
SMA5212/16.920J/2.097J - Numerical Methods for Partial Differential Equations

Massachusetts Institute of Technology Singapore - MIT Alliance

SOLUTIONS
Problem Set 1 - Finite Differences and Iterative Methods

Handed out: February 10, 2003                                                                                    Due: March 10, 2003

Problem 1 - Flow in a channel

1) The four corners in the physical domain are located at (x, y) = (0, 0), (b/2, 0), (b/2+a, h), (0, h).
A mapping between the coordinates (ξ, η) on the unit square and (x, y) is

x = (b/2 + aη)ξ (1)
y = hη. (2)

The equation is transformed to

−1
J2

(a′ uξξ − 2b′ uξη + c′ uηη + d′ uη + e′ uξ) = f, (3)

where

J = xξyη − xηyξ = (b/2 + aη)h (4)

a′ = x2
η + y2

η = a2ξ2 + h2 (5)

b′ = xξxη + yξyη = (b/2 + aη)aξ (6)

c′ = x2
ξ + y2

ξ = (b/2 + aη)2 (7)

α = a′xξξ − 2b′xξη + c′xηη = −2(b/2 + aη)a2ξ (8)
β = a′yξξ − 2b′yξη + c′yηη = 0 (9)

d′ =
yξα− xξβ

J
= 0 (10)

e′ =
xηβ − yηα

J
= 2a2ξ. (11)

The normal direction of the top boundary is (nx, ny) = (0, 1), and the normal derivative is
transformed to

∂u

∂n
=

1
J

[(yηnx − xηny)uξ + (−yξnx + xξny)uη] =
1
h

(
− a

b/2 + a
ξuξ + uη

)
. (12)

At the left boundary, (nx, ny) = (−1, 0) and

∂u

∂n
= − 1

b/2 + aη
uξ. (13)

2) Forward Taylor series expansion:

vi+1 = vi + ∆xv′(xi) +
∆x2

2
v′′(xi) +

∆x3

6
v(3)(xi) +

∆x4

24
v(4)(xi) +O(∆x5). (14)

1



Backward Taylor series expansion:

vi−1 = vi −∆xv′(xi) +
∆x2

2
v′′(xi)−

∆x3

6
v(3)(xi) +

∆x4

24
v(4)(xi) +O(∆x5). (15)

Subtract the backward T.S. from the forward T.S. to get an O(h2) approximation of the first
derivative:

∂v

∂x

∣∣∣∣
i

=
vi+1 − vi−1

2∆x
+O(∆x2). (16)

Add the backward T.S. to the forward T.S. to get an O(h2) approximation of the second
derivative:

∂2v

∂x2

∣∣∣∣
i

=
vi+1 − 2vi + vi−1

∆x2
+O(∆x2). (17)

For the one-sided difference approximations at the boundaries, we need one more Taylor Series
expansion:

vi+2 = vi + 2∆xv′(xi) + 22 ∆x2

2
v′′(xi) + 23 ∆x3

6
v(3)(xi) + 24 ∆x4

24
v(4)(xi) +O(∆x5). (18)

Solving for the first derivative gives a forward difference expression:

∂v

∂x

∣∣∣∣
i

=
−3vi + 4vi+1 − vi+2

2∆x
+O(∆x2), (19)

and similarly for the backward difference:

∂v

∂x

∣∣∣∣
i

=
3vi − 4vi−1 + vi−2

2∆x
+O(∆x2). (20)

For the cross derivative we need the multidimensional Taylor Series expansion:

vi+1,j+1 = vi,j +
(

∆x
∂

∂x
+ ∆y

∂

∂y

)
v(xi,i) +

1
2

(
∆x

∂

∂x
+ ∆y

∂

∂y

)2

v(xi,i) +

+
1
6

(
∆x

∂

∂x
+ ∆y

∂

∂y

)3

v(xi,i) +
1
24

(
∆x

∂

∂x
+ ∆y

∂

∂y

)4

v(xi,i) +O(∆x5),

(21)

and similarly for vi+1,j−1, vi−1,j+1, and vi−1,j−1. Form the derivatives in the x- and the
y-direction, respectively, to get the cross derivative approximation:

