Numerical Schemes for Scalar One-Dimensional
Conservation Laws

Lecture 12



1 Finite Volume Discretization

1.1 Computational Cells
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1.2 Cell averages
Recall that in finite differences 4} ~ u(x;,t").

We think of 47 as representing cell averages

1 Titvs
(TS s / * u(z, t) dx
x .

This “new” interpretation can be easily extended to irregular grids.

2 Conservative Methods

2.1 Definition

Applying integral form of conservation law to a cell j

d Tivd
= wdz = = [f(u(e;y3.6) = flulw;_y,1)]
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We consider here only explicit schemes, but implicit schemes are also possible.

SLIDE 1

SLIDE 2

SLIDE 3



2.2 Numerical Flux function
Fip1r = F (U0, 05141, -, 05, - Gjyr)

and F is a numerical flux function of [ 4+ r 4+ 1 arguments that satisfies the
following consistency condition

‘F(u,u,...,u,u) =f(u)‘

We will sometimes omit the time superscript with the understanding that left and
right hand sides are evaluated at the same time. Thus, the above flux function
expression implies that

n
Fj+%

2.3 Lax-Wendroff Theorem

If the solution of a conservative numerical scheme converges as Az — 0 with
ﬁ—; fixed, then it converges to a weak solution of the conservation law.

= shock capturing schemes are possible
Note 1 The Lax-Wendroff Theorem

While the Lax-Wendroff theorem shows that if we converge to some solution as
the grid is refined, then that solution will be a weak solution of the conservation
law, it does not guarantee that we will converge. In fact the consistency to our
integral form of the conservation law is guaranteed if we employ a conservative
numerical scheme as defined above. We know that in order to obtain convergence
we require some notion of stability. Because we are dealing with a non-linear
problem the concepts of stability used until now are not applicable. At the end
of this lecture we will give sufficient conditions for a scheme to be non-linearly
stable and hence convergent.

The theorem also does not guarantee that the weak solution obtained satisfies
the entropy condition. If more than one weak solution exists for a given problem,
then different conservative numerical schemes may converge to different answers.
We will discuss entropy-satisfying schemes later in the lecture.
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Note 2 Shock Capturing vs. Shock Fitting

We say that a scheme captures shocks when the shocks or discontinuities appear
in the solution as regions of large gradients without having to give them any
special treatment. If we use conservative schemes, the Lax-Wendroff theorem
guarantees that converge, if it occurs, will be to a weak solution. We know that
weak solutions satisfy the jump conditions and therefore give the correct shock
speed.

An alternative to shock capturing schemes are the so called shock fitting meth-
ods. In these methods, one needs to assume that a discontinuity will be present
in the solution. The numerical algorithm iteratively determines the strength and
speed of that discontinuity using the Rankine-Hugoniot jump relation. Shock
fitting schemes will not be considered in this lectures. They are considered
old and hardly used nowadays. The main disadvantage is that one requires a
fair amount of knowledge about the solution before one actually computes it.
They are also very difficult to extend to multidimensions where one can have
very complex interactions involving several shock systems and consequently no
a-priori knowledge about the structure of the solution.

2.3.1 Shock Capturing

In the exact problem:

G s =—t- 1)
Here fo = f(u(xo,t)) and f;j = f(u(zy,1)).

A conservative numerical scheme satisfies an analogous discrete condition:

Az < bl e J
Ez%(“j —43) —Z;](FH% —Fj—%)
Jj= i=

= (Fry =7y

We see that due to the cancellation of all interior fluxes we are only left with the
boundary fluzes. The form of these boundary fluxes will depend on the boundary
conditions.

