:00	Despin maneuver
T+ 6:01:50	Deploy solar arrays
T+ 6:05:00	Initial checkout
T+ 2d 16:39	Depart Earth SOI

Fairing Jettison

Satellite Separation

Solar Array Deployment

Solar Arrays gimbaled about North-South axis Cross-Link Deployment

Deploys on hinged boom

Transit - Rendezvous

T+ 2d 16:39	Alignment burn (four ACS thrusters) $\Delta V = \sim 0.020$ km/s Duration = 48.2 sec	Interplanetary Transfer (Chemical) 90 250000000 120 60 206000000 150900000
T+ 2d 16:45	Functional testing	150 100000000 30
T+ 122d 16:00	Correction burn (four ACS thrusters) $\Delta V = ~0.005$ km/s Duration = 12.0 sec	180
T+ 285d 00:00	Upload precise position	210 330
T+ 285d 01:00	Spin-up maneuver	
T+ 285d 14:29	Arrive Mars SOI (29 May 2008)	240 300 270

Capture and Deployment

T+ 285d 14:29	Injection burn
	(main kick motor)
	$\Delta V = 0.167 \text{ km/s}$
	Duration = 2.1 sec
T+ 290d 08:22	Circularization burn
	(main kick motor)
	$\Delta V = 1.602 \text{ km/s}$
	Duration = 19.1 sec
T+ 290d 08:23	Despin maneuver
T+ 290d 08:24	Deploy large antenna
T+ 290d 10:54	All satellites in place
T+ 291d 12:00	Correction maneuvers
	(as necessary)
T+ 296d 12:00	Test and calibration
T+ 326d 01:40	IOC: 9 July 2008

Earth-Antenna Deployment

Full pointing capabilities using 2 DOF boom

Fully Deployed Satellite

 Nominal mission configuration

Lifetime Visibility

- Earth-Mars distance is periodic over 2.2 years
- Exclusion zone of 19 days caused by line-ofsight intersection with the sun and its corona

Constellation Constraints

Recap of requirements

- Provide coverage to a ± 15° latitude band
- Minimum MSE to satellite availability of 50%
- Maximum revisit time of 3 hrs

Architecture constraints

- Allow for line of sight communications between satellites
- Minimum inclination of $\approx 30^{\circ}$

Trade Spaces

Coverage requirements

- Altitude
- Number of satellites
- Inclination (restricted by the position determination requirement)
- Constrained by the cross-link requirements
 - Altitude
 - Number of satellites
- Cost (looked at in ICE sessions)
 - Altitude
 - Number of satellites

Coverage Trade Space

- Constrained by:
 - Revisit time < 3 hrs</p>
 - 50% availability
- Variables:
 - Number of satellites
 - Inclination
 - Altitude

Cross-link Trade Space

- Minimum altitude required for cross-links
- Signal beams pass at least 200 km above the surface of Mars

Final Constellation Design

- Walker-Delta pattern
- Circular orbits
- 2 Planes
- 4 Satellites
- 27° Inclination
Percentage of Time in View

 Constellation provides >70% coverage in the ± 15° latitude band
 Reduced coverage up to ± 65°

Revisit Time

The maximum time between satellite passes is <30 min
The average time is <20 min

Contact Duration

 On average, a satellite will remain in view for 50 minutes.

Final Constellation Design

- Walker-Delta pattern
- 4 satellites in 2 planes
- Inclination of 27^o

Provides (± 15^o Lat)

- Avg. revisit time < 20 min</p>
- Max. revisit time < 30 min</p>
- Contact duration ≈ 50 min
- Availability > 70%
- 3 satellites in view of Earth
- Reduced coverage up to (± 60° Lat)

Single Satellite Failure

 In the event of a single satellite failure, the constellation will be able to provide communication and navigation at a diminished level

- Provides (± 15^o Lat)
 - Avg. revisit time < 45 min
 - Max. revisit time < 100 min</p>
 - Contact duration ≈ 50 min
 - Availability > 50%
 - At least 2 satellites in view of Earth

Detailed Design: Payload Analysis

Payload Requirements

 MOO1 MINERVA shall provide communication capability between MSEs and EGS for at least 10 continuous hours per day.

- MOO2 MINERVA shall provide MSE position accuracy of 100 m (horizontal resolution) or less.
- MOO3 MINERVA shall return MSE position determination daily with an update every 3 hours.
- S005 Constellation shall return a minimum of 10 Gb/sol data rate to EGS.

