
SMA5212/16.920J/2.097J - Numerical Methods for Partial Differential Equations

Massachusetts Institute of Technology Singapore - MIT Alliance

SOLUTIONS
Problem Set 2 - Hyperbolic Equations

Handed out: March 10, 2003 Due: March 31, 2003

Problem 1 - Solitons

1) Differentiate the one-soliton solution:

u(x, t) = −1/2
v

(cosh (1/2
√
v (x− vt− x0)))2 (1)

ux(x, t) = 1/2
v3/2 sinh (1/2

√
v (x− vt− x0))

(cosh (1/2
√
v (x− vt− x0)))3 (2)

uxx(x, t) = −1/4
v2
(

2 (cosh (1/2
√
v (x− vt− x0)))2 − 3

)
(cosh (1/2

√
v (x− vt− x0)))4 (3)

uxxx(x, t) = 1/2
v5/2 sinh (1/2

√
v (x− vt− x0))

(
(cosh (1/2

√
v (x− vt− x0)))2 − 3

)
(cosh (1/2

√
v (x− vt− x0)))5 (4)

ut(x, t) = −1/2
v5/2 sinh (1/2

√
v (x− vt− x0))

(cosh (1/2
√
v (x− vt− x0)))3 . (5)

Insert into the KdV equation and simplify to get

ut(x, t)− 6u(x, t)ux(x, t) + uxxx(x, t) = 0. (6)

2) Derive second-order discretizations in space using Taylor series, to get:

∂ui
∂t

= 6ui
ui+1 − ui−1

2∆x
− ui+2 − 2ui+1 + 2ui−1 − ui−2

2∆x3
. (7)

3) The discretization of the simplified problem is

∂ui
∂t

= −ui+2 − 2ui+1 + 2ui−1 − ui−2

2∆x3
. (8)

The eigenvalues of this difference operator are

λk = −isin(2θ)− 2 sin(θ)
∆x3

, θ = 2πk∆x. (9)

These are always purely imaginary, and maximization gives a bound on the magnitude:

|λk| ≤
3
√

3
2∆x3

. (10)

Now, to make sure that |zk| = |∆tλk| ≤ 2
√

2, we have that

∆t ≤ ∆x3 4
√

2
3
√

3
≈ 1.09∆x3. (11)

1

4) The function kdv.m in Appendix A solves the problem for any of the given initial conditions.
The solutions at time t = 2 are shown in Figure 1. Below are short comments on each of the
cases:

a. The single soliton propagates to the right, with a velocity somewhat smaller than v = 16.

b. Although the Gaussian looks very similar to a soliton, it does not behave in the same
way. It is actually closer to a two-soliton solution, but not exactly, so there are ripples.

c. The given two-soliton solution gives two perfect solitons, with different velocities and
amplitudes.

d. The equation is non-linear, so it is in general not possible to add two solutions and get
a new solution. In this case, the “fastest” soliton propagates, but the smaller one does
not move very much, and there are some ripples.

e. When the two one-soliton solutions are well separated, they can be added. When they
cross each other, the amplitude is smaller than the sum of the two amplitudes. Also,
the velocity of the faster soliton increases slightly when they cross, and the velocity of
the slower soliton decreases, which can be seen as a small phase-shift or in a plot of the
characteristics. After the crossing, they separate back into the two original solitons.

2

−8 −6 −4 −2 0 2 4 6 8
−2

0

2

4

6

8

10

12
Initial condition a.

−8 −6 −4 −2 0 2 4 6 8
−2

0

2

4

6

8

10

12
Initial condition b.

−8 −6 −4 −2 0 2 4 6 8
−2

0

2

4

6

8

10

12
Initial condition c.

−8 −6 −4 −2 0 2 4 6 8
−2

0

2

4

6

8

10

12
Initial condition d.

−8 −6 −4 −2 0 2 4 6 8
−2

0

2

4

6

8

10

12
Initial condition e.

Figure 1: The solutions at time t = 2 for the five given initial conditions.

3

Problem 2 - Traffic Flow

1) The MATLAB® code for the two schemes can be found in Appendix A, p1a.m and p1b.m.
Below are some comments on the implementations.