Note 3 Discrete Conservation

The basic priciple underlying a conservation law is that the total quantity of a
conserved variable in any region changes only due to flux through the bound-
aries. We saw this in the last lecture when we derived some conservation laws
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(conservation of mass, cars, ...). The expression given in the slide is an analo-
gous discrete form of this principle. This discrete conservation means that any
shocks computed by the conservative numerical scheme must be in the “correct”
location. A non-conservative method can give a solution with the shock prop-
agating at the wrong speed. This cannot happen with a conservative method,
since an incorrect shock speed would lead to an incorrect flux, and thus con-
servation would not be preserved. The solution computed with a conservative
method might not accurately resolve the shock (it may be smeared out), but
when the grid is refined sufficiently, the discontinuitiy will be located in the
correct, position.

For example, consider a non-conservative upwind scheme for Burgers’ equation:

acay (ap —af_y) a7 >0
~n+l _ ~n
artt =4 —
J J At ~n (sn ~n an
2:05 (4 —47)  af <0
J
At
n _an(sn_ sm _an(an  _ am
Az doAa = -l (af —ap )+ Y —af (afy, —af)
j=1 a; >0 ;<0

= - (FJ+% - F 1) + conservation errors

2

If the solution is smooth, the conservation errors are O(Ax). If the solution is
not smooth, the conservation errors are O(1).

2.4 First Order Upwind
2.4.1 Linear Advection Equation

SLIDE 7
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Let Fj+% =ady (ij% = auj,l)
Note that for this definition of the numerical flux function the consistency con-
dition is clearly statified. i.e. F(u) = au= f(u).
. . Ata,, .
= Tt = af — —— (il — i)
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J J Az —@? a<0
or
indl A aAt . . la|At . .
it =aj - 'ZA_a:( jr1 — 5 1) AT (474, — 247 +aj_,)

Note that by introducing the absolute value we are able to write a single expres-
sion that takes into account the dependency of the difference stencil on the sign

of a.
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Fj(iP% = afijp a<0
We see that although the first order upwind method was originally derived using
finite difference, and characteristic interpolation arguments, it can also be in-
terpreted as a conservative finite volume scheme were we solve for cell solution
averages rather than pointwise values.
We note that the upwind scheme written in this manner is precisely a FCTS
scheme (forward in time centered in space) with the explicit addition of a second
difference term. As we know from the linear analysis this term is required for
stability.
2.4.2 Nonlinear Case SLIDE 10
In the nonlinear case,
Oou  Of(u
RO
ot Ox
the flux becomes
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fiv1=fi TS i
G 1 =4 Wti—%; iy # 4
Jt3 1 i frs = G

f'(ay) o Ujpr = Uj

Here fj denotes f(4;). The above choice of a guarantees that one sided approz-
imation is obtained, i.e.

Foy={ 0 @jyy >0
e fita aj3 <0
Note 4 First Order Upwind Scheme

The first order upwind scheme is conservative, and for At sufficiently small,
it can be shown to be convergent (later on in this lecture we will discuss the
requirements for convergence). The Lax-Wendroff theorem therefore ensures
that it will converge to a weak solution.

We show below that the Lax-Wendroff and Beam-Warming algorithms are also
conservative schemes and therefore admit a finite volume interpretation.

2.5 Lax-Wendroff

1 /4 A 1, At .
i+: =3 (fj+1 + fj) -3 a1 Ay (i1 = 4j)

a1 is again defined as

Ujp1—05

jy ! L X
f!(a;) if Ujp1 =4,

[N
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For the linear equation
C N Cc?

aptt = a; — o (@F — ) + 5 (@741 — 207 +afy)

J 2
C =alAz/At
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2.6 Beam-Warming

7 H 7 7 H ~ A ~ ~ ~ ~
F.BW = i (_fj+2 +3fj+1 +3fj —fj,1) —a?_i_% ﬁ (Uj+2 —Uj+] +Uj —’u]',1)
s

i+1 r r rl 7 A ~ ~ ~ ~
142 (—fj+2 +3f]-+1 — 3fj +fj,1) +Sj+% a?+% 4Atz (uj+2 — Ujy1 — Uj +Uj,1)

Sjr1 = jp1/lajy 1]

For the linear equation
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2.7 Entropy Solutions
Do these schemes converge to the entropy satisfying solution?