Payload Requirements (cont.)

- E002 EGS shall be able to resolve spacecraft orbit to an accuracy of 20 m in radial, along-track, and cross-track directions.
- E003 EGS shall be able to upload spacecraft orbital element data and clock offsets at least once per day.
- E008 Uplink from EGS to MINERVA shall have a BER of no greater than 10⁻⁹.
- E009 Uplink from EGS to MINERVA shall have a data rate of at least 500 bps.

Payload Requirements (cont.)

- P001 Payload mass shall not exceed 50 kg.
- P002 Payload shall use UHF for communication with MSEs.
- P003 Uplink from MSE to MINERVA shall have a BER of no greater than 10⁻⁶.
- P004 Payload shall have a downlink BER no greater than 10⁻⁶.
- P005 Each satellite shall have a downlink data rate of at least 150 kbps from MINERVA to EGS.

Payload Requirements (cont.)

- P006 Payload shall dynamically allocate downlink data rate and uplink from MSE to constellation data rate.
- P007 Payload shall provide 30 Gb storage for communication data.
- P008 Payload subsystem shall use an on-board orbital propagator with an accuracy of 10 km for backup.

Payload Analysis: Communication

Communications Requirements

Communication system

- Relay between Mars Surface Elements (MSEs) in the ±15° latitude band and the Earth.
- Exceed 10 Gb/sol of total data return

Communication System Overview

Antenna Types Analysis

Parabolic antenna

- Optimized for high gain (>20 dB) and low beamwidth (order of 15 deg or less)
- Has a lot of experience in space

Image removed due to copyright restrictions.

Image removed due to copyright restrictions.

Helix antenna

- Optimized for frequencies below 2 GHz
- Best suited for low gain and high beamwidth
- Light mass

Antenna Types Analysis

Phased array antenna

- Generates one or more beams simultaneously
- Changes direction of the beam rapidly
- Sweeps good gain over a large beamwidth (e.g. 14 over 120°)
- No moving mechanical parts

Image removed due to copyright restrictions.

Image removed due to copyright restrictions.

Horn antenna

- Optimized for frequencies of 4 GHz or higher
- Best suited for low gain and high beamwidth
- High weight

Top Level Trade Analysis for the Communication System

- Case 1: Integrating all links together in one antenna
- 1) Omnidirectional antenna

DSN

Inefficient use of available power

Top Level Trade Analysis for the Communication System

Case 1: Integrating all links together in one antenna

2) Directional antenna

DSN

 Impossible to communicate between Mars and Earth at the same time (parabolic reflector and phased array antenna)

Top Level Trade Analysis for the Communication System

Case 1: Integrating all links together in one antenna

Conclusion:

• Integrating all links together is not the optimal solution

Top Level Trade Analysis for the Communication System DSN

Case 2: Integrating cross-link and MINERVA-MSE

1) Using a helix type antenna or a parabolic antenna

• Not enough gain for that large beamwidth

- Case 2: Integrating cross-link and MINERVA-MSE
- 2) Using a phased array antenna
 - UHF phased array antenna have not been used for space communication

Case 2: Integrating cross-link and MINERVA-MSE

Conclusion:

• Integrating cross-link and MINERVA-MSE is not the optimal solution for this application

Case 3: Separating each type of link

One different type of antenna per link

Conclusion:

• Separating each type of link is the solution chosen

Earth Ground Station Interface

Deep Space Network: 70-m vs. 34-m antennas

- 34-m: availability of Ka-band allows reduced satellite antenna size
- 34-m: processing facilities located on the ground
 - Better thermal control reduced system noise
 - Smaller operation cost

Modulation used

- BPSK R-1/2 Viterbi software decoding
 - Standard deep space telemetry modulation format

Frequencies used

- Ka-band (32 GHz) for Earth-MINERVA link
 - Reduces the size of the antenna while keeping a high gain
 - Will be supported by DSN
 - Also used during Earth-Mars transit
- X-band (7 GHz) for cross-link
 - Provides good beamwidth without significantly influencing the antenna diameter (medium gain)
 - Widely used in deep space missions
- UHF (0.4 GHz) for MINERVA-MSE link
 - Good performance for omnidirectional antennas on Mars surface
 - Reduces necessary antenna mass on board MSE