• The computational grid is defined by

xj = −2 + j∆x, ∆x =
4
N
, j = 0, 1, . . . , N (12)

These positions will correspond to cell centers, and the density of cars ρ will be repre-
sented as averages over the cells. Note that the fluxes will be computed between these
cell centers, that is, at the cell boundaries.

• No specific boundary conditions were specified, so the implementation simply keeps the
initial condition at the boundary points. In practice, this means that the boundary
values are used when computing the fluxes, but the values are never updated.

• The numerical flux for Roe’s scheme is straightforward to compute. For Godunov’s
scheme, however, it is not completely trivial. The numerical flux is then given by:

FG
i+ 1

2

=

{
minρ∈[ρi,ρi+1] f(q), if ρi < ρi+1

maxρ∈[ρi,ρi+1] f(q), if ρi > ρi+1

(13)

(when ρi = ρi+1, the fluxes are equal and any of them can be used). To get an expression
for the minimum and the maximum, the flux function f(ρ) must be studied. In our case,
it is

f(ρ) = ρumax

(
1− ρ

ρmax

)
(14)

This is a concave parabola with maximum value ρmaxumax/4 at ρ = ρmax/2. The maxi-
mums and minimums can then be computed according to

min
ρ∈[ρi,ρi+1]

f(q) = min(ρi, ρi+1)

max
ρ∈[ρi,ρi+1]

f(q) =

{
max(ρi, ρi+1), ρi, ρi+1 “on same side” of ρmax/2
ρmaxumax/4, otherwise.

The problems can now be used with the initial values specified in the problem. The solution
at time t = 2 is shown in figure 2, using Roe’s scheme (top) and Godunov’s scheme (bottom).
With Roe’s scheme, the initial discontinuity at x = 0 is preserved, and the scheme is therefore
not entropy satisfying. This can be seen directly from the expression for the numerical flux:

FR
i+ 1

2

=
1
2

[f(ρi) + f(ρi+1)]− 1
2

∣∣∣ai+ 1
2

∣∣∣ (ρi+1 − ρi) (15)

where

ai+ 1
2

= umax

(
1− ρi + ρi+1

ρmax

)
(16)

4

and

f(ρi+1)− f(ρi) = ai+ 1
2
(ρi+1 − ρi) (17)

Consider the cell directly to the left of the red light. The numerical flux at the left end of
this cell is f(ρL). But at the right end it is exactly the same:

1
2

[f(ρi) + f(ρi+1)]− 1
2
|f(ρi+1)− f(ρi)|
|ρi+1 − ρi|

(ρi+1 − ρi) = f(ρi) = f(ρL) (18)

The difference in the fluxes is zero, and the density in the cell will be unchanged. This is the
reason that the discontinuity is preserved.

We know from the lecture notes that Godunov’s scheme is entropy satisfying, and indeed we
see the expected rarefaction wave from the shock.

2) This problem is implemented in p2.m in Appendix A. The Godunov’s scheme from the pre-
vious part is used, with some additional logic for inserting a zero flux at the position of the
traffic light when it is red. In each timestep, the sum in the average flow is updated:

q̇ =
1
NT

NT∑
n=1

fn (19)

where the flux at the center is used (as described in the problem this choice does not really
matter, which can be verified by trying some different positions). After one period, the
average flow is printed, and the sum is set to zero.

The density of cars at three times is shown in figure 3. When the light is red, the regions
with ρ = 1 grows to the left, and when the light is green, the cars accelerate in a similar way
as in the previous part.
The average flows after each of the first three periods are:

Average flow = 0.19867
Average flow = 0.125
Average flow = 0.125

3) The modeling of two traffic lights is done in the code p3.m in Appendix A. The second traffic
light is handled in the same way as the first, but with different position and switching times.
The (converged) average flow for k = 0, . . . , 9 is shown in figure 4, together with another
simulation with much finer steps in τ . There are several values of τ giving the maximum
capacity 0.125, for example τ = 0 which corresponds to no delay between the traffic lights.