∂2v

∂x∂y

∣∣∣∣
i

=
vi+1,j+1 − vi+1,j−1 − vi−1,j+1 + vi−1,j−1

4∆x∆y
+O(∆x2). (22)

The integral Q̂ is evaluated as follows. First make a change of variable to transform the
integral in x, y space to ξ, η space:

Q =
∫ ∫

u dxdy =
∫ ∫

u|J(ξ, η)| dξdη (23)

This is evaluated numerically by averaging the values at neighboring grid points to get the
cell averages, summing over all cells, and multiplying by the (constant) cell area.

2



3) The code channelflow.m can be found in Appendix A. It is written as a function that takes
four input parameters: l, b, h, and N . The output is the flowrate Q̂, the grid x, y, and the
solution u. The calling syntax is:

[Q,x,y,u]=channelflow(l,b,h,N);

4) The solutions for l = 3, h = 1, and b = 0.0, 0.5, 1.0 are shown in Figure 1. The corresponding
Q̂ values are 0.0436 (b = 0.0), 0.0574 (b = 0.5), and 0.0285 (b = 1.0).

5) In Figure 2, the errors in Q̂ and in the solution (L∞ and L2 norms) are shown, for l = 3,
h = 1, and b = 0.0, 0.5, 1.0. All slopes are above 2 (except L∞ for b = 0.5, because of a bad
result for the coarse grid N = 11). This means that the convergence is second-order.

6) The Pareto Optimal Frontier is shown in Figure 3. This plot can be used to optimize the
design. If, for example, some additional constraint is added (the flowrate Q̂ ≥ Q̂0, etc), the
linear interpolation between the points give an approximate value for the maximum possible
I, and the corresponding design parameters.

3



0 0.5 1

0

0.2

0.4

0.6

0.8

1

Grid (b=0.0)

0 0.5 1

0

0.2

0.4

0.6

0.8

1

0.02

0.040.06

0.080.1
0.12
0.14

Solution (b=0.0)

0 0.5 1
0

0.2

0.4

0.6

0.8

1
Grid (b=0.5)

0 0.5 1
0

0.2

0.4

0.6

0.8

1

0.02

0.02

0.04

0.060.08

0.
1

0.1
2

0.1
40.16

Solution (b=0.5)

−0.2 0 0.2 0.4 0.6
0

0.2

0.4

0.6

0.8

1
Grid (b=1.0)

−0.2 0 0.2 0.4 0.6
0

0.2

0.4

0.6

0.8

1

0.02

0.
02

0.04

0.
04

0.06

0.
08

0.
1

Solution (b=1.0)

Figure 1: Grids and solutions for l = 3, h = 1, and varying b.

4



10−2 10−1
10−6

10−5

10−4

10−3

10−2

E
rr

or

Grid size ∆ ξ=∆ η

b=0.0

Q
L

2
L∞

10−2 10−1
10−6

10−5

10−4

10−3

10−2

E
rr

or

Grid size ∆ ξ=∆ η

b=0.5

Q
L

2
L∞

10−2 10−1
10−6

10−5

10−4

10−3

10−2

E
rr

or

Grid size ∆ ξ=∆ η

b=1.0

Q
L

2
L∞

Figure 2: Plots of the errors in Q̂ and in the solution (L∞ and L2 norms), for l = 3, h = 1, and
varying b. All slopes are about 2 because of the second-order convergence.

5



0 0.01 0.02 0.03 0.04 0.05 0.06 0.07
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

Flowrate Q

M
om

en
t o

f I
ne

rti
a 

I

The Pareto Optimal Frontier

Figure 3: The Pareto Optimal Frontier.