Antenna Types Trade Analysis

- MINERVA Earth link: Parabolic antenna
 - Mars Earth distance: 50 400 million km
 ⇒ high gain required
- MINERVA Mars link: Helix antenna
 - UHF 0.4 GHz to support existing assets
 - High beamwidth to improve coverage
 - (77 deg at 2000 km altitude)
- MINERVA cross-links: Parabolic antenna
 - Necessity to use antenna for Earth link during Mars approach and as a backup

Payload Hardware

Antennas and Transponders	Other Hardware	
MINERVA-Earth Link: Ka-(X)-band	Computer: RAD 6000, 5 kg Used on Mars Pathfinder, Globalstar, ISS	
2.05 m parabolic, 130 W, 26.6 kg		
MINERVA-Mars Link: UHF		
ø 25 cm x 31 cm helix, 21 W, 2.9 kg	Navigation Equipment:	
MINERVA Cross-Link: X-(Ka)-band	Ultra Stable Oscillator, 0.2 kg	
2 x 50 cm parabolic, 5 W, 5.6 kg	Other equipment:	
2 Omni-directional, 5 W, 0.3 kg	Switches, etc. 2 kg	
Total Mass: 35.4 kg	Total Mass: 7.2 kg	
Total Mass. 55.4 Kg		

Total Payload Mass: 42.5 kg

Payload Mass Breakdown

Communications F.O.V. Verification

 Use model to verify clear "lines of sight" between satellites, Mars and Earth

Payload Analysis: Position Determination

Position Determination Requirements

Position determination system

- Gather information to determine position of Mars Surface Elements (MSEs) in the ±15° latitude band
- With an accuracy of 100 m
- With an average update period of less than 3 hours

Positioning Design Trades

Sources of Error

Internal

External

		Properties	Magnitude	Effect
	Ranging error	Code chip rate	10 m	Not limiting factor
	Doppler error	Integration time Sat. oscillator stability	< 1 cm/s < 1 mm/s	Not limiting factor
	MSE altitude	Mars topography	~ 200 m	Corrected with time
	MSE velocity	Assumed very slow Measured with IMUs	< 1 cm/s	4 – 90 km error Per km/hr
	MINERVA orbits	Quick positioning: orbit prediction	100 m – 10 km	Absolute upper bound on
		Post-processing: orbit determination	20 m	accuracy
Time to Get 100 m Accuracy

• Probability to reach 100 m accuracy (1 σ) within certain time:

Probability to reach accuracy within a certain time

0° latitude

Time to Get 100 m Accuracy

• Probability to reach 100 m accuracy (1 σ) within certain time:

Probability to reach accuracy within a certain time

15° latitude

Detailed Design: Software Analysis

MINERVA Software Components

Flight software

- Test, integration, and simulation software
 - Used to verify initial and updated flight software and during anomaly recovery
 - Cost modeled in CERs
- Operations software
 - Mission & activity planning
 - Mission control
 - Navigation & orbit control
 - Spacecraft operations
 - Data delivery, processing, and archiving

Flight Software

- "Estimation by similarity" technique used to estimate:
 - Source lines of code (SLOC)
 - Software throughput requirements (MIPS)
 - Software memory requirements (MB)
- Flight software trades
 - Level of flight software autonomy
 - Programming language: C or Ada

Flight Software Autonomy Trade

Level of Autonomy	MSE Position Determination	Communications	GN&C	
High	 Calculated on-board Continuously tracks MSEs 	 Automatic communications routing 	 High precision orbit propagator Accurate position calculated on-board 	
Partial	 Calculated on-board with Earth input 	 Preplanned communications routing Simple search 	 Medium precision orbit propagator Earth provides accurate positions 	
Low	 Calculated on Earth 			

Other Flight Software Autonomy

- Attitude determination and control
 - Includes momentum management
- Routine housekeeping
 - Thermal control
 - Power management
 - Data storage
- System monitoring
 - Detects anomalies
 - Controls safe modes

Flight Software Size

Some I/O device handlers can be reused

Flight Software Computer Requirements

- RAD 6000 Provides
 - Throughput: 10 to 20 MIPS
 - Memory: 16 GB
- Software computer requirements are met

Ground Software Size

- Test, integration, and simulation software
 - Assumed to be 4x the size of the flight software
 - Modeled in CERs
- Initial operations software
 - Assumed to be 4x the size of the flight software

