
Solutions : Problem Set # 4 

1) In this problem we examine the second kind integral equation: 

1 

λσ (x) − ∫ (x + x' )σ ( x' )dx' = c1 x + c2  (1) 
0 

We know from theory that the first kind integral equations have rich null spaces. 
We look at this second kind integral equation to demonstrate that it too, has a null 
space. In order to examine the null space we follow a procedure similar to that 
outlined in the May 8th lecture, slide 19 onwards. 

a) We would first like to find the unknown density σ (x) , given 

λ = 0.5, c1 = 1, c2 = 0 . The hint for this problem is to try σ (x) =constant. 

First we start with the integral equation: 
1 

λσ (x) − ∫ (x + x')σ (x')dx' = c1 x + c2 

0 

By setting the density, σ (x) =constant, we get, and fi lli ng in the various given 
quantities: 

1 

0.5 ⋅σ −σ ∫ (x + x')dx' = x 
0 

We can simplify this as: 
2 1 

x' 
0.5 ⋅σ −σ xx'+ = x 

2 
0 

Further: 

1
0.5 ⋅σ −σx −σ = x 

2 
From this we see the appropriate value of the density which satisfies the equation 
for the given RHS forcing: 

σ = −1 

b)	 In this section we examine the null space of the integral equation. Here we are 
asked to find values of λ , for which the integral equation does not have a unique 
solution. We look at a similar approach as was examined in class, where a density 
distribution is assumed and then verified to be in the null space. 



We start by trying several other functions for the density. By looking at the integral 
equation closely, and splitting it into two parts for clarity: 

1 

λσ (x) − ∫ (x + x')σ (x')dx' = 0 
0 

 1 1 
λσ (x) − ∫ (xσ (x'))dx'+ x∫'σ (x'))dx' = 0 

 0 0  
We see from this that the first integral will always give a linear function in x, while the 
second integral will always give a constant. Therefore in order to have this satisfy the 
RHS = 0, we see that it is likely that the density function, σ (x) , is a first order 
polynomial. We therefore try, σ (x) = ax + b , in the equation: 

 1 1  
(λ)(ax + b) − ∫ ((x)(ax'+b))dx'+ ((∫ x')(ax'+b))dx' = 0 

 0 0  

This gives us: 

 1 1 
λax + λb − ∫ (xax'+bx)dx'+ ( x' ax'+ x'b)dx' = 0∫

 0 0  
Performing the integration we get: 

 x'2 x'3 x'2 
1 

λax + λb − 
 
(xa 

2 
+ bxx') + (a 

3 
+ 

2 
b)

0 

= 0 

Simpli fying: 

λax + λb − 
( 
a 

2 
x + bx) + ( a 

3 
+ b 

2
)
 = 0 

By grouping the terms of similar order in x1, and x0 we get: 
aλax − ( x + bx) = 0 
2 

a bλb − ( + ) = 0 
3 2 

We can see from this that the following eigenvalue problem is produced: 

 1 

 2

1 a 
= λa


 1 1 

b


 


b






 3 2 


From here we see that the problem is one of solving the eigenvalues to get the λ values: 



λ = 

3 1 

3 

3 

2 

1 

− 

+ ≈ 1.0773501 

λ = ≈ -0.0773502 2 3 

So given these values we can determine a, and, b, the eigenvector values: 


2 

3 a  =
b


  

2 
1 

  

a 
− 2 

3 

 

=
b


  

2 
1 

  
So, for, 

λ = 31 + ≈ 1.0773501 2 3 we see that the corresponding σ (x) = 2 
3 x + 2 

1 

λ2 =
31 − ≈ -0.077350 we see that the corresponding σ (x) = − 2 

3 x + 
2 3 2 

1 

c) For part c we look for two solutions which satisfy the integral equation for the 
problem. A simple way to do this is choose σ (x) = 1. 

