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1 Outline for this Module
Slide 1

Overview of Integral Equation Methods
Important for many exterior problems
(Fluids, Electromagnetics, Acoustics)
Quadrature and Cubature for computing integrals
One and Two dimensional basics
Dealing with Singularities
1st and 2nd Kind Integral Equations
Collocation, Galerkin and Nystrom theory
Alternative Integral Formulations
Ansatz approach and Green’s theorem
Fast Solvers
Fast Multipole and FFT-based methods.

2 Outline
Slide 2

Integral Equation Methods
Exterior versus interior problems
Start with using point sources
Standard Solution Methods
Collocation Method
Galerkin Method
Some issues in 3D
Singular integrals

3 Interior Vs Exterior Problems
Slide 3

Interior Exterior

Temperature 
known on surface

2 0T∇ =

inside

2 0T∇ =
outside

Temperature 
known on surfac

"Temperature in a tank" "Ice cube in a bath"

What is the heat flow?
Heat flow = Thermal conductivity

∫
surface

∂T
∂n

Note 1 Why use integral equation methods?

For both of the heat conduction examples in the above figure, the temperature,
T , is a function of the spatial coordinate, x, and satisfies ∇2T (x) = 0. In both
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problems T (x) is given on the surface, defined by Γ, and therefore both problems
are Dirichlet problems. For the “temperature in a tank” problem, the problem
domain, Ω is the interior of the cube, and for the “ice cube in a bath” problem,
the problem domain is the infinitely extending region exterior to the cube. For
such an exterior problem, one needs an additional boundary condition to specify
what happens sufficiently far away from the cube. Typically, it is assumed there
are no heat sources exterior to the cube and therefore

lim
‖x‖→∞

T (x) → 0.

For the cube problem, we might only be interested in the net heat flow from
the surface. That flow is given by an integral over the cube surface of the
normal derivative of temperature, scaled by a thermal conductivity. It might
seem inefficient to use the finite-element or finite-difference methods discussed in
previous sections to solve this problem, as such methods will need to compute
the temperature everywhere in Ω. Indeed, it is possible to write an integral
equation which relates the temperature on the surface directly to its surface
normal, as we shall see shortly.
In the four examples below, we try to demonstrate that it is quite common
in applications to have exterior problems where the known quantities and the
quantities of interest are all on the surface.

4 Examples

4.1 Computation of Capacitance
Slide 4

v+-
2 0    Outsi∇ Ψ =

 is given  on SΨ

potential

What is the capacitance?
Capacitance = Dielectric Permittivity

∫
∂Ψ
∂n

Note 2 Example 1: Capacitance problem

In the example in the slide, the yellow plates form a parallel-plate capacitor
with an applied voltage V . In this 3-D electrostatics problem, the electrostatic
potential Ψ satisfies ∇2Ψ(x) = 0 in the region exterior to the plates, and the
potential is known on the surface of the plates. In addition, far from the plates,
Ψ → 0. What is of interest is the capacitance, C, which satisfies

q = CV
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where q, the net charge on one of the plates, is given by the surface normal of
the potential integrated over one plate and scaled by a dielectric permittivity.

4.2 Drag Force in a Microresonator
Slide 5

Resonator Discretized Stru

Computed Forces
Bottom View

Computed Forces
Top View

Note 3 Example 2: Drag force in a MEMS device

The example in the slide is a microresonator, it is a structure that can be made
to vibrate using electrostatic forces. The changing character of those vibra-
tions can be used to sense rotation. The particulars of how the microresonator
operates is not directly relevant to our discussion of integral equations, except
for one point. In order to determine how much energy is needed to keep the
microresonator vibrating, it is necessary to determine the fluid drag force on
comb structures shown in the bottom part of theslide. The fluid is the air sur-
rounding the structure, and at the micron-scale of these devices, air satisfies the
incompressible Stokes equation,

∇2u(x) = ∇p(x) (1)
∇ · u(x) = 0

where u is the fluid velocity and p is the pressure.By specifying the comb velocity,
and then computing the surface pressure and the normal derivative of velocity,
one can determine the net drag force on the comb. Once again, this is a problem
in which the known quantities and the quantities of interest are on the surface.
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4.3 Electromagnetic Coupling in a Package
Slide 6

Picture Thanks to Coventor.

Note 4 Example 3: Electromagnetic coupling in a package

In the 40 lead electronic package pictured in the slide, it is important to de-
termine the extent to which signals on different package leads interact. To
determine the magnetic interaction between signal currents flowing on different
wires, one must solve

∇2H(x) = J(x) (2)
∇ · J(x) = 0

where H is the magnetic field and J is the signal current density. By specifying
the current, and then computing the magnetic field at the surfaces of the leads,
one can determine the magnetic interaction. Again, this is a problem in which
the known quantities and the quantities of interest are on the surface.