Software Cost

 Partial autonomy with C as the programming language was chosen to meet IOC cost cap

Autonomy vs. Operations Cost

Autonomy reduces the yearly operations cost

Autonomy vs. Operations Cost

High autonomy is cheaper in the long run

Total Software and Operations Cost for Different Autonomy

Levels

Detailed Design: Bus Analysis

Bus Requirements

- MOO8 MINERVA shall have a design lifetime of at least 6 years.
- S002 Each spacecraft shall have power to support nominal operations of the spacecraft at all times, including eclipse periods.
- S003 Each spacecraft mass shall not exceed 575 kg.
- S011 Each spacecraft shall have the capability to boost to a disposal orbit.
- B001 ADCS subsystem shall maintain pointing accuracy of 0.1 degree.

Bus Requirements

- B002 ADCS shall provide orbit station keeping.
- B003 Thermal subsystem shall maintain spacecraft components within their operating temperature ranges.
- B004 Power subsystem shall provide 200 W of power during transit.
- B005 Power subsystem shall provide 400 W of power throughout the operational lifetime in Mars orbit.
- B006 Power subsystem shall provide 400 W-hr of energy storage.

Bus Requirements (cont.)

- B007 Propulsion subsystem shall provide at least 2400 m/s △V (total).
- B009 Spacecraft structure shall survive launch environment for a Delta III.
- B010 Spacecraft structure shall survive radiation environment for the duration of the mission lifetime.

Bus Group Design

- MATLAB software model used to perform design trades
- Inputs
 - Payload characteristics
 - Orbit parameters
 - Mission requirements
- Outputs
 - Spacecraft budgets
 - Spacecraft cost

ADCS Sub-System Design

- Directed antenna requires 3-axis pointing stabilization
 - Gravity gradient/spin stabilized could not meet minimum requirements
- Sensors
 - Sun
 - Horizon
 - Gyros (safe mode)
 - Accelerometers
- Controllers
 - Reaction wheels
 - Thrusters

Propulsion Sub-System Design

- Launch decision allows Mars transfer ΔV to be done by launch vehicle
- Minimize cost choose between EP, chemical propulsion
- NTO/MMH propellant
 - I_{sp} = 322.5 sec
 - Thrust = 4250 N

Thermal/Power Sub-System Design

- Thermal module calculates the power needed to maintain thermal management
 - Power module calculates solar array area/mass based on EOL
 - Solar Array Flight Experiment
 - Batteries sized for mission life, eclipse period
 - Lithium-ion batteries

Structure Sub-System Design

Spacecraft Bus Design

System Component	Number	Mass	Total Mass	Total Power	Critical Dim
Payload	1	37	37	190	Ant Diam = 2m
Tuylouu				100	
ADCS	1		30.7	39.0	
Sun sensor	6	1.2	7.0	0.8	
Horizon Sensor	4	0.7	2.8	5.0	
Gyroscope	2	0.7	1.3	10.0	
Accelerometer	2	0.1	0.2	1.2	
Reaction Wheel		3.8	15.0	22.0	
Structure		4.4	4.4	-	
	-		1		-
Propulsion			273.8	25.0	
Propellant	-	177.4	211.8	-	
Main Engine	1	4.5	4.5	15.0	
ACS Engine	12	0.5	6.0	-	
Propellant Tank		10.6	21.2	-	Diameter = 0.6m
Blow dow n System	1	20.0	20.0	-	
Feed System	-	5.0	5.0	10.0	
Structure	-	4.4	5.3	-	
Thermal			7.0	11.6	
		0.0			
Heater	-	2.3	2.3	11.6	
Radiator	-	2.3 2.3	2.3 2.3	-	
Insulator	-	2.3	2.3	-	
Power			50.1	418.0	
Solar Arrays	2	11.0	22.0	418.0	Area = 4.00 m^2
Electronics	-	8.3	8.3	-	
Batteries	6	1.2	7.4	393 W-hrs	
Wiring	-	1.0	1.0	-	
Structure	-	11.3	11.3	-	
Launch Structure	-	10.5	10.5	-	
		Total Mass: w / margin	409 470		

94

Launch Vehicle Fit-Check

- Four satellites fit in Delta-III fairing with 3 cm minimal clearance
- Bottom satellite mounts to launch vehicle adapter structure
- Satellite attachment rings part of satellite structure
 - Pyro-bolts lock rings together
 - Springs separate spacecraft after rings unlock

Stowed Satellite

- Stowed volume
 - ~ 4 m³

Spacecraft: Nadir Pointing Side

- Helix antenna
- Horizon sensors
- Primary sun sensors
- Sun-nadir steering maintains Mars-Earth-Sun pointing
 - Steerable main antenna
 - Steerable solar arrays

Satellite: Internal Components

- First iteration of ADCS and electronics layout
- Propellant tanks shown:
 - NTO/MMH
 - He pressure regulation
- Lithium/Ion batteries
 - 2 are redundant
 - Hidden in diagram
- Harnessing and plumbing not modeled

Image removed due to copyright restrictions.