EXAMPLE:
Consider a non-physical solution to Burgers’ equation:

1 z >0
u(m,t):{ -1 xzo

ie. 4afiseitherlor—1 = f;= 1 v

2.7.1 Example

First order upwind:
vp _ 1 (s ; 1. . N
FUE =5 (F+ ) = 5lases ) (i — i)

Since either G;, 1 or @41 —1; is zero Vj Because either fj = fj1, or iy = 4.

UP _ 1 ; UP _ pUP _ :
= Fj+é_2 Vi = Fj+é Fj7%—0 vy
= !t =ar
The entropy-violating solution is preserved
Note 5 Entropy Satisfying Solutions

It turns out that the first order upwind, the Lax-Wendroff and the Beam-
Warming schemes allow for entropy violating solutions. These schemes cannot
distinguish between shocks and expansions.

To determine in advance if a general numerical scheme will only produce en-
tropy satisfying solutions is very difficult. One possible approach is to derive an
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entropy function for our discrete scheme and prove a corresponding entropy
cell inequality of the form

Ujt) —Uy) | Hiyy —Hiy
At Ax

where H]T‘Jrl is the numerical entropy flux associated with U.

<0,

Verifying ar21 entropy cell inequality is not easy to do in general. There are certain
classes of schemes, as we shall see below, which can be shown to guarantee
entropy satisfying solutions. It is often much simpler to verify whether a scheme
belong to one such classes.

3 Entropy Satisfying Schemes

3.1 Monotone Schemes

If a scheme can be written in the form

an41 ~ ~ ~ ~
u?+ =H (4}, 0} 1 q,...,07,...,0%,,)
.. OH . . .
with u-ZO i=7—=1,...,0.-..,7+m,
2

then the scheme is monotone and is
e entropy satisfying

e at most first order accurate

Note 6 Convergence in the presence of Discontinuities

For discontinuous solutions we seek convergence in weaker norms that those we
have used for problems with smooth solutions. Most of the convergence results
available for finite volume methods for conservation laws measure convergence
in the p = 1 norm. This norm can be seen to be weaker than the p = 2 and
p = oo in the sense that it is possible to find a scheme that will converge in
the p = 1 norm, but will not converge in the other norms. In fact, shock
capturing methods are not convergent in the p = 0o norm when the solution is
discontinuous.

Moreover, the so called “first order schemes” i.e. schemes that have a trunca-
tion error O(Az, At), often converge at an even lower rate in the presence of
discontinuities [L]. Note that our definition of truncation error is based on the
assumption that the exact solution is smooth and therefore is not applicable in
the discontinuous case.
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3.1.1 Godunov’s Method

The best know monotone scheme is Godunov’s method

j—1 J j+1

Assume piecewise constant solution over each cell. Compute interface flux by
solving interface (Riemann) problem exactly.

G _ +
Fj_l_”% = f (u(xﬂ%,t" ))
min f(u) Uj < Ujt1
_ u€[uj,uj41]
max f(u) Uj > Ujy1
u€luj,u;41]
Then,
At
~n+l _ ~n _ =Y Gn _ Gn
it =iy - 3 (Fin - Fin)

The above expression gives the exact flux for the Riemann problem and is valid
for any scalar conservation law, with conver as well as non-convex fluzes. In
addition, it gives the correct flux corresponding to the weak solution satisfying
Oleinik’s entropy condition. We point out that this flux is only valid for a
short time. In fact, it is valid until the waves generated from the solution of
one Riemann problem start interacting with the waves generated by neighboring
interfaces. The fact that the solution is exact for short times is due to the
particular form of the solutions of the Riemann problem (i.e although the general
solution of the equations is a function of x and t, the solution to the Riemann
problem can be expressed as a function of a single varibale, namely z/t; this
property is known as similarity; see [L] for details).