4.4 Capacitance of Microprocessor Signal Lines
Slide 7

Note 5 Example 4: Capacitance of microprocessor signal lines

This last example in the above slide is a picture of the wiring on a microprocessor
integrated circuit. A typical microprocessor has millions of wires, so we are only
looking at a small piece of a processor. The critical problem in this example
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is determining how long signals take to get from the output of a logical gate
to the input of the next gate. To compute that delay, one must determine the
capacitance on each of the wires given in the slide picture. To do so requires
computing charges given electrostatic potentials as noted above.

5 What is common about these problems?
Slide 8

Exterior Problems
MEMS device - fluid (air) creates drag
Package - Exterior fields create coupling
Signal Line - Exterior fields.
Quantities of interest are on surface
MEMS device - Just want surface traction force
Package - Just want coupling between conductors
Signal Line - Just want surface charge.
Exterior problem is linear and space-invariant
MEMS device - Exterior Stoke’s flow equation (linear)
Package - Maxwell’s equations in free space (linear)
Signal line - Laplace’s equation in free spce (linear)

But problems are geometrically very complex

6 Exterior Problems

6.1 Why not use FDM / FEM?
Slide 9

2-D Heat Flow Example

0 at T = ∞
But, must
truncate t

mesh

Surface

Only need ∂T
∂n

on the surface, but T is computed everywhere.
Must truncate the mesh, ⇒ T (∞) = 0 becomes T (R) = 0.

Note 6 Heat conduction in 2D

In this slide above, we consider a two dimensional exterior heat conduction
problem in which the temperature is known on the edges, or surface, of a square.
Here, the quantity of interest might be the total heat flow out of the square.
The temperature T satisfies

∇2T (x) = 0 x ∈ Ω (3)
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T (x) given x ∈ Γ
lim‖x‖→∞T (x) = 0

where Ω is the infinite domain outside the square and Γ is the region formed by
the edges of the square.
Using finite-element or finite-difference methods to solve this problem requires
introducing an additional approximation beyond discretization error. It is not
possible to discretize all of Ω, as it is infinite, and therefore the domain must be
truncated with an artificial finite boundary. In the slide,the artificial boundary
is a large ellipse on which we assume the temperature is zero. Clearly, as the
radius of the ellipse increases, the truncated problem more accurately represents
the domain problem, but the number of unknowns in the discretization increases.
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7 Laplace’s Equation

7.1 Green’s Function
Slide 10

In 2D
If u = log

(√
(x− x0)2 + (y − y0)2

)
then ∂2u

∂x2 + ∂2u
∂y2 = 0 ∀ (x, y) �= (x0, y0)

In 3D
If u = 1√

(x−x0)2+(y−y0)2+(z−z0)2

then ∂2u
∂x2 + ∂2u

∂y2 + ∂2u
∂z2 = 0 ∀ (x, y, z) �= (x0, y0, z0)

Proof: Just differentiate and see!

Note 7 Green’s function for Laplace’s equation

In the next few slides, we will use an informal semi-numerical approach to
deriving the integral form of Laplace’s equation. We do this inpart because
such a derivation lends insight to the subsequent numerical procedures.
To start, recall from basic physics that the potential due to a point charge is
related only to the distance between the point charge and the evaluation point.
In 2-D the potential is given by the log of the distance, and in 3-D the potential
is inversely proportion to the distance. The precise formulas are given on the
slide. A little more formally, direct differentiation reveals that

u(x, y) = log
√

(x − x0)2 + (y − y0)2 (4)

satisfies the 2-D Laplace’s equation everywhere except x = x0, y = y0 and

u(x, y, z) =
1√

(x− x0)2 + (y − y0)2 + (z − z0)2
(5)

satisfies the 3-D Laplace’s equation everywhere except x = x0, y = y0, z = z0.
These functions are sometimes referred to as Green’s functions for Laplace’s
equation.

� Exercise 1 Show by direct differentiation that the functions in (4) and (5)
satisfy ∇2u = 0, in the appropriate dimension almost everywhere.
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8 Laplace’s Equation in 2D

8.1 Simple idea
Slide 11

2 2

2 2
+ = 0   outs

u u

x y

∂ ∂
∂ ∂

Surface

( )0 0,x y

2 2

2 2
+ = 0   outside 

u u

x y

∂ ∂
∂ ∂

Problem Solved

 is given on surfaceu

( ) ( )( )2 2

0 0Let  logu x x y y= − + −

Does not match boundary conditions!

Note 8 Simple idea for solving Laplace’s equation in 2D

Here is a simple idea for computing the solution of Laplace’s equation outside
the square. Simply let

u(x, y) = α log
√

(x− x0)2 + (y − y0)2

where x0, y0 is a point inside the square. Clearly such a u will satisfy ∇2u = 0
outside the square, but u may not match the boundary conditions. By adjusting
α, it is possible to make sure to match the boundary condition at at least one
point.

� Exercise 2 Suppose the potential on the surface of the square is a constant.
Can you match that constant potential everywhere on the perimeter of the
square by judiciously selecting α.