Detailed Design: Operations Analysis

Operations Requirements

- Z002 System shall have an operational lifetime of at least 5 years.
- MO06 At IOC the system shall be able to support at least 10 MSEs simultaneously.
- S005 Constellation shall have at least 90% probability of meeting the minimum requirements throughout its operational lifetime.
- S010 Each spacecraft shall have at least one recoverable safe mode.

Operations: System Context

100

Operations: Functional Analysis

Operations: Functional Analysis

Earth Uplink

- Data collection/processing at EGS
- Segments are time/destination tagged
- Mars Uplink
 - MINERVA initiates communication per instructions
- Positioning Loop
 - MINERVA initiates positioning
 - On-board calculation with EGS updates
- Anomaly Resolution
 - Three Safe Modes, Tiger Team crisis resolution

System Reliability: Safe Modes

- Progressive levels of ops reduction
- Graceful degradation of spacecraft and availability
- Safe Mode 1: Anomaly flags or checkouts not ok, maintain high availability
- Safe Mode 2: Non-critical power or mechanical failures, EGS notification
- Safe Mode 3: Critical failure, spacecraft shutdown, 14 hour self-reliance window

System Reliability: Failure Tree

Examination of critical failures

- Result from lower level faults
- Multi-path vs. complete redundancy
- Setup Phase
 - Binary: Launch, separation, transit
 - Partial: Detachment, deployment, capture
- Normal Operations Phase
 - No failure
 - External: Environment, interactions
 - Internal: Operators, software, hardware

System Reliability: Event Analysis

Detailed Design: Launch Analysis

Launch Requirements

- Z001 System shall achieve initial operational capability by 2010.
- M007 Total system mass and supporting launch structure shall be no greater than what can be launched on a single launch vehicle to a Mars transfer orbit.
- S009 Launch vehicle shall be able to boost entire constellation mass to a Mars transfer orbit with a C3 energy of 6.46 km²/s².
Launch Vehicle Trades

Launch Vehicle Performance

- The Delta III can provide more C3 energy than is needed for transfer
- Additional capability will be used to change the inclination of the parking orbit to 23.45°

Detailed Design: Cost Analysis

Cost Requirements

 Z003 At IOC the expenditures in FY2000 dollars shall be less than \$300 million.

Cost Methodology

- Concurrent engineering sessions calculated total program cost for each design iteration
- Spacecraft development (10% profit, 15% margin)
 - Design-based cost estimating relationships (CERs)*
 - Limitation: Accuracy of CER methodology
- Ground station development (10% profit, 15% margin)
 - Ground software x 1.5 (equipment, management, etc.)
 - Assumption: JPL to provide space, equipment to minimize costs
- Launch
 - Delta III launch vehicle
 - Assumption: Reduction in Delta III costs with EELV-related efficiencies and market pressures
- Transit and on-orbit operations are not included

*Applied cost factor of 1.25 (addresses uncertainty in methodology)

Major Cost Trades

Level of spacecraft autonomy

- Problem: Spacecraft autonomy drives software costs
- Trade space
 - Highly autonomous spacecraft functions
 - Minimal spacecraft autonomy (on-board position fix or earth position fix)
- Decision: Minimal autonomy (on-board position fix)

Spacecraft propulsion

- Problem: Determine most cost-effective propulsion system
- Trade space: Electrical versus chemical propulsion
- Decision: Chemical propulsion is more cost effective given launch vehicle ability to inject into Mars transfer

Design Freeze Down-Select

	# of S/C	Prop System	Launch Vehicle	Cost (\$M)	Margin* (.15)	Total (\$M)
Option 1	4	EP	Delta III	279.1	33.3	312.3
Option 2	4	Chem	Delta III	266.4	31.5	297.9
Option 3	3*	EP	Delta III	261.2	29.8	290.9
Option 4	3*	Chem	Delta II	244.0	28.2	272.2

* Does not meet all performance requirements (coverage, Gb/sol)
* On spacecraft and ground station development costs. No margin on launch costs.

Spacecraft Cost Model

CERs from SMAD

- Assumes deep space and Earth orbiting systems
- Accuracy to within 25-50%
- Calculate RDT&E, TFU cost separately
- TFU cost scales with number of spacecraft according to learning curve

Major Elements of Cost

Life Cycle Costs

Total Life Cycle Cost (5 year mission): \$447.1 M

System Level Issues

System-Level Risk Management Strategy

Cost Risk (Medium)

- Source: CER methodology; software & launch costs
- Strategy: Apply cost factor (1.25) and hold margin (15%)
- Technical Risk (Low Medium)
 - Source: Mission integration, software development, cross-links
 - Strategy: Maximize use of proven hardware and software
- Schedule Risk (Low)
 - Source: Complexity of deep space program
 - Strategy: Hold margin before 2007 launch window

Maintain low risk through cost and schedule management and reliance on existing technology

Program Schedule

Funding Profile

Total Program Cost: \$297.9 M*

*Includes 15% margin (Note: CER methodology limits validity of cost estimate)

MINERVA Science Capabilities

- Improve Mars gravity field model
 - Indirect gravitational study of Phobos and Deimos
- Atmospheric composition of Mars
 - Absorption and scattering properties of Martian atmosphere
- Radio science
 - Study solar corona and interplanetary medium

Post-IOC System Expandability

- Upload software with improved autonomy
- Provide positioning and communication service to other spacecraft
- Relay between MSEs without Earth interaction
- Automate ground operations
- Add more spacecraft to constellation
 - Improve coverage, availability, and reliability
 - Include upgraded capabilities (e.g. remote sensing)
- Replenish constellation as spacecraft fail

Lessons Learned

- Methods for discovery of errors and disconnects
 - Usefulness of frequent integration meetings and status briefings
 - Evaluation of concurrent engineering session results
- Transitions
 - Team structure changed after TARR, delaying some tasks
 - Post-PDR transition much more rapid, effective
- Concurrent engineering
 - Useful for rapid characterization of design options via realtime inter-team communication
 - Must be supplemented with detailed design analysis between sessions
 - ICEMaker is useful interfacing tool
 - More automation would speed process

Backup Slides

Backup Slides: Orbit Analysis

Transit Overview

Departure burn	18 Aug 07, 09:56
Separation	18 Aug 07, 13:25
Deploy arrays	18 Aug 07, 13:31
Initial checkout	18 Aug 07, 14:00
Exit Earth SOI	21 Aug 07, 02:35
Arrive Mars SOI	29 May 08, 10:56
Circularization	03 Jun 08, 18:18
Deploy antenna	03 Jun 08, 18:20
Test/calibration	09 Jun 08, 22:20
IOC	10 Jul 08, 00:00

Percentage of Time in View Single Satellite Failure

 Constellation provides >50% coverage in the ± 15° latitude band
 Reduced coverage up to ± 65°

Revisit Time Single Satellite Failure

The maximum time between satellite passes is <100 min
The average time is <45 min

Contact Duration

Single Satellite Failure

 On average, a satellite will remain in view for 50 minutes.

Backup Slides: Payload Analysis

Link Margins

- Earth MINERVA link:
 - Uplink: 28.8 dB, downlink: 3.09 dB
- MINERVA Mars link:
 - Uplink: 5.29 dB, downlink: 4.73 dB
- MINERVA cross-link:
 - Uplink and Downlink: 17.4 dB
- MINERVA cross-link with Ka-band for DTE link:
 - Uplink: 16.65 dB, downlink: 2.97 dB
- MINERVA cross-link with omni-directional antenna for case of the loss of attitude control:
 - Uplink and Downlink: 12.4 dB

Communications Analysis: Worst Case

- Two MSEs on the dark side of Mars.
- Each of the MSEs is at the edge of the cone of MINERVA-Mars link.
- Each MSE has no more than 10W RF power.
- Largest distance between Earth and Mars is equal to 401,300,000 km.
- Maximum distance between MINERVA satellites is equal to 7,633 km.

Payload Electronics Hardware

- 3 amplifiers (total output power ≈165 W)
- 2 Ka-band and X-band supporting transponders
- 2 computers
- 1 UHF transceiver
- One ultra-stable oscillator

One failure of a critical component (amplifier, transponder, computer) ≠ loss of the satellite

Failure Mode Analysis

High gain antenna failure

DSN

- One antenna failure:
 - Still fully meet the requirements
- More antenna failures:
 - Graceful degradation of performance

Failure Mode Analysis

Cross-link antenna failure

- If one antenna on a satellite fails:
 - Still fully meet the requirements
- If more antennas fail:
 - Graceful degradation of performance

Failure Mode Analysis

UHF antenna failure

DSN

- One antenna failure:
 - Still fully meet the requirements
- More antenna failures:
 - Graceful degradation of performance

Accuracy Over Time

10³ 0° latitude 5° latitude - 10° latitude Accuracy [10 RSS] 15° latitude **10**² 2 4 8 10 12 14 6 0 Time [hr]

Accuracy as a function of time

Positioning Performance

- First estimate accuracy depends on geometry w.r.t. satellite ground track
- Time to reach accuracy is a function of
 - Orbital inclination
 - MSE latitude
- Best performance around the equator (coverage)

Positioning Performance

Comparison with 30 degrees inclination:

EL/KM

Time to Get 100 m Accuracy: Comparison with 30° inclination

• Probability to reach 100 m accuracy (1 σ) within certain time:

Time to Get 100 m Accuracy: Comparison with 30° inclination

• Probability to reach 100 m accuracy (1 σ) within certain time:

15° latitude

Time to Get 100 m Accuracy: Comparison with 25° inclination

• Probability to reach 100 m accuracy (1 σ) within certain time:

Time to Get 100 m Accuracy: Comparison with 25° inclination

• Probability to reach 100 m accuracy (1 σ RSS) within certain time:

Software Cost

Software cost estimated by SLOC

Cost per SLOC	Flight Software	Ground Software
Ada	\$ 435	\$ 220
С	\$ 726	\$ 220

Computer Hardware - RAD 6000

- Radiation hardened version of IBM Risc 6000 Single Chip CPU (32 bit)
 - Chip dimensions: 8" x 9" x 2" inches
 - Mass: ~5 kg
 - Memory: 128 MB of DRAM + 16 GB of EEPROM
 - MIL-STD-1553 interface
- Processing speeds
 - 20 MHz (22 MIPS) using 9 W
 - 10 MHz it (11 MIPS) using 5.5 W
 - 2.5 MHz (2.7 MIPS) it uses 2.5 watts.
- Two processors (2 for 1 redundancy)

Backup Slides: Bus Analysis

External Satellite Components

Internal Satellite Components

INTERNAL COMPONENTS

Backup Slides: Launch Analysis

Launch Vehicle Performance

Backup Slides: Operations Analysis

Functional Flow

Earth Uplink

Failure Tree: Setup

Failure Tree: Normal Lifetime Ops

thermal cooling failure attitude sensor failure control actuator failure

161

Reliability (and Failure Rates)

- Launch: 0.997 (or 0.90)
- Separation: 0.99
- Detachment: 0.99
- Transit: (0.005 failures/year)
- Capture: 0.99
- Deployment: 0.99
- ADCS: (0.001 failures/year)
- Payload: (0.00201 failures/year)
- Power: (*** failures/year)
- Propulsion: (0.005 failures/year)
- Thermal: (0.002 failures/year)
- Computers: (0.005 failures/year)

Backup Slides: Cost Analysis

Cost Trade: Level of Autonomy

- Problem: Spacecraft autonomy drives software costs
- Trade space:
 - Highly autonomous s/c functions
 - Flight software: \$24.8M
 - Ground software: \$50M
 - Minimal s/c autonomy (on-board position fix)
 - Flight software: \$17.6M
 - Ground software: \$20.5M
 - Minimal s/c autonomy (Earth position fix)
 - Flight software: \$16.4M
 - Ground software: \$19.1M

 Decision: Select minimal autonomy (Earth position fix) due to program cost constraints

Notes on Concurrent Engineering

- Design sessions enabled thorough exploration of trade space via real-time inter-team communication
 - Earth parking orbit
 - Constellation altitude
 - # s/c
 - Orbit inclination
- ICEMaker is useful interfacing tool
- More automation would speed process
 - Models in Excel
 - Matlab/Excel integration