5

−2 −1 0 1 2
0

0.2

0.4

0.6

0.8

1
Roe’s Scheme, t=2.0

−2 −1 0 1 2
0

0.2

0.4

0.6

0.8

1
Godunov’s Scheme, t=2.0

Figure 2: The solution at t = 2 using Roe’s scheme (top) and Godunov’s scheme (bottom). Roe’s
scheme is not entropy satisfying, since the discontinuity remains, but Godunov’s scheme is.

6

−2 −1 0 1 2
0

0.2

0.4

0.6

0.8

1
t=1.0

−2 −1 0 1 2
0

0.2

0.4

0.6

0.8

1
t=2.0

−2 −1 0 1 2
0

0.2

0.4

0.6

0.8

1
t=3.0

−2 −1 0 1 2
0

0.2

0.4

0.6

0.8

1
t=4.0

Figure 3: The density of cars at four times. The traffic light at x = 0 is red for the first second,
green for the next second, etc.

7

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0.07

0.08

0.09

0.1

0.11

0.12

0.13

τ

A
ve

ra
ge

 fl
ow

Figure 4: The average flow for different delays τ between the two traffic lights. The dashed curve
shows the same quantity as the solid curve, but with a finer resolution.

8

Appendix A: Code for Part #1

kdv.m

function kdv(initcond)

% Space coordinates

dx=0.1;

x=(-8+dx:dx:8)’;

nx=length(x);

% Time steps

k=dx^3;

nsteps=2.0/k;

% Initial condition

switch initcond

case 1

u=onesoliton(x,16,0);

case 2

u=-8*exp(-x.^2);

case 3

u=-6./cosh(x).^2;

case 4

u=onesoliton(x,16,0)+onesoliton(x,4,0);

case 5

u=onesoliton(x,16,4)+onesoliton(x,4,-4);

otherwise

error(’Incorrect initial condition.’);

end

set(gcf,’doublebuffer’,’on’);

for ii=1:nsteps

% Runge-Kutta step

k1=k*kdvequ(u,dx);

k2=k*kdvequ(u+k1/2,dx);

k3=k*kdvequ(u+k2/2,dx);

k4=k*kdvequ(u+k3,dx);

u=u+k1/6+k2/3+k3/3+k4/6;

% Animate every 10th step

if mod(ii,10)==0

plot(x,-u);

axis([-8,8,-2,12])

drawnow;

end

end

function u=onesoliton(x,v,x0)

% One-soliton solution

u=-v/2./cosh(.5*sqrt(v)*(x-x0)).^2;

function dudt=kdvequ(u,dx)

% KdV equation: dudt = 6*u*dudx - d^3u/dx^3

u = [u(end-1:end); u; u(1:2)];

dudt = 6*(u(3:end-2)).*(u(4:end-1)-u(2:end-3))/2/dx - ...

(u(5:end)-2*u(4:end-1)+2*u(2:end-3)-u(1:end-4))/2/dx^3;

9

Appendix B: Code for Part #2

p1a.m

% Problem 1a

% Roe’s Scheme

% Parameters

rhomax=1.0;

rhoL=0.8;

umax=1.0;

dx=4/400;

dt=0.8*dx/umax;

nt=2.0/dt;

% Grid and initial conditions

x=-2:dx:2;

rho=rhoL*(x<0.0);

% Main loop

for it=1:nt

% Flux

f=rho*umax.*(1-rho/rhomax);

a=umax*(1-(rho(1:end-1)+rho(2:end))/rhomax);

F=1/2*(f(1:end-1)+f(2:end))-1/2*abs(a).*(rho(2:end)-rho(1:end-1));

% Update solution

rho(2:end-1)=rho(2:end-1)-dt/dx*(F(2:end)-F(1:end-1));

% Plot

plot(x,rho,’.’)

axis([-2,2,0,1])

grid on

drawnow

end

p1b.m

% Problem 1b

% Godunov’s Scheme

% Parameters

rhomax=1.0;

rhoL=0.8;

umax=1.0;

dx=4/400;

dt=0.8*dx/umax;

nt=2.0/dt;

% Grid and initial conditions

x=-2:dx:2;

rho=rhoL*(x<0.0);