8.1.1 "More points"
Slide 12

2 2

2 2
+ = 0   out

u u

x y

∂ ∂
∂ ∂

( )1 1,x y

( )2 2,x y

 is given on surfaceu

( ),n nx y

Let u =
∑n

i=1 αi log
(√

(x− xi)2 + (y − yi)2
)

=
∑n

i=1 αiG(x− xi, y − yi)
Pick the αi’s to match the boundary conditions!
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Note 9 ...contd

To construct a potential that satisfies Laplace’s equation and matches the
boundary conditions at more points, let u be represented by the potential due
to a sum of n weighted point charges in the square’s interior. As shown in the
slide, we can think of the potential due to a sum of charges as a sum of Green’s
functions. Of course, we have to determine the weights on the n point charges,
and the weight on the ith charge is denoted hereby αi.

8.1.2 "More points equations"
Slide 13

( )1 1,x y

( )2 2,x y

( ),n nx y

( )
1 1
,t tx y

Source Strengths selec
to give correct potent

testtestpoints.

( ) ( )

( ) ( )

( )

( )

1 1 1 1 1 11 1 1

1 1

, , ,

, , ,
n n n n n n

t t t n t n t t

nt t t n t n t t

G x x y y G x x y y x y

G x x y y G x x y y x y

α

α

� � � �− − − − Ψ� �� � � �� �� � � �� � =� � � �� �� � � �� �� � � �� �− − − − Ψ� �� � � �

� �

� � � ��

� � � ��

� �

Note 10 ...contd

To determine a system of n equations for the n αi’s,consider selecting a set of
n test points, as shown in the slide above. Then, by superposition, for each test
point xti , yti ,

u(xti , yti) =
n∑
i=1

αi log
√

(xti − x0)2 + (yti − y0)2 =
n∑
i=1

αiG(xti − x0, yti − y0).
(6)

Writing an equation like (6) for each test point yields the matrix equation on
the slide.
The matrix A in the slide has some properties worth noting:

• A is dense, that is Ai,j never equals zero. This is because every charge
contributes to every potential.

• If the test points and the charge points are ordered so that the ith test
point is nearest the ith charge, thenAi,i will be larger than Ai,j for all j.

Item 2 above seems to suggest that A is diagonally dominant, but this is not
the case. Diagonal dominance requires that the absolute sum of the off-diagonal
entries is smaller than the magnitude of the diagonal. The matrix above easily
violates that condition.
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� Exercise 3 Determine a set of test points and charge locations for the 2-D
square problem that generates anAmatrix where the magnitude of the diagonals
are bigger than the absolute value of the off-diagonals, but the magnitude of
the diagonal is smaller than the absolute sum of the off-diagonals.

8.1.3 Computational Results
Slide 14

R=10

r
Circle with Chargesr=9.5

n=20 n=40

Potentials on the Circle

Note 11 results

It is possible to construct a numerical scheme for solving exterior Laplace prob-
lems by adding progressively more point charges so as to match more boundary
conditions. In the slide above, we show an example of using such a method to
compute the potential exterior to a circle of radius 10, where the potential on
the circle is given to be unity. In the example, charges are placed uniformly
on a circle of radius 9.5, and test points are placed uniformly on the radius 10
circle. If 20 point charges are placed in a circle of radius 9.5, then the potential
produced will be exactly one only at the 20 test points on the radius 10 circle.
The potential produced by the twenty point charges on the radius 10 circle is
plotted in the lower left corner of the slide above. As might be expected, the
potential produced on the radius 10 circle is exactly one at the 20 test points,
but then oscillates between 1 and 1.2 on the radius 10 circle. If 40 charges and
test points are used, the situation improves. The potential on the circle still
oscillates, as shown in the lower right hand corner, but now the amplitude is
only between 1 and 1.004.
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8.2 Integral Formulation
8.2.1 Limiting Argument

Slide 15
Want to smear point charges to the surface

Results in an integral equation

Ψ(x) =
∫
surface

G(x, x′)σ(x′)dS′

How do we solve the integral equation?

Note 12 Single layer potential

The oscillating potential produced by the point charge method is due to the
rapid change in potential as the separation between evaluation point and point
charge shrinks. If the point charges could be smeared out, so that the produced
potential did not rise to infinity with decreasing separation, then the resulting
computed potential would not have the oscillation noted on the previous slide.
In addition, it makes the most sense to smear the point charges onto the surface,
as then the charge density and the known potential have the same associated
geometry. The result is the integral equation given on the bottom of the above
slide, where now the unknown is a charge density on the surface and the potential
due to that charge density is given by the well-known superposition integral. In
the case of two or three dimensional Laplace problems, G(x, x′) can be written
as Ĝ(x−x′), as the potential is only a function of distance to the charge density
and not a function of absolute position. For such a Green’s function,

Ψ(x) =
∫
surface

Ĝ(x− x′)σ(x′)dS′,

which one may recognize from system theory as a convolution. This connection
is quite precise. A space-invariant system has an impulse response, which is
usually referred to as a Green’s function. The output, in this case the potential,
is a convolution of the impulse response with the input, in this case the charge
density. Such an integral form of the potential is referred to as a single layer
potential.

Note 13 Types of integral equations

The single layer potential is an example of a class of integral equations known as
"Fredholm integral equation of the First Kind". A Fredholm integral equation
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of the Second Kind results when the unknown charge density exists not only
under the integral sign but also outside it. An example of such an equation is

Ψ(x) = σ(x) +
∫
surface

K(x− x′)σ(x′)dS′,

Fredholm integral equations, in which the domain of integration is fixed, usu-
ally arise out of boundary value problems. Initial value problems typically give
rise to the so-called Volterra integral equations, where the domain of integra-
tion depends on the output of interest. For example, consider the initial value
problem

dx(t)
dt

= tx(t); t ∈ [0, T ], T > 0.

x(t = 0) = x0

The "solution" of this equation is the following Volterra integral equation:

x(t) = x0 +
∫ t

0

ξx(ξ)dξ

8.3 Basis Function Approach
8.3.1 Basic Idea

Slide 16
( ) ( )

�
1

Basis Functions

Represent 
n

i i
i

x xσ α ϕ
=

= 

The basis functions are “on” the surfac

Example Basis
Represent circle with straight lines

Assume  is constant along each lineσ

Can be used to approximate the density
May also approximate the geometry.

Note 14 Numerical solution of the single layer potential

As we have studied extensively in the finite-element section of the course, one
approach to numerically computing solutions to partial differential equations is
to represent the solution approximately as a weighted sum of basis functions.
Then, the original problem is replaced with the problem of determining the
basis function weights. In finite-element methods, the basis functions exist in
a volume, for integral equations they typically exist on a surface. For 2-D
problems that means the basis functions are restricted to curves and in 3-D the
basic functions are on physical surfaces.
As an example, consider the circle in the slide above. One could try to represent
the charge density on the circle by breaking the circle into n sub-arcs, and then
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assume the charge density is a constant on each sub-arc. Such an approach is not
commonly used. Instead the geometry is usually approximated along with the
charge density. In this example case, shown in the center right of the slide, the
sub-arcs of the circle are replaced with straight sections, thus forming a polygon.
The charge density is assumed constant on each edge of the polygon.The result
is a piecewise constant representation of the charge density on a polygon.

8.3.2 Geometric Approximation is Not New
Slide 17

Piecewise Straight surface basis 
Functions approximate the circle

Triangles for 2-D F
approximate the circ

( ) ( ) ( )
1

,
n

i i
iapprox

surface

x G x x x dSα ϕ
=

′ ′ ′Ψ = �

Note 15

The idea that both the geometry and the unknown charge density has been ap-
proximated is not actually a new issue. As shown in the figure in the above slide,
if FEM methods are used to solve an interior problem, and triangular elements
are used, then the circle is approximated to exactly the same degree as when
straight sections replace the sub-arcs for the surface integral equation. As shown
at the bottom of the above slide, we can substitute the basis function represen-
tation into the integral equation, but then we should also note that the integral
is now over the approximated geometry. It is common, but not mathematically
justified, to ignore the errors generated by the geometry approximation. We
will also ignore the error in the geometric approximation, and justify ourselves
by assuming that there are no circles, but only polygons, as then there is no
geometric approximation.

8.3.3 Piecewise Constant Straight Sections Example
Slide 18

1) Pick a set of n Point
surface

1x

2) Define a new surface 
connecting points with n

( )i3) Define 1 if  is ix x lϕ =
( )iotherwise,  0 xϕ =

2x
nx

1l

2l

nl
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Ψ(x) =
∫

approx
surface

G(x, x′)
n∑
i=1

αiϕi(x′)dS′ =
n∑
i=1

αi

∫
line li

G(x, x′)dS′

How do we determine the αi’s?

Note 16

In the above slide, we complete the description of using constant charge densities
on straight sections as the basis. If we substitute this example basis function
into the integral equation, as is done at the bottom of the slide, the result is to
replace the original integration of the product of the Green’s function and the
density with a weighted sum of integrals over straight lines of just the Green’s
function. The next step is then to develop an approach for determining the
weights, denoted here by αi’s.

8.3.4 Residual Definition and Minimization
Slide 19

R(x) = Ψ(x) −
∫

approx
surface

G(x, x′)
n∑
i=1

αiϕi(x′)dS′

We pick the αi’s to make R(x) small

General Approach: Pick a set of test functions φ1, . . . , φn and force R(x) to be

orthogonal to the set ∫
φi(x)R(x)dS = 0 for all i

Note 17

One way of assessing the accuracy of the basis function based approximation
of the charge density is to examine how well the approximation satisfies the
integral equation. To be more precise, we define the residual associated with
the integral equation and an approximate solution at the top of the above slide.
Note that R(x) is just the difference between the given potential on the surface
and the potential produced by the approximated charge density. Note also that
the equation is now over the approximate geometry and therefore x and x′ are
both on the approximated surface.
If the representation satisfies the integral equation exactly, then the residual
R(x) will be zero for all x and the approximate solution is equal to the exact
solution (provided the integral equation has a unique exact solution, more on
this later). However this will usually not be possible, and instead we will try
to pick the basis function weights, the αi’s, to somehow minimize R(x). One
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approach to minimizing R(x) is to make it orthogonal to a collection of test
functions, which may or may not be related to the basis functions. As noted
on the bottom of the slide, enforcing orthogonality in this case means ensuring
that the integral of the product of R(x) and φ(x) over the surface is zero.
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8.3.5 Residual Minimization Using Test Functions
Slide 20∫

φi(x)R(x)dS = 0 ⇒
∫
φi(x)Ψ(x)dS −

∫ ∫
approx
surface

φi(x)G(x, x′)
n∑
j=1

αjϕj(x′)dS′dS = 0

We will generate different methods by choosing the φ1, . . . , φn

Collocation : φi(x) = δ(x − xti) (point matching)
Galerkin Method : φi(x) = ϕi(x) (basis = test)
Weighted Residual Method : φi(x) = 1 if ϕi(x) �= 0 (averages)

Note 18

As noted in the equation on the top of the above slide, by substituting the
definition of the residual into the orthogonality equation given in the previous
slide, it is possible to generate n equations, one for each test function. The
generated equation has two integrals. The first is a surface integral of the
product of the given potential with the test function. The second integral is
a double integral over the surface. The integrand of the double integral is
a product of the test function, the Green’s function, and the charge density
representation.
As noted in the slide, and as we will describe in more detail below, three different
numerical techniques can be derived by altering the test functions.

8.3.6 Collocation
Slide 21

Collocation: φi(x) = δ(x − xti) (point matching)∫
δ(x−xti

)R(x)dS=R(xti
)=0 ⇒

∑n

j=1
αj

Ai,j︷ ︸︸ ︷∫
approx
surface

G(xti , x
′)ϕj(x

′)dS′ = Ψ(xti)




A1,1 · · · · · · A1,n

...
. . .

...
...

. . .
...

An,1 · · · · · · An,n







α1

...

...
αn


 =




Ψ(xt1)
...
...

Ψ(xtn)




Note 19 Collocation

The collocation method, described in the above slide, uses shifted impulse func-
tions as test functions, φi(x) = δ(x − xi). Impulse functions, as called “delta”
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functions, have a sifting property when integrated with a smooth function f(x),
∫
f(x)δ(x − xi)dx = f(xi).

Impulse functions are also referred to as generalized functions, and they are
specified only by their behavior when integrated with a smooth function. In the
case of the impulse function, one can think of the function as being zero except
for a very narrow interval around xi, and then being so large in that narrow
interval that

∫
δ(x− xi)dx = 1.

As the summation equation in the middle of the above slide indicates, testing
with impulse functions is equivalent to insisting that R(xi) = 0, or in words,
that the potential produced by the approximated charge density should match
the given potential at n test points. That the potentials match at the test
points gives rise to the method’s name, the point where the potential is exactly
matched is “co-located” with a set of test points.
The n × n matrix equation at the bottom of the above slide has as its right-
hand side the potentials at the test points. The unknowns are the basis function
weights. The jth matrix element for the ith row is the potential produced at
test point xi by a charge density equal to basis function ϕj .

8.3.7 Centroid Collocation for Piecewise Constant Bases
Slide 22

( ) ( ) ( )
1

,
i i

n

t j t j
j approx

surface

x G x x x dSα ϕ
=

′ ′ ′Ψ =  �2x
nx 1l

2l
nl

Collocation point in 
line center

1t
x




A1,1 · · · · · · A1,n

...
. . .

...
...

. . .
...

An,1 · · · · · · An,n







α1

...

...
αn


 =




Ψ(xt1)
...
...

Ψ(xt1)


 Ψ(xti

)=
∑

n

j=1
αj

∫
linej

G(xti
,x′)dS′

︸ ︷︷ ︸
Ai,j

Note 20

In the above slide, a specific collocation algorithm is described. First, the basis
being used is the constant charge density on n straight sections or lines, as de-
scribed above. Note that therefore the geometry is being approximated. Second,
the collocation points being selected are the centroids of the basis functions, in
this case just the center of each straight line. Note that the collocation point is
on the approximated geometry, not the original geometry. So, one can think of
the problem as having been restated to be on a polygon instead of the original
circle. One could also have selected the collocation points on the original circle,
but then the replacement interpretation does not hold.
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In collocation, or point- matching, the charge densities on each of the straight
lines are selected so that the resulting potential at the line centers matches the
given potential. As the equations on this slide make clear, the matrix element
Ai,j is the potential at the center of line i due to a unit charge density along
line j.
It should be noted that the matrix A is dense, the charge on line j contributes
to the potential everywhere. Also note that if line j is far away from line i, then

Ai,j ≈ length(linej) ∗G(xti , xtj ) (7)

� Exercise 4 Suppose we are using piecewise constant centroid collocation
to solve a 2-D Laplace problem, so G(x, y, x′, y′) = log

√
(x− x′)2 + (y − y′)2.

Roughly how far apart do line sections i and j have to be for (7) to be accurate to
within one percent? Assume line j has length of one. Does your answer depend
on the orientation of line j? Does your answer depend on the orientation of line
i? (You should answer yes to one of these and no to the other, do you see why?)

8.3.8 Centroid Collocation Generates Nonsymmetric A
Slide 23

Ψ(xti
)=

∑
n

j=1
αj

Ai,j︷ ︸︸ ︷∫
linej

G(xti
,x′)dS′

1l

2l
1t
x

2t
x

A1,2=
∫

line2
G(xt1 ,x

′)dS′ �=
∫

line1
G(xt2 ,x

′)dS′=A2,1

Note 21

Consider the two line sections, l1 and l2 given in the above slide. For Laplace
problems, G(x, x′) = G(x′, x), and this suggests a symmetry in the underlying
integral equation which is not represented in the collocation discretization. This
asymmetry is shown on the slide above by noting that A1,2 �= A2,1. That is, the
potential at the center of l2 due to a unit charge density on l1 is not equal to
the potential at the center of l1 due to a unit charge on l2.
It is possible to scale the variables to improve the symmetry, consider a change
of variables

α̂i = αi ∗ length(linej).
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In this change of variables, the unknowns α̂i are now the net line charges rather
than the line charge densities. In this new system, Âα̂ = Ψ, where the elements
of the matrix Â are given by

Âi,j =
1

length(linej)

∫
linej

G(xti , x
′)dS′.

Under the change of variables, if line j is far away from line i, then

Âi,j ≈ G(xti , xtj ) ≈ Âj,i. (8)

In other words, the elements of Â corresponding to distant terms are approxi-
mately symmetric.

� Exercise 5 Give an example which shows that the scaled entries of Â can be
far from symmetric. Assume we are using piecewise constant straight sections
with centroid collocation and the 2-D Laplace’s equation Green’s function.

8.3.9 Galerkin
Slide 24
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If G(x, x′) = G(x′, x) then Ai,j = Aj,i ⇒ A is symmetric

Note 22 Galerkin method

In the slide above, we give the equations for the Galerkin method, in which the
test functions are equal to the basis functions. In particular, one generates n
equations for the basis function weights by insisting that R(x) is orthogonal to
each of the basis functions. Enforcing orthogonality corresponds to setting

∫
ϕ(x)R(x)dS = 0

and substituting the definition of R(x) into the orthogonality condition yields
the equation in the center of the above slide.
Note that the Galerkin method yields a system of n equations, one for each
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orthogonality condition, and n unknowns, one for each basis function weight.
Also, the system does not have the potential explicitly as the right hand side.
Instead, the ith right- hand side entry is the average of the product of the
potential and the ith basis function.

8.3.10 Galerkin for Piecewise Constant Bases
Slide 25
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Note 23

In the above slide, a specific Galerkin algorithm is described using the same
example basis introduced above, constant charge density on n straight sections
or lines. Once again, we will think of the problem as having been restated to
be on a polygon instead of the original circle.
In the Galerkin method, the charge densities on each of the straight lines are
selected so that the resulting line averaged potential matches the line averaged
given potential. As the equations on this slide make clear, the matrix element
Ai,j is the average potential over line i, scaled by the length of linei, due to a
unit charge density along line j.
As with the collocation method, the matrix A is dense because the the charge
on line j contributes to the averaged potentials everywhere. Also note that if
line j is far away from line i, then

Ai,j ≈ length(linej) ∗ length(linei) ∗G(xti , xtj ) (9)

� Exercise 6 Suppose we are using piecewise constant centroid collocation
to solve a 2-D Laplace problem, so G(x, y, x′, y′) = log

√
(x− x′)2 + (y − y′)2.

Roughly how far apart do line sections i and j have to be for (9) to be accurate to
within one percent? Assume line j has length of one. Does your answer depend
on the orientation of line j? Does your answer depend on the orientation of line
i? (Your answer should be different than the answer you gave for the collocation
method. Do you see why?)
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9 Laplace’s Equation in 3D

9.1 Electrostatics Example
9.1.1 Dirichlet Problem

Slide 26

v+-
2 0    Outsi∇ Ψ =

 is given  on SΨ

potential

First kind integral equation for charge:

Ψ(x)︸ ︷︷ ︸
Potential

=
∫
surface

1
||x− x′||︸ ︷︷ ︸

Green′s function

σ(x′)︸ ︷︷ ︸
Charge density

dS′

Note 24

In the above slide, we give a typical application example, determining the charge
density on the surface of conducting plates given an applied voltage. As noted
next to the parallel plate figure in the above slide, in the domain exterior to
the plates the potential, Ψ, satisfies Laplace’s equation, and the potential is
given on the surface of the two plates. In this particular example, the top plate
potential is Ψ = 0.5V and the bottom plate potential is Ψ = −0.5V , where V
is the voltage noted in the figure. As mentioned in previous lectures, it is also
important to note that

lim|x|→∞Ψ(x) = 0.

That is, far away from the plates the potential decays to zero.
For this exterior Dirichlet problem, one can write an integral equation that
relates the surface charge density on the plates σ to the potential on the plates.
This integral equation, given at the bottom of the above slide, is often referred
to by physicists as the superposition integral. In the integral equation, x is any
point on the plate surfaces and the surface being integrated over is the union
of the top and bottom plate surfaces. Note that the integration surface is not a
connected domain, but this presents no difficulties.

9.2 Basis Function Approach
9.2.1 Piecewise Constant Basis

Slide 27
Integral Equation : Ψ(x) =

∫
surface

1
||x−x′||σ(x

′)dS′
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Note 25

Consider solving the integral on the top of the above slide where the surface is
the surface of the cube shown in the lower left-hand corner. The first step, as we
have mentioned in previous lectures, is to develop a basis in which to represent
the surface charge density σ.
The cube pictured in the slide has had its surface divided into panels, and
a basis is derived from the panels. In particular, one can associate a basis
function ϕj with each panel j by assigning ϕj(x) the value one when x is a
point on panel j, and setting ϕj(x) = 0 otherwise. If σ is approximated by
a weighted combination of these basis functions, then the approximation is a
piecewise constant representation of the charge density on the surface of the
cube.
A few aspects of this basis set should be noted.

• The basis functions are orthogonal, that is if i �= j,
∫
ϕj(x)ϕi(x)dx = 0.

• These basis functions are normalized with respect to l∞, not l2. That is,
‖ϕ‖∞ = 1 but

‖ϕj‖2
2 =

∫
ϕi(x)ϕi(x)dx = panel area.

Finally, many papers in the literature on solving integral equations refer to
“panel methods”. The name is derived from the idea of breaking a surface into
flat panels.
In the application area of analyzing ocean wave forces on ship hulls, panel
methods are commonly used. However, it is not possible to represent a curved
hull with quadrilateral flat panels. Researchers in the area often create a best
fit panelled surface in which there are gaps between the edges of the panels.
Such a discretization technique is often referred to as using “leaky panels”, a
very compelling image.
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9.2.2 Centroid Collocation
Slide 28
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Note 26

After one has decide on a basis with which to approximately represent the
surface charge density, the next step is to develop a system of equations from
which to determine the basis weights, denoted in the slide above as the αi’s. The
most commonly used approach to forming such a system is to use collocation,
though Galerkin methods are also quite widely used. Recall that in collocation,
the basis function weights are determined by insuring the the integral equation
is exactly satisfied at a collection of “collocation” points. For panel methods,
the most common choice for the position of the collocation points are the panel
centroids, as shown in the cube diagram in the above slide.
The equation in the top right of the above slide relates the potential at collo-
cation point xci to the weights for the panel-based basis functions. To see how
the equation was derived, consider evaluting the potential at the ith collocation
point using the original integral equation

Φ(xci) =
∫
surface

1
‖xci − x′‖

σ(x′)dS′, (10)

where Φ is the know potential on the problem surface and σ is the unknown
charge density. Substituting the approximate representation for σ,

σ(x) ≈
n∑
j=1

αjϕj(x)

into the integral equation results in

Φ(xci) =
∫
surface

G(xci , x
′)

n∑
j=1

αjϕj(x′)dS′, (11)

where G(x, x′) ≡ 1
‖x−x′‖ is used to simplify the formula. Exploiting the fact

that ϕj(x) = 1 if x is on panel j, and zero otherwise, results in the formula at
the top right of the slide.
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The system of equations from which to determine the basis function weights is
given in the lower right corner of the slide. The right hand side of the system
is the vector of known potentials at the collocation points. The i, jth element
of the matrix A is the potential produced at collocation point i due to a unit
charge density on panel j. The vector of α’s are the unknown panel charge
densities.

� Exercise 7 Determine a scaling of the α’s (α̂i = ciαi) such that the scaled
matrix Â has the property

Ai,j ≈ 1
‖xci − xcj‖

when ‖xci − xcj‖ is much larger than a panel diameter.