6



Problem 2 - Iterative Methods: Jacobi, G-S, Multigrid

Problem Statement

Questions

1) Discretize φ on the domain according to φi,j ≈ φ(i∆x, j∆y), for 0 ≤ i, j ≤ N and ∆x =
∆y = 1/N . Form an initial guess φ0

i,j and the right hand side fi,j . With the Laplace operator
discretized using second-order approximation, the Jacobi iteration is

φr+1
i,j =

1
4

(φri+1,j + φri−1,j + φri,j+1 + φri,j−1 + h2fi,j) (24)

and the Gauss-Seidel iteration is, for the natural update ordering:

φr+1
i,j =

1
4

(φri+1,j + φr+1
i−1,j + φri,j+1 + φr+1

i,j−1 + h2fi,j) (25)

Below is pseudo code for the Jacobi method,

for i = 1 to N
for j = 1 to N

fi,j = f(i∆x, j∆y)
φ0
i,j = φ0(i∆x, j∆y).

end
end
for r = 0, 1, 2, . . .

for i = 1 to N
for j = 1 to N

φr+1
i,j = 1

4(φri+1,j + φr+1
i−1,j + φri,j+1 + φr+1

i,j−1 + h2fi,j)
end

end
end

and below is pseudo code for the Gauss-Seidel method.

for i = 1 to N
for j = 1 to N

fi,j = f(i∆x, j∆y)
φ0
i,j = φ0(i∆x, j∆y).

end
end
for r = 0, 1, 2, . . .

for i = 1 to N
for j = 1 to N

φr+1
i,j = 1

4(φri+1,j + φr+1
i−1,j + φri,j+1 + φr+1

i,j−1 + h2fi,j)
end

end
end

7



In the code, a matrix formulation is used instead, since it generalizes nicely to the multigrid
routines. Also, the G-S algorithm is hard to vectorize in MATLAB®  with the update ordering
shown above. The Laplace operator and the right hand side are discretized to form the system
of linear equations Aφ = f . Define D,L,U as A = D − L − U , with D diagonal, L lower
triangular, and U upper triangular. The iteration can then be written as (Jacobi)

Dφr+1 = (L+ U)φr + f (26)

and (Gauss-Seidel)

(D − L)φr+1 = Uφr + f (27)

With a relaxation parameter ω, the Jacobi iteration changes to

φr+1
i,j =

ω

4
(φri+1,j + φri−1,j + φri,j+1 + φri,j−1 + h2fi,j) + (1− ω)φri,j (28)

and similarly for Gauss-Seidel. In matrix form,

φr+1 = ωD−1 ((L+ U)φr + f) + (1− ω)φr (29)

2) a. In the implementation, the function assemble creates the matrix A and the right hand
side f using a given grid size and a given block configuration. The linear system of
equations can then by solved with the jac function or with the gs function. See Appendix
B for all code.
In the solvers, the possibility to do convergence study is included by asking for a second
output argument. To get the exact solution, MATLAB®’s direct sparse solver (\) is used.
For these small problems, this is of course much faster than all the other solvers here.

b. In Figure 4, the convergence of the Jacobi method is shown, with ω = 1.0, 0.8, 0.5, and
of the G-S method with ω = 1.0, 1.3, 1.6. For ω = 1.0, the G-S method is twice as fast
as Jacobi, as expected. The under-relaxed Jacobi is slower than the ordinary Jacobi,
but that makes it a good smoother (see next section). The G-S method performs better
with over relaxation, but when ω is close to 2, the method is becoming less stable. The
value ω = 1.6 gives good convergence without any oscillations, although a higher value
gives a slightly faster convergence. With a red-black ordering Gauss-Seidel (not shown
here), ω could be closer to 2 with good result.

c. To compare the solutions, we need to compute the flux. The function fluxeval does
this using second-order one-sided difference approximations. With the lines

[A,f]=assemble(24,[1,7,14,16]);
u=gs(A,f,zeros(size(f)),1500,1.6);
flux=fluxeval(u)

we get exactly the same values as given in the example.