% Main loop

for it=1:nt

% Flux

f=rho*umax.*(1-rho/rhomax);

10

minf=min(f(1:end-1),f(2:end));

maxf=max(f(1:end-1),f(2:end));

maxf((rho(1:end-1)-0.5).*(rho(2:end)-0.5)<0)=rhomax*umax/4;

F=minf.*(rho(1:end-1)<rho(2:end))+ ...

maxf.*(rho(1:end-1)>=rho(2:end));

% Update solution

rho(2:end-1)=rho(2:end-1)-dt/dx*(F(2:end)-F(1:end-1));

% Plot

plot(x,rho,’.’)

axis([-2,2,0,1])

grid on

drawnow

end

p2.m

% Problem 2

% Parameters

rhomax=1.0;

rhoL=rhomax/2;

umax=1.0;

dx=4/400;

dt=0.8*dx/umax;

nt=10.0/dt;

% Grid and initial conditions

x=-2:dx:2;

rho=rhoL*(x<0.0);

% Period, number of timesteps

T=2.0/dt;

% Average flow and initial state

qdot=0.0;

red=1;

% Main loop

for it=1:nt

% Flux

f=rho*umax.*(1-rho/rhomax);

minf=min(f(1:end-1),f(2:end));

maxf=max(f(1:end-1),f(2:end));

maxf((rho(1:end-1)-0.5).*(rho(2:end)-0.5)<0)=rhomax*umax/4;

F=minf.*(rho(1:end-1)<rho(2:end))+ ...

maxf.*(rho(1:end-1)>=rho(2:end));

% Red light

if red

F(size(F,2)/2)=0;

end

% Update solution

rho(2:end-1)=rho(2:end-1)-dt/dx*(F(2:end)-F(1:end-1));

11

% Update average flow

qdot=qdot+f(size(F,2)/2);

% Switch state?

if mod(it,T/2)==0

if red==0

disp([’Average flow = ’,num2str(qdot/T)]);

qdot=0.0;

red=1;

else

red=0;

end

end

% Plot

plot(x,rho,’.’)

axis([-2,2,0,1])

grid on

drawnow

end

p3.m

% Problem 3

% Parameters

rhomax=1.0;

rhoL=rhomax/2;;

umax=1.0;

dx=4/400;

dt=0.8*dx/umax;

nt=10.0/dt;

% Period, number of timesteps

T=2.0/dt;

% Test cases

for k=0:9

disp(’ ’)

disp([’k = ’,int2str(k)])

disp(’-----’)

% tau, number of timesteps

tau=k/10*T;

% Grid and initial conditions

x=-2:dx:2;

rho=rhoL*(x<0.0);

% Average flow and initial states

qdot=0.0;

red1=1;

red2=tau>T/2|tau==0;

% Main loop

for it=1:nt

% Flux

12

f=rho*umax.*(1-rho/rhomax);

minf=min(f(1:end-1),f(2:end));

maxf=max(f(1:end-1),f(2:end));

maxf((rho(1:end-1)-0.5).*(rho(2:end)-0.5)<0)=rhomax*umax/4;

F=minf.*(rho(1:end-1)<rho(2:end))+ ...

maxf.*(rho(1:end-1)>=rho(2:end));

% Red lights

if red1

F(size(F,2)/2)=0;

end

if red2

F(size(F,2)/2+.15/dx)=0;

end

% Update solution

rho(2:end-1)=rho(2:end-1)-dt/dx*(F(2:end)-F(1:end-1));

% Update average flow

qdot=qdot+f(size(F,2)/2);

% Switch states?

if mod(it,T/2)==0

if red1==0

disp([’Average flow = ’,num2str(qdot/T)]);

qdot=0.0;

red1=1;

else

red1=0;

end

end

if mod(it-tau,T/2)==0

if red2==0

red2=1;

else

red2=0;

end

end

% Plot

plot(x,rho,’.’)

axis([-2,2,0,1])

grid on

drawnow

end

end

13

sagarw
MATLAB

sagarw
®

sagarw
is a trademark of The MathWorks, Inc.