9.2.3 Calculating Matrix Elements
Slide 29

Panel j

ic
x Collocation

point

,

1

i

i j

pa cnel j x x
A dS′

′−
= �

,

i jc centr

j

id

i

o

Panel Area

x x
A

−
≈One point 

quadrature
Approximation

x

y
z

t

4

,
1 in

0.25*

i jc o

i j
j p

Ar a

x x
A

e

= −
≈ Four point 

quadrature
Approximation

Note 27

In order to calculate the matrix entries for the system of equations described in
the previous slide, recall that Ai,j is the potential produced at collocation point
i due to a unit charge density on panel j. The formula for Ai,j is given on the
top right side of the above slide.
The figure on the left of the above slide is a diagram of how one typically
computes the panel integral given on the top right. First, consider a shift and
rotatation of the coordinate system so that the panel lies in the x − y plane
at z = 0, with the panel’s center at x = 0, y = 0. The figure in the top left
shows the panel in the shifted and rotated coordinate system. Note that the
collocation point must also be placed in the new coordinate system.
If panel j is reasonably well seperated from collocation point i, it is possible to
approximate the integral given in the top right by a single point quadrature.
More specifically, one could approximates the integral of 1

‖xci
−x′‖ by a product

of 1
‖xci

−xcentroidj
‖ and the panel area. As show in the middle figure, a single
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point quadrature is like treating the panel as if it were a point charge at the
panel’s centroid, where the point charge’s strength is equal to the panel area.
If the collocation point is close to the panel, then a single point quadrature
will be insufficiently accurate. Instead, a more accurate four point quadrature
scheme would be to break the panel into four subpanels, and then treat each of
the subpanels as point charges at their respective centers. This simple idea is
shown in the figure at the bottom of the above slide. This four point scheme is
equivalent to ∫

panelj

1
‖xci − x′‖

dS′ ≈
4∑

j=1

0.25 ∗Area
‖xci − xpointj ‖

.

If the panel is a unit square in the x-y plane whose center is at the coordinate
system origin, then the four xpointj ’s are (x, y, z) = (0.25, 0.25, 0), (x, y, z) =
(−0.25, 0.25, 0), (x, y, z) = (−0.25,−0.25, 0), and (x, y, z) = (0.25,−0.25, 0).

9.2.4 Calculating "Self Term"
Slide 30
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Note 28

The diagonal terms Ai,i can not be computed using the quadrature approxima-
tion given on the previous slide. To see this, consider the figure at the top left of
the above slide, where a panel has been shifted and rotated into the x-y plane,
and the collocation point is the center of the panel. The integral that must be
computed is given on the right side of the top of the above slide.
As shown in the middle of the slide, using a single point quadrature scheme will
fail, because the distance between the point charge approximation to the panel
and the collocation point will be zero. Therefore, the single point formula will
require computing the reciprocal of zero, which is infinite. The problem is that
the integrand in ∫

paneli

1
‖xci − x′‖

dS′ (12)

is singular. That is, the integrand approaches infinity at a point x′ which is in
the domain of integration. What is not so obvious is that (12) is an integrable
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singularity. Therefore, even though the integrand approaches infinity at some
point, the “area under the curve” is finite.

9.2.5 Calculating "Self Term"
Tricks of the Trade

Slide 31
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Note 29

In the above slide, we both show that∫
paneli

1
‖xci − x′‖

dS′

is integrable, and also give an idea about how to compute the integral.
As shown in the slide, first rotate and shift the coordinate system so that the
panel is in the x-y plane at z = 0, and so that the collocation point (or equiv-
alently the panel centroid) is at the origin. In this new coordinate system, the
integral can be written as

Ai,i =
∫
panel(rs)i

1
‖x′‖dS

′

where the notation panel(rs) is used to indicate that the integral is over the
rotated and shifted panel.
On the top left of the above slide, a circular disk of radius R and center at the
collocation point is inscribed in the rotated panel. In the equations that follow
the figure, it is noted that the panel integral can be recast as the sum of an
integral over the disk plus an integral over the rest of the panel. The integrand
in the integral over the rest of the panel is no longer singular, but the integrand
in the integral over the disk is still singular.
The integral over the disk can be computed analytically by using a change of
variables. After rotating and shifting the panel, the disk is in the x-y plane and
its center, equal to the collocation point, is at zero. Therefore,

∫
disk

1
‖xci − x′‖

dS′ =
∫
disk

1
‖x′‖dS

′ =
∫ R

0

∫ 2π

0

1
r
rdrdθ
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where r =
√
x2 + y2, rsinθ = x and rcosθ = y. As given in the bottom of the

above slide, the integral over the disk is 2πR.

9.2.6 Calculating "Self Term"
Other Tricks of the Trade

Slide 32
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1. If panel is a flat polygon, analytical formulas exist.

2. Curved panels can be handled with projection.

10 Summary
Slide 33

Integral Equation Methods
Exterior versus interior problems
Start with using point sources
Standard Solution Methods
Collocation Method
Galerkin Method
Integrals for 3D Problems
Singular Integrals

We will examine computing integrals next time, and then examine integral equa-
tion convergence theory.
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