3) In the multigrid routine, injection is used as restriction operator. This simply means that
some of the elements from the fine grid are extracted:

φ2h
i,j = φh2i,2j , 0 ≤ i, j ≤ N/2 (30)

8



0 500 1000 1500 2000 2500 3000 3500 4000

10−15

10−10

10−5

100

Iteration

E
rr

or
, L

2−n
or

m

Jacobi, ω=1.0
Jacobi, ω=0.8
Jacobi, ω=0.5
Gauss−Seidel, ω=1.0
Gauss−Seidel, ω=1.3
Gauss−Seidel, ω=1.6

Figure 4: The convergence of the Jacobi method and the Gauss-Seidel method for different values
of the relaxation parameter ω.

This is easy to do in MATLAB®  using the colon operator, see the restrict function. For the
prolongation, interpolation is used. This means that all the even elements on the fine grid
are set to the values on the coarse grid, and the other values are interpolated:

φh2i,2j = φ2h
i,j , 0 ≤ i, j ≤ N/2 (31)

φh2i+1,2j =
1
2

(φ2h
i,j + φ2h

i+1,j) (32)

φh2i,2j+1 =
1
2

(φ2h
i,j + φ2h

i,j+1) (33)

φh2i+1,2j+1 =
1
4

(φ2h
i,j + φ2h

i,j+1 + φ2h
i+1,j + φ2h

i+1,j+1) (34)

This is also relatively easy to do in MATLAB®, see the function prolongate.

The actual multigrid code for two grids is implemented in mg. Note that two different methods
are available at the coarse grid, either solving exactly using \, or making ν3 iterations.

a. In Figure 5, the convergence of the multigrid routine with Jacobi smoother and relaxation
parameters 1/2 and 4/5 is compared with the convergence of pure Jacobi and Gauss-
Seidel. The parameters ν1 = ν2 = 2, and two methods are used at the coarse level: the
exact solver, and making ν3 = 4 Jacobi iterations.
The multigrid solver is much better that the pure iterative methods, and ω = 0.8 is
better that ω = 0.5. This is clear from the discussion in the lecture notes, since ω = 0.8
gives a lower maximum multiplication factor for the high frequencies. We also see that
the multigrid solvers with Jacobi at the coarse level converge slower than the solvers

9



0 50 100 150 200 250 300

10−15

10−10

10−5

100

Iteration

E
rr

or
, L

2−n
or

m

Jacobi, ω=1.0
Gauss−Seidel, ω=1.0
Multigrid Jacobi, ω=0.5
Multigrid Jacobi, ω=0.8
Multigrid, exact coarse, ω=0.5
Multigrid, exact coarse, ω=0.8

Figure 5: The convergence of the Jacobi method, the Gauss-Seidel method, and the multigrid
solver.

with exact solution on the coarse level. This shows that it is a good idea to solve the
coarser problem more accurately, since the time spent at the finest level is dominating
(at least for real problems).

b. Figure 6 shows the convergence of multigrid with ν1 = ν2 = 1, ν3 = 2 and with ν1 =
ν2 = 2, ν3 = 4. The second is much faster, showing again that the coarse level solution
must be accurate, plus the fact that ν1 = ν2 = 1 probably does not decrease the high
frequency error sufficiently.

4) There are
(

16
4

)
= 1820 different configurations of the four blocks, and the code below solves

the equation for all of these and computes the fluxes, using the multigrid solver with ω = 0.8.
The maximum absolute difference from the given fluxes are computed and stored.

flux0=[
0.0000 0.0000 0.0000 0.0000
0.0075 0.0051 0.0076 0.0099

% ...
0.0099 0.0076 0.0051 0.0075
0.0000 0.0000 0.0000 0.0000
];

configs=nchoosek(1:16,4);
nconfigs=size(configs,1);
err=zeros(1,nconfigs);
for ii=1:nconfigs

u=mg(24,configs(ii,:),20,0.8,1);

10



0 50 100 150 200 250 300

10−15

10−10

10−5

100

Iteration

E
rr

or
, L

2−n
or

m

Multigrid Jacobi, ν
1
=ν

2
=1, ν

3
=2

Multigrid Jacobi, ν
1
=ν

2
=2, ν

3
=4

Figure 6: The convergence of the multigrid solver with different numbers of Jacobi iterations.

flux=fluxeval(u);
err(ii)=max(abs(flux(:)-flux0(:)));

end

In Figure 7, the errors for all configurations are shown. It is clear that one configuration has
an error close to zero, and this one can be found by

[themin,pos]=min(err)
configs(pos,:)

which gives the correct configuration (3, 5, 8, 15), which is illustrated in Figure 8. The error
is 4.9 · 10−5, that is, the rounding error in the values provided.

5) The generalized V-cycle multigrid routine is implemented in the function mgv. A recursive
technique is used, very much in analogy with the pseudo code in the lecture notes. The
subfunction VGh performs on V-cycle. At the coarsest grid, ν1 + ν2 Jacobi iterations are
performed.

Figure 9 shows the convergence for some levels of refinement. To be able to use 5 levels, a
grid of size 6 · 24 must be used, that is, 96× 96. The convergence is faster the more levels we
use, as expected. We know from before that the two-grid multigrid is much faster than Jacobi
and Gauss-Seidel, so the higher levels of multigrid are of course much better than those.

In Figure 10, a study similar to the one in the lecture notes is shown. For the same coarse
grid, different numbers of levels are used. This plot shows that you can have as fine mesh as
you want without having to do more iterations, as long as you keep the same coarse level.

11



0 200 400 600 800 1000 1200 1400 1600 1800
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Configuration

Fl
ux

 e
rr

or

Figure 7: The error in the fluxes for all possible configurations of the source blocks. Configuration
number 911, corresponding to source positions (3, 5, 8, 15), gives essentially no error.

Another convergence study can be made where the problem is solved exactly on the coarsest
mesh. This is often done in practice, since it is cheap to do and gives good convergence. We
can see the following:

• The convergence is about the same for all grid sizes. This is consistent with the previous
result, namely that the convergence is independent of the grid size, as long as the coarse
grid is the same.

• For all problems, we get full machine precision in about 15 iterations. This is significantly
better than before, when we just made four Jacobi iterations at the coarse mesh.

Of course, one does not have to implement a sparse Gaussian elimination routine, but instead
just make a lot of Jacobi iterations at the innermost level. This should be cheap since the
mesh is very coarse.

12



0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

Plot Of the Forcing RHS

y

Figure 8: The configuration of the sources for the given fluxes, (3, 5, 8, 15).

13



0 10 20 30 40 50 60

10−15

10−10

10−5

100

Iteration

E
rr

or
, L

2−n
or

m

2 levels
3 levels
4 levels
5 levels

Figure 9: The convergence of the generalized V-cycle multigrid routine, for different numbers of
refinements.

0 10 20 30 40 50 60

10−15

10−10

10−5

100

Iteration

E
rr

or
, L

2−n
or

m

2 levels
3 levels
4 levels
5 levels

Figure 10: The convergence of the generalized V-cycle multigrid routine, for different numbers of
refinements but with the same coarse mesh.

14



0 2 4 6 8 10 12 14 16 18 20

10−15

10−10

10−5

100

Iteration

E
rr

or
, L

2−n
or

m

12x12, 2 levels
24x24, 3 levels
48x48, 4 levels
96x96, 5 levels

Figure 11: The convergence of the generalized V-cycle multigrid routine, for different numbers of
refinements. On the coarsest mesh, the equation is solved exactly (using direct Gaussian elimina-
tion).

15



Appendix A: Code for Part #1

channelflow.m

function [Q,x,y,u]=channelflow(l,b,h,N)

% Parameters

a=sqrt(1/4*(l-b)^2-h^2);

dx=1/(N-1);

% Grid

[xi,eta]=ndgrid(0:dx:1,0:dx:1);

x=(b/2+a*eta).*xi;

y=h*eta;

% Coefficients in transformed equation

J=h*(b/2+a*eta);

a1=a^2*xi.^2+h^2;

b1=a*xi.*(b/2+a*eta);

c1=(b/2+a*eta).^2;

e1=2*a^2*xi;

% Initialize matrix and right hand side

A=sparse(N^2,N^2);

F=zeros(N^2,1);

% Mapping between (i,j) and position in solution vector

map=zeros(N,N);

map(:)=1:N^2;

% Molecules for du/dx, d2u/dx2, d2u/dy2, and d2u/dxdy

mol_xi=[0,-1,0;0,0,0;0,1,0]/2/dx;

mol_xixi=[0,1,0;0,-2,0;0,1,0]/dx^2;

mol_etaeta=mol_xixi’;

mol_xieta=[1,0,-1;0,0,0;-1,0,1]/4/dx^2;

% Interior points

for i=2:N-1

for j=2:N-1

% Form stencil for full equation

mol=-1/J(i,j)^2*(a1(i,j)*mol_xixi-2*b1(i,j)*mol_xieta+ ...

c1(i,j)*mol_etaeta+e1(i,j)*mol_xi);

% Insert in A

for i1=-1:1

for j1=-1:1

A( map(i,j), map(i+i1,j+j1) ) = mol(i1+2,j1+2);

end

end

% RHS is 1

F( map(i,j) ) = 1;

end

end

% Bottom boundary (u=0)

for i=1:N

A( map(i,1), map(i,1) ) = 1;

F( map(i,1) ) = 0;

16



end

% Right boundary (u=0)

for j=1:N

A( map(N,j), map(N,j) ) = 1;

F( map(N,j) ) = 0;

end

% Top boundary (du/dn=0)

for i=2:N-1

t1=-a/(a+b/2)*xi(i,N);

t2=1;

A( map(i,N), map(i+1,N) ) = t1/(2*dx);

A( map(i,N), map(i-1,N) ) = -t1/(2*dx);

A( map(i,N), map(i,N) ) = 3*t2/(2*dx);

A( map(i,N), map(i,N-1) ) = -4*t2/(2*dx);

A( map(i,N), map(i,N-2) ) = t2/(2*dx);

F( map(i,N) ) = 0;

end

% Left boundary (du/dn=0)

for j=2:N

A( map(1,j), map(1,j) ) = -3/(2*dx);

A( map(1,j), map(2,j) ) = 4/(2*dx);

A( map(1,j), map(3,j) ) = -1/(2*dx);

F( map(1,j) ) = 0;

end

% Solve

U=A\F;

u=reshape(U,N,N);

% Compute Q

I=u.*abs(J);

mid=(I(1:N-1,1:N-1)+I(2:N,1:N-1)+I(1:N-1,2:N)+I(2:N,2:N))/4;

Q=sum(mid(:))*dx^2;

17



Appendix B: Code for Part #2

assemble.m

function [A,f]=assemble(gridsize,B)

h=1/gridsize;

n=gridsize-1;

f=zeros(n,n);

for ii=1:4

row=floor((B(ii)-1)/4)+1;

col=mod(B(ii)-1,4)+1;

del=gridsize/6;

f(del*col:del*(col+1),del*row:del*(row+1))=1;

end

f=f(:);

A1=spdiags([-ones(n,1) 2*ones(n,1) -ones(n,1)],-1:1,n,n)/h^2;

A=kron(A1,speye(n))+kron(speye(n),A1);

jac.m

function [u,err]=jac(A,f,u,niter,omega)

if nargout>=2

uexact=A\f;

end

n=sqrt(length(f));

D=diag(diag(A));

LU=-(tril(A,-1)+triu(A,1));

err=zeros(1,niter);

for ii=1:niter

u=omega*(D\(LU*u+f))+(1-omega)*u;

if nargout>=2

err(ii)=norm(u-uexact);

end

end

18



gs.m

function [u,err]=gs(A,f,u,niter,omega)

if nargout>=2

uexact=A\f;

end

n=sqrt(length(f));

DL=diag(diag(A))+tril(A,-1);

U=-triu(A,1);

err=zeros(1,niter);

for ii=1:niter

u=omega*(DL\(U*u+f))+(1-omega)*u;

if nargout>=2

err(ii)=norm(u-uexact);

end

end

fluxeval.m

function flux=fluxeval(u)

n=sqrt(size(u,1));

h=1/(n+1);

u0=zeros(n+2,n+2);

u0(2:n+1,2:n+1)=reshape(u,n,n);

bottom=(-3*u0(1,:)+4*u0(2,:)-u0(3,:))’/2/h;

top=(-3*u0(end,:)+4*u0(end-1,:)-u0(end-2,:))’/2/h;

left=(-3*u0(:,1)+4*u0(:,2)-u0(:,3))/2/h;

right=(-3*u0(:,end)+4*u0(:,end-1)-u0(:,end-2))/2/h;

flux=[left right bottom top];

19



restrict.m

function w2h=restrict(wh)

n=sqrt(size(wh,1));

wh=reshape(wh,n,n);

w2h=wh(2:2:end,2:2:end);

w2h=w2h(:);

prolongate.m

function wh=prolongate(w2h)

n=sqrt(size(w2h,1));

w2h0=zeros(n+2,n+2);

w2h0(2:n+1,2:n+1)=reshape(w2h,n,n);

n=2*n+3;

wh=zeros(n,n);

wh(1:2:n,1:2:n)=w2h0;

wh(2:2:n-1,1:2:n)=(wh(1:2:n-2,1:2:n)+wh(3:2:n,1:2:n))/2;

wh(1:2:n,2:2:n-1)=(wh(1:2:n,1:2:n-2)+wh(1:2:n,3:2:n))/2;

wh(2:2:n-1,2:2:n-1)=(wh(2:2:n-1,1:2:n-2)+wh(2:2:n-1,3:2:n))/2;

wh=wh(2:n-1,2:n-1);

wh=wh(:);

20



mg.m

function [u,err]=mg(gridsize,B,niter,omega,backslash)

nu1=2;

nu2=2;

nu3=4;

n=gridsize-1;

uh=zeros(n^2,1);

[Ah,fh]=assemble(gridsize,B);

A2h=assemble(gridsize/2,B);

if nargout>=2

uexact=Ah\fh;

end

for ii=1:niter

uh=jac(Ah,fh,uh,nu1,omega);

rh=fh-Ah*uh;

r2h=restrict(rh);

if backslash

e2h=A2h\r2h;

else

e2h=jac(A2h,r2h,zeros(size(r2h)),nu3,1.0);

end

eh=prolongate(e2h);

uh=uh+eh;

uh=jac(Ah,fh,uh,nu2,omega);

if nargout>=2

err(ii)=norm(uh-uexact);

end

end

u=uh;

21



mgv.m

function [u,err]=mgv(gridsize,B,niter,omega,refinements)

nu1=2;

nu2=2;

finegrid=gridsize/2^refinements;

n=gridsize-1;

uh=zeros(n^2,1);

[Ah,fh]=assemble(gridsize,B);

if nargout>=2

uexact=Ah\fh;

end

for ii=1:niter

uh=VGh(uh,fh,B,finegrid,nu1,nu2,omega);

if nargout>=2

err(ii)=norm(uh-uexact);

end

end

u=uh;

function uh=VGh(uh,fh,B,finegrid,nu1,nu2,omega)

n=sqrt(length(uh))+1;

Ah=assemble(n,B);

uh=jac(Ah,fh,uh,nu1,omega);

if n>finegrid

r2h=restrict(fh-Ah*uh);

e2h=VGh(zeros(size(r2h)),r2h,B,finegrid,nu1,nu2,omega);

uh=uh+prolongate(e2h);

end

uh=jac(Ah,fh,uh,nu2,omega);

22

sagarw
MATLAB

sagarw
®

sagarw
is a trademark of The MathWorks, Inc.


	Untitled