Applied to Burgers’ equation

( %'ﬁ?_H ﬁj,ﬂj_;,_l <0
%'LAL? Uj,Ujp1 >0
F].Ci% =< 0 U5 <0< djqr (expansion)
%ﬁ? U5 > 0> djq1 %(ﬁj-{-l +’l7/j) >0
[ 305 4> 0> a5 5(G4 ;) <0
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We note that this scheme produces a flux which is very similar to that of the
upwind scheme but with the essential difference that the numerical fluz is equal
to zero in the expansion case. This, apparently, minor modification allows the
scheme to distinguish between shocks and rarefactions, and thus produce an ap-
proximation to the proper entropy satisfying solution.

The main drawback of monotone schemes is their low accuracy. In order to
develop schemes we need to look at a wider class of methods. One such class is
formed by the so called E-schemes.

3.2 E-Schemes

If the numerical flux F; 41 satisfies

sign(ijyy —a7)(Fly 1 — f(u) <0 Vu € [d, 1]

An E-scheme is
e entropy satisfying

e at most first order accurate

Note 7 E-Schemes

All monotone schemes are E-schemes (not vice-versa). E-schemes include “fixes”
to non-entropy satisfying schemes.

An example of such scheme is the scheme that can be constructed by writing
the first order upwind scheme as 11;‘“ =4} - %(fj — fj=1) (assume & > 0),

and splitting the flux fj — fj_l, into fj — fyand f, — fj—1 whenever f' changes
sign between 4; and 4;_,, and fs is the value of the flux at the sonic point; i.e.
the point where f' is zero. The two parts are then added to either end of the
cell instead of all to one end.

Entropy-satisfying schemes can be used as building blocks on which to build
higher order schemes with reasonable confidence of obtaining the correct phys-
ical solution.

10
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3.3 Summary

entropy
satisfying

We see that we can construct some schemes that will guarantee entropy satisfying
solutions e.g. monotone, E-schemes. The main drawback with these schemes
is that they are very inaccurate. In practical applications, specially in realistic
multidimensional computations typically we can not afford the number of grid
points required by the first order schemes to produce accurate answers.

4 TVD Methods

4.1 Motivation

First order schemes give poor resolution but can be made to produce entropy
satisfying and non-oscillatory solutions

(e.g.monotone and E-schemes).

Higher order schemes (at least the ones we have seen so far) produce non-
entropy satisfying and oscillatory solutions.

Oscillations are generated at discontinuities (where the discrete solution con-
tains high frequency components) and are due to dispersion errors (recall that
dispersion errors are much larger the higher the wavenumber). These oscilla-
tions can lead to non-linear instability.

We will look for yet another class of schemes referred to as TVD (Total Vari-
ation Diminishing) in an attempt to produce oscillation free solutions and high
accuracy. TVD methods and its variants represent the state of the art in nu-
merical methods for solving problems which involve shock waves.

Good criterion to design “high order” oscillation free schemes is based on the
Total Variation of the solution.

Below we show some numerical results for the linear advection equation using the
first order upwind method and the second order Lax- Wendroff method. We point

11
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out that for the linear problem, the first order upwing method and Godunov’s
methods become identical. In fact, for the linear problem the solution is always
defined by the initial data (i.e. characteristics are parallel) and the issue of
entropy violating solutions does not arise.

The linear advection equation with periodic boundary conditions is solved in the
unit interval. The domain is subdivided into 100 equal subintervals. In the
figures we show the exact (initial) solution and the computed solution after 200
timesteps at a Courant number of 0.5. Two initial conditions with smooth (left)
and discontinuous (right) data are considered.

4.2 First Order Upwind

UPWIND “T" UPWIND

a

9

J =100, Az = 1/100, C = 0.5, N = 200

4.3 Lax-Wendroff

LAX-WENDROFF “I'" LAX-WENDROFF A
' \V

J =100, Az = 1/100, C = 0.5, N = 200

4.4 Definition

Total Variation of the discrete solution

TV(@") =

J

~ N ~N
Ujrr — U

We see that in the discrete case, the total variation is simply the sum of the
absolute values of the differences between neighboring nodes.

12

SLIDE 22

SLIDE 23

SLIDE 24



If new extrema are generated TV (4) will increase.

We know that the total variation of the exact solution is non-increasing. There-
fore we can define the class of Total Variation Diminishing (TVD) schemes as
the class of schemes for which

TV (@™ < TV (@™

Total Variation Diminishing Schemes

We see clearly from the previous example that the Law-Wendroff is not TVD.
It can be shown that Beam-Warming is not TVD either.

4.5 Some Properties
e All E-Schemes are TVD

e Conservative TVD Schemes
= Converge to weak solutions

entropy )
satisfying

Unfortunately, mnot all TVD
schemes are entropy satisfy-
ing. In practice however, TVD
\ schemes which are built by modi-
\ fying an E-scheme tend to produce
entropy satisfying solutions. Al-
S though in most cases this can not
be proven a-priori.

Note 8 TVD Schemes and Stability

The Lax-Wendroff theorem presented earlier does not say anything about whether
the numerical scheme converges. It only guarantees that if it converges it will
converge to a weak solution. To guarantee convergence, we require some form
of stability. Unfortunately, the Lax equivalence theorem, which relies heavily
on linearity, no longer applies in this case. As it turns out, the total variation
diminishing property of a scheme can be used as a non-linear stability condition
and it can be shown that togehter with consistency it guarantees the convergence
of the numerical scheme.

13
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To prove convergence of a non-linear method we use the concept of compactness.
Essentially, we say that a normed space is compact when any infinite sequence of
elements of that space, contains subsequences which converge to an element of
that space. For finite dimensional spaces a closed, bounded set is compact. For
inifinite dimensional spaces the situation is more complicated. However, it can
be shown that the set of functions of bounded variation (TVB) with bounded
support is compact. The fact that compactness guarantees the existence of
convergent subsequences, combined with the Lax-Wendroff theorem gives us a
convergence proof.

We note that convergence here is defined in the p = 1 norm, and that it can be
to any weak solution. Since the weak solutions may be non-unique, convergence
means that the distance between the computed solution and any weak solution
tends to zero when the mesh parameters tend to zero. In particular, as we refine
the mesh, different meshes may be closer to different weak solutions.

4.6 Conditions for TVD schemes

SLIDE 26
If a scheme is written in the form
~n+l _ ~n ~n AT
a4y = aj +Dj+%Auj+%—Cj7%AuF%
Adijy 1 = Ujy1 — U5
We note that the coefficients Dj+% and C-_%, may depend on the 4;’s.
it is TVD iff
Cits >0
Dj+é >0
Cj-i-% + L4t <1
Note 9 TVD Conditions: Proof
Here we assume that the domain is either infinite or periodic.
ol antl
V) = Xl -]
J
_ ~ A ~n AT Am
= > ‘AUH% + Dj g Ay g — Oy Aty = Dy g MGGy + Gy g Ady
J
< Yo|Djgaar | +|(1-Cpy - Dyuy) Ad7,, |+, aan
J
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~N
‘A“H

+ ‘1 ~Ci+y —Djy

AGT
‘ i+3

+ ‘Cj-i-%

AGT
‘ i+3

1
2

- Z‘DH%
i

< TV@) |if ‘DH%

<1

+ ‘1 ~Cjrg ~ Djry

+ ‘Cj+%

We note that the above inequalities can be made equalities for particular choices
of the data 4;. This means that the above conditions are necessary and sufficient
if the scheme is to be TVD for all data.

4.6.1 Example: Upwind

SLIDE 27
Upwind scheme for linear equation, a > 0:
il alt
up = ?_ Az (u?—u]"-_l)
_ aAt, -
CJ'—% - aA:c’ D]+% =0
Cj_l = a—At S ].
2 x
Stability-like condition !
4.7 Godunov’s Theorem
SLIDE 28

No second or higher order accurate constant coefficient (linear) scheme can
be TVD.

= Higher order TVD schemes
must be nonlinear

Note 10 Nonlinear TVD schemