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Sdutions : Problem Sa # 4

In this problem we examine the second kind intgral equatian:

1
A0 (X) —I(x+ X)o(X')dx'= ¢ x+c, )
0

We know from theory that thefirst kind integral equatians hawe rich nul spaces.
We look at thissecond kindntegral equatian to danondratethat it ta, hasa nul
space In orde to examine the null spacewe follow a piocedure similar to that
outlined in theMay 8" lecture, slide 19 awards.

We would first like to find the unknown densty o(Xx), given
A=05,c, =1c, =0. The hint for this problem is to try o (x) =congant

First we gart with theintegral equatian:
1

Ao (X) —J’(x+ X')o(x")dx=c,x+c,

By tting thedengty, o (X) =congant, we get and filling in the vaious given
guantities:

1
O.5B7—aj(x+ x')dx = x
0

We can sinplify this as:

2t

O.5E7—ax><+x7 =X

0
Further:

O.Sw—ox—a%: X

From this we see the appopriate value of the dengty which satisfies the equation
for the given RHS fordang:
og=-1

b)

In this section we examine the null spaceof the integral equatian. Here we are
aked tofind values of A, for which theintegral equatian dces nat hawe a unique
sdution. We look ata similar appoach as w&s examined in class, were a daasity
distribution isasumed and tha verified to bein thenull space



We start by trying several othe functions for the dendty. By looking at theintegral
equatian closaly, and glitting it into two pats for clarity:

Ao (X) —j‘(x +Xx)o(x)dx=0

1
]
Ag(X) - %(xa(x'))dx# f'a(x'))dx'g 0

0 ]
We see from this that thefirst integral will always give a linear function in x, while the
second integral will always give a cangant. Therefore in order to hawe this satisfy the
RHS = 0, we see that it is likely that thedengty function, o(X), is a first order
polynomial. We therefore try, o (x) = ax+b, in theequatim:

1

(A)(ax+b) - %((x)(amb))d)ﬁ ﬂ(x‘)(ax+b))dx% 0
0 |:|

This givesus:
! ]
Aax+ Ab - %(xaﬂbx)d)ﬁ gx' axX+x'b)dx= 0
0 ]
Performing theintegration we get:

12 13 12
Aax+ Ab - [a— + bxx) +(aX—+X—b)E: 0
2 3 2 [
Simplifying:

a b.[O
Aax+ Ab- - x+bx)+(=+=)5=0
g ARENFUS
By grouping the erms of smilar order in x, andx’ we get:

dax- (%x+ bX) = 0
a b
Ab-(=+=)=0
(3 2)
We can se from this that thdollowing e genvalue problem is produce:
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From here we see hat the problem is one of ©lving the egervalues to getthe A values



=1.077350

>
]

=-0.077350

m>
l\)llli—\ N
w|g @/

So giventhes vdueswe can determine a, and,b, the egervedor values
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So, for,
1 3
A= —+ £ =1.077350 Ne
2 3 we see that thecarrespanding /() = %x+%
_1 43 - -~ _3
A, = 3 3" -0.077350 we see that thecarrespanding g (x) = Ax+ %

c) For part ¢ we look for two solutions which stisfy the integral equatian for the

problem. A smple way to dothisis chaose g(x) =1.
1

A —J’(x+ X')dX=c,Xx+¢c,
0

A —(x+%) =C,X+C,

(X"'%) =CX+C,

[0 G



i. Solution#1:

o(x)=1, for )\1=1+ﬁ,and/\2 =1_£
2 3 2 3
il. Solution# 2:
_ J_e/ _ 1,43
o(x) =1+ 2X+}é , for )\1—§+?
iii. Solution # 3:
_ _[e/ _1 43
o(x)=1 2X+% ,1‘or)\2_E 5

2) In this problem we examine the general idea of Nystrom Methods. We go through
several steps to solve thefollowing integral equatian:

o) + [(x=X)*0(x)dx= co%x% 2

a) Inthelegendre.m cade we are aked why we can &t theRHS vector to be[2 00

0 0]. We can bok at it in two ways:

The Legendre pdynomials, when integrated over the interval [-1,1]
give anon-zero ®lution for P=1 only. The integrd is a vaue of 2
hence we see avadue of ‘2’. The rest are equally weighted above and
bdlow the axis by condruction, and thesfore result in zero integrals.
This is actualy a coxsequence of the method used to deive and
determine Legendre pdynomials (see note).

The Legerdre Polynomials, by construction are an orthogoral set of
functions This meansthat theinnea product d anyof the higher order
padynomials with thefirst one, P,=1, will give zero.So he orly non-
zero entry in theRHS is thefirst one which hasan intgrated area of 2,
in theinterval [-1,1].

Note: For interests sake, the Legendre pdynomials are condructed usng a
process which guaranteesthat they will be an orthogoral basis in the interval
[-1,1]. The method used to deive the pdynomials is the Gram-Schmidt
procedure (see Strang, G., An Introduction © Applied Matheratics
M.1.T.,1986 ~pp. 278282). The resulting pdynomials are:



Po=1
P =x
P,=x-1/3

Etc...
This Gram-Schmidt idea is an inportant e in Numerical Methods, asit

incorporaes the idea of orthogordlity, which is often very usefu in
engineering numerical anaysis.

b) In order to rescale the quadature pants we can takedther a smple or, dightly
more omplex goproach. The smple goproach is analogous to amapping to a new
coordinatesystem. The complex appoach wuld beto re-derive the weights and
evaluation paints for each new interval encounteed. Rathe than e-deriving the
guadature scheme for eachnew interval of integration we show that it issmpler
to scale and sift the scheme:

)] For the weights, we scale than by 2, sncethetest interval is reducel

by %-.
old
VViFIeW = VVI
2
i) For the evaluation pdnts we hawe to scale and $ift. Here we scalke by

Y% and $ift to theright Y2 This will trangorm from [-1,1], to[0,1].

As a test exanmple we look at canputingtheintegral:

1
[x“dx= 1 ~0.076923
| 13

We see hat the integral is computed exactly for those caseswhere the number of
guadature paints is 7 o greater, ie. (2n-1) = arde of pdynomial. This shows
that, inded, the quadature scheme uses a pdynomial bag, and wen the
guadature scheme uses a smilar bas to the pdynomial it is appioximating we
can getvery goodresilts.



n Integrated Values Error

1 0.000244141 0.076678936
2 0.028956619 0.047966458
3 0.066259063 0.010664014
4 0.076009163 0.000913914
5 0.076898481 2.45963E-05
6 0.076922987 9.00975E-08
7 0.076923077 0

8 0.076923077 0

9 0.076923077 0

10 0.076923077 0

11 0.076923077 0

12 0.076923077 0

13 0.076923077 0

14 0.076923077 0

15 0.076923077 0

16 0.076923077 0

17 0.076923077 0

18 0.076923077 0

19 0.076923077 0
20 0.076923077 0
21 0.076923077 0
22 0.076923077 0
23 0.076923077 0
24 0.076923077 0
25 0.076923077 0

Integration of a twelfth order polynomial.




c) We usetheNystrom method as deciibed in class tosdve theintegral equatian.

o(X) +J1’(x— X)?0 (X')dx' = co%x%

The idea is to use the quadature evaluation pants as the cdlocation pdnts for
solving the integral equatian numerically. When we do this we get a inear system of

equatians

0o

I+ wG(x, %) K K wG(x,x,) 08, @0 "1%
III] O O

M 0 M mMo o Mo
M 0 IZIIIMIZII:I M O

leG(Xn’Xl) K K 1+w, G(Xn’ n)-nnl:] -% E%

To see theimplementation of the Nystrom Method in Matlald® please refer to the code
inserted in theappedix.

i)

When we examine the convergerce of the lution, we needto be a
littte more caeful. We know that the quadature scheme uses
increasing order of pdynamials in the appioximation of theintegral.
We can, fom this saythat theNystrom method uses a poynomial
bass in the appoximation o the solution. The pdynomial bass we
use hasfull suppat. Once we hawe a lution at thegiven pants we
can ug a pdynomial interpolation through thesolution pants given to
compare pants from one pdynomial to the next.

Anothe way to compare one solution to the next would beto use the
odd ade Nystrom cakulations andcompare thecommon midpoint in
the solution. This would diminatethe need for a pdy fit and would at
the same time give a decent idea on how the erors decrease with
Nystom/Quaditure order.

In the following exanple we look a the mnvergerce of the Nystrom
implementation by comparing the solution appoximated with an "
order quadature scheme with the 25paoint quadature scheme. We nate
that theerror can bemeasued in an L|p norm for comparison:

5 p
€, = luos =, = |u25 =G| dx
5 H

Where U, represents the pdynomial fit of the solution.



The resulting error vs. quadature order plot we see is:

Torarpeecs of W Hyseom Waiscs Far 5 amcolh Kame

Flumibsr o Pointn - n

i) The cadefor this partion of theasignment is outlined after question #
3.

3) Inthisquestion we examine a very smilar integral equatian to what was looked at
in patt 2 o this problem set. The integral equatian we are now looking at is

o (X) +}|x— Xlo(x)dx = co%x%

a) We exanine the mnvergerce of the Nystrom method for this case,
compared with the convergence of the integral equatian in pat # 2. Note
that we see exponential convergenceas epected.
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Figure: The error plotted aguingd thenumbe of quadature pants.

b) When we examine the convergerce of the wo cases we see hat the
convergencefor pat 3 isa lot dower than theconvergence shown in pat
2. Thisis a consequence of the kernel in the integral operator. The kernel
in thefirst equation is smooth. The kernel in the second equatian is only
piecewise continuaus, dueto the ab®lute value operatar. We try tofit this
with a st of smooth cogant pdynomials. The first deivative
discontinuity is nat modded well with pdynomials, and hace we see

very sow convergence We also should nate dueto the [x— x|, the first
derivative discontinuity moves around thedamain with x, and as such, the

solution tothis problem is nat smply to dividetheintegral aroundthex=0
point, but ether arund thepant where x=x".



We know from the convergence anaysis for the Nystrom method thatwe
will only see exponential convergenceif the integrand issmooth, dueto
theimplicit use of a snooth pdynomial bass.

c) We cauld try to regain a fast convergencerate for the Nystrom method in
this case in several different ways:

We cauld try to analtically integrate the equatian for pants near
thefirst deivative discontinuity.

We cauld try to evaluate the integral in the region close to the
singulanty with a different quadature schene for more accuacy.

We could try to split the integral into two patts and appt our
guadature scheme very caefully to the two individual pats in
order to captue the integral without trying to integrate over the
first deivative discontinuity (so split the integral abait x, so
integratefrom [-1,x], and the add to[x,1]). Cae should betaken
to caefully paform thisintegration.



Iv. Nystrom Method Code (part # 2 & 3)

function [x,w,xm,wm,sigma, sigmal] = legendrequad(n)

% Computes the quadrature points and weights based on the legendre polynomials,
% which are orthogonal on the interval from -1 to 1.

% This routine relies on evallegendrepoly, a routine which evaluates

% a legendre polynomial of a given order at an x value between

% -1and 1

% n - order of the quadrature

% X - quadrature points

% w - quadrature weights

ifn>25

disp(‘Can not use legendre quad for greater than n=25");

break;

end

% Below we compute the roots of the nth order legendre polynomial

% using the evallegendrepoly function. This routine uses polyfit (okay
% | was lazy) and polyfit becomes too ill-conditioned for n > 25

m =n+1,;

even_pts = [1:m}/(m/2) - 1 - 1/m;

pts =sin(0.5 * pi * even_pts); % better spacing for polynomial points

vals = evallegendrepoly(pts,m-1);

coeffs = polyfit(pts,vals,m-1); % Polyfit fits a polynomial to a set of points
rzeros = roots(coeffs);

[rzeros,index] = sort(rzeros);

% Now form the matrix to compute the weights
fori=1:n
forj=1:n
A(i,j) = evallegendrepoly(rzeros(j),i-1);
end
end

% The right hand side should be made up from integrals of the
% legendre polynomials over the interval -1 to 1.

% Why does the below work?

rhs = zeros(n,1);

rhs(1) = 2;
w = A\rhs; % Solve the system for the weights.
X = rzeros; % Points are zeros of high order chebychev poly.

%
% Modified Code
%
% the following portion of code was mod-
% ified by Dave Willis, 11/05/2002

%

% SMA5215, 16.910/2.097

% © MIT 2002. All rights reserved.

%

%
% Rescaling the weights and the evaluation
% points.

%
wm=w/2;
Xm=x/2+.5;

%
% Solution for the first integral equation
%
% Since this code is simple we tack it on

% to the end of the legendre code. We mod-
% ify the 1/O of the code appropriately

%

rhs_gq = cos(pi/2*xm);
AA = zeros(n,n);
fori=1:n
for j=1:n
AA(L) = wm()*(xm(i)-xm()"2;



end

AA(i,I) = AA(i,i)+1.;
end
sigma = AA\rhs_gq;

%
% Solution for the second integral equation
%
% Since this code is simple we tack it on

% to the end of the legendre code. We mod-
% ify the 1/O of the code appropriately

%

rhs_gqgl = cos(pi/2*x);
AAl = zeros(n,n);
fori=1:n
forj=lin ) o
AAL(i,)) = w(iabs(x(i)-x()):;

en
AAL(i,i) = AAL(,i)+1.;

end

sigmal = AAl\rhs_gq1l;

Error Calculations (Matlab® Code)

%
% Error.m
%
% The flowing code is a routine used to

% compute the convergence of the Nystrom
% method with increasing order of the

% quadrature scheme.

%
%

% Written : 11 May, 2002

% By: Dave Willis

% For: SMA 5212/16.910/2.097
%

% OMIT 2002. All rights reserved.
%

%

% 25" order polynomial “exact solution”
[x1,w,xm1,wm,sigma25,s125] = legendrequad(n);

% Poly fit of this function
[P1]=polyfit(xm1,sigma25,24);
[P2]=polyfit(x1,s125,24);

% eval points for polyval
X1=0:.001:1;
X2=-1:.002:1,

% looping through other orders of polynomials
for n=2:25
[x,w,xm,wm,sigma,s1] = legendrequad(n);

[Pel J=polyfit(xm,sigma,n-1);
[Pe2 J=polyfit(x,s1,n-1);
error(n) =( sum( ((polyval(Pel,X1)-polyval(P1,X1))).2)*.001)."1/2;
g errorl(n)=( sum( ((polyval(Pe2,X2)-polyval(P2,X2)))."2)*.002)."1/2;
en
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