1 

λ − ∫ (x + x')dx' = c1 x + c2 

0 
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i. Solution # 1: 

σ (x) = 1,  for λ1 = 31 + ,and λ2 = 
2 3 2 3 

ii. Solution # 2: 

31 − 

σ (x) = 1 + 2 
3 x + 2 

1 , for λ1 = 
2 3 

31 + 

iii . Solution # 3: 

σ (x) = 1 − 2 
3 x + 2 

1 , for λ2 = 
2 3 

31 − 

2)	 In this problem we examine the general idea of Nystrom Methods. We go through 
several steps to solve the following integral equation: 

1  π σ (x) + ∫ (x − x') 2σ (x' )dx' = cos x  (2) 
0  2  

a)	 In the Legendre.m code we are asked why we can set the RHS vector to be [2 0 0 
0 … … 0 0]’ . We can look at it in two ways: 

i)	 The Legendre polynomials, when integrated over the interval [-1,1] 
give a non-zero solution for P0=1 only. The integral is a value of 2, 
hence we see a value of ‘2’ . The rest are equally weighted above and 
bellow the axis by construction, and therefore result in zero integrals. 
This is actually a consequence of the method used to derive and 
determine Legendre polynomials (see note). 

ii) The Legendre Polynomials, by construction are an orthogonal set of 
functions. This means that the inner product of any of the higher order 
polynomials with the first one, Po=1, will give zero. So the only non-
zero entry in the RHS is the first one which has an integrated area of 2, 
in the interval [-1,1]. 

Note: For interests sake, the Legendre polynomials are constructed using a 
process which guarantees that they will be an orthogonal basis in the interval 
[-1,1]. The method used to derive the polynomials is the Gram-Schmidt 
procedure (see Strang, G., An Introduction To Applied Mathematics, 
M.I.T.,1986 ~ pp. 278-282). The resulting polynomials are: 



P0 = 1 
P1 = x 
P2 = x2 - 1/3 

Etc… 

This Gram-Schmidt idea is an important one in Numerical Methods, as it 
incorporates the idea of orthogonality, which is often very useful in 
engineering numerical analysis. 

b)	 In order to rescale the quadrature points we can take either a simple or, slightly 
more complex approach. The simple approach is analogous to a mapping to a new 
coordinate system. The complex approach would be to re-derive the weights and 
evaluation points for each new interval encountered. Rather than re-deriving the 
quadrature scheme for each new interval of integration we show that it is simpler 
to scale and shif t the scheme: 

i)	 For the weights, we scale them by ½ , since the test interval is reduced 
by ½. 

old 
new iW 

=Wi 2

ii)	 For the evaluation points we have to scale and shif t. Here we scale by 

½ and shif t to the right ½. This will transform from [-1,1], to [0,1]. 

new 
old ix 1


x = +
i 2
 2


As a test example we look at computing the integral: 

1
∫ x dx = ≈ 
1 

12 0.076923 
13
0 

We see that the integral is computed exactly for those cases where the number of 
quadrature points is 7 or greater, ie. (2n-1) = order of polynomial. This shows 
that, indeed, the quadrature scheme uses a polynomial base, and when the 
quadrature scheme uses a similar base to the polynomial it is approximating we 
can get very good results. 



n Integrated Values Erro r 
1 0.000244141 076678936 
2 0.028956619 047966458 
3 0.066259063 010664014 
4 0.076009163 000913914 
5 0.076898481 45963E-05 
6 0.076922987 00975E-08 
7 0.076923077 
8 0.076923077 
9 0.076923077 

10 0.076923077 
11 0.076923077 
12 0.076923077 
13 0.076923077 
14 0.076923077 
15 0.076923077 
16 0.076923077 
17 0.076923077 
18 0.076923077 
19 0.076923077 
20 0.076923077 
21 0.076923077 
22 0.076923077 
23 0.076923077 
24 0.076923077 
25 0.076923077 

0.
0.
0.
0.
2.
9.

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

Integration of a twelfth order polynomial. 



c) We use the Nystrom method as described in class to solve the integral equation. 

1 

σ (x) + ∫ (x − x') 2σ (x' )dx' = cos 


π 
x 

 
0  2  

The idea is to use the quadrature evaluation points as the collocation points for 
solving the integral equation numerically. When we do this we get a linear system of 
equations: 

 π  
1 + w1G(x1, x1) Κ Κ wnG(x1, xn ) σ n1  cos x1  
 Μ Ο Μ  Μ   2  
   =  Μ  
 Μ Ο Μ  Μ  Μ 



 w1G(xn , x1) Κ Κ 1 + wnG(xn , xn )



σ nn 

 

 
cos 

π 
xn 





  2  
To see the implementation of the Nystrom Method in Matlab® please refer to the code 
inserted in the appendix. 

i) When we examine the convergence of the solution, we need to be a 
little more careful. We know that the quadrature scheme uses 
increasing order of polynomials in the approximation of the integral. 
We can, from this say that the Nystrom method uses a polynomial 
basis in the approximation of the solution. The polynomial basis we 
use has full support. Once we have a solution at the given points we 
can use a polynomial interpolation through the solution points given to 
compare points from one polynomial to the next. 

Another way to compare one solution to the next would be to use the 
odd order Nystrom calculations, and compare the common midpoint in 
the solution. This would eliminate the need for a poly fit and would at 
the same time give a decent idea on how the errors decrease with 
Nystom/Quadrature order. 

In the following example we look at the convergence of the Nystrom 
implementation by comparing the solution approximated with an nth 

order quadrature scheme with the 25 point quadrature scheme. We note 
that the error can be measured in an ||L||2 norm for comparison: 

 1 2  
e

n 
= u25 − un 2 

= 
 ∫ û25 − û n dx

 

2 
1 

 0  

Where û , represents the polynomial fit of the solution. 



The resulting error vs. quadrature order plot we see is: 

ii) The code for this portion of the assignment is outlined after question # 
3. 

3)	 In this question we examine a very similar integral equation to what was looked at 
in part 2 of this problem set. The integral equation we are now looking at is: 

1 π σ (x) + ∫ x − x'σ (x')dx' = cos
 2 

x 
0 

a) We examine the convergence of the Nystrom method for this case, 
compared with the convergence of the integral equation in part # 2. Note 
that we see exponential convergence as expected. 



Figure:  The error plotted against the number of quadrature points. 

b) When we examine the convergence of the two cases we see that the 
convergence for part 3 is a lot slower than the convergence shown in part 
2. This is a consequence of the kernel in the integral operator. The kernel 
in the first equation is smooth. The kernel in the second equation is only 
piecewise continuous, due to the absolute value operator. We try to fit this 
with a set of smooth constant polynomials. The first derivative 
discontinuity is not modeled well with polynomials, and hence, we see 
very slow convergence. We also should note due to the x − x' , the fi rst 

derivative discontinuity moves around the domain with x, and as such, the 
solution to this problem is not simply to divide the integral around the x=0 
point, but rather around the point where x=x’. 



'xx − 

We know from the convergence analysis for the Nystrom method that we 
will only see exponential convergence if the integrand is smooth, due to 
the implicit use of a smooth polynomial basis. 

c)	 We could try to regain a fast convergence rate for the Nystrom method in 
this case in several different ways: 

i.	 We could try to analytically integrate the equation for points near 
the first derivative discontinuity. 

ii.	 We could try to evaluate the integral in the region close to the 
singularity with a different quadrature scheme for more accuracy. 

iii.	 We could try to split the integral into two parts and apply our 
quadrature scheme very carefully to the two individual parts in 
order to capture the integral without trying to integrate over the 
first derivative discontinuity (so split the integral about x, so 
integrate from [-1,x], and then add to [x,1]). Care should be taken 
to carefully perform this integration. 



iv. Nystrom Method Code (part # 2 & 3) 

function [x,w,xm,wm,sigma, sigma1] = legendrequad(n) 

% Computes the quadrature points and weights based on the legendre polynomials, 

% which are orthogonal on the interval from -1 to 1. 

% This routine relies on evallegendrepoly, a routine which evaluates 

% a legendre polynomial of a given order at an x value between 

% -1 and 1 

% n - order of the quadrature 

% x - quadrature points 

% w - quadrature weights 


if n > 25 

disp('Can not use legendre quad for greater than n=25'); 

break; 

end 


% Below we compute the roots of the nth order legendre polynomial 

% using the evallegendrepoly function. This routine uses polyfit (okay 

% I was lazy) and polyfit becomes too ill-conditioned for n > 25 

m = n+1; 

even_pts = [1:m]/(m/2) - 1 - 1/m; 

pts = sin(0.5 * pi * even_pts); % better spacing for polynomial points 

vals = evallegendrepoly(pts,m-1); 

coeffs = polyfit(pts,vals,m-1); % Polyfit fits a polynomial to a set of points 

rzeros = roots(coeffs); 

[rzeros,index] = sort(rzeros); 


% Now form the matrix to compute the weights 

for i = 1:n 


for j = 1:n 

A(i,j) = evallegendrepoly(rzeros(j),i-1); 


end 

end 


% The right hand side should be made up from integrals of the 

% legendre polynomials over the interval -1 to 1. 

% Why does the below work? 

rhs = zeros(n,1); 

rhs(1) = 2; 


w = A \ rhs; % Solve the system for the weights. 

x = rzeros; % Points are zeros of high order chebychev poly. 


%========================================= 

% Modified Code 

%========================================= 

% the following portion of code was mod­

% ified by Dave Willis, 11/05/2002 

% 

% SMA5215, 16.910/2.097 

% © MIT 2002. All rights reserved. 

%========================================== 


%========================================= 

% Rescaling the weights and the evaluation 

% points. 

%========================================= 

wm=w/2; 

xm=x/2+.5; 


%========================================== 

% Solution for the first integral equation 

%========================================== 

% Since this code is simple we tack it on 

% to the end of the legendre code. We mod­

% ify the I/O of the code appropriately 

%========================================== 


rhs_gq = cos(pi/2*xm); 

AA = zeros(n,n); 

for i=1:n 


for j=1:n 

AA(i,j) = wm(j)*(xm(i)-xm(j))^2; 




 end 

AA(i,i) = AA(i,i)+1.; 


end 

sigma = AA\rhs_gq; 


%========================================== 

% Solution for the second integral equation 

%========================================== 

% Since this code is simple we tack it on 

% to the end of the legendre code. We mod­

% ify the I/O of the code appropriately 

%========================================== 


rhs_gq1 = cos(pi/2*x); 

AA1 = zeros(n,n); 

for i=1:n 


for j=1:n 

AA1(i,j) = w(j)*abs(x(i)-x(j)); 


end 

AA1(i,i) = AA1(i,i)+1.; 


end 

sigma1 = AA1\rhs_gq1; 


Erro r  Calculations (Matlab® Code) 
%=========================================== 

% Error.m 

%=========================================== 

% The flowing code is a routine used to 

% compute the convergence of the Nystrom 

% method with increasing order of the 

% quadrature scheme. 

%=========================================== 

% 

% Written : 11 May, 2002 

% By: Dave Willis 

% For: SMA 5212/16.910/2.097 

% 

% ©MIT 2002. All rights reserved. 

% 

%=========================================== 


% 25 th  order polynomial “exact solution” 


[x1,w,xm1,wm,sigma25,s125] = legendrequad(n); 


% Poly fit of this function 

[P1]=polyfit(xm1,sigma25,24); 

[P2]=polyfit(x1,s125,24); 


% eval points for polyval 

X1=0:.001:1; 

X2=-1:.002:1; 


% looping through other orders of polynomials 

for n=2:25 


[x,w,xm,wm,sigma,s1] = legendrequad(n); 


[Pe1 ]=polyfit(xm,sigma,n-1); 

[Pe2 ]=polyfit(x,s1,n-1); 


error(n) =( sum( ((polyval(Pe1,X1)-polyval(P1,X1))).^2)*.001).^1/2; 

error1(n)=( sum( ((polyval(Pe2,X2)-polyval(P2,X2))).^2)*.002).^1/2; 


end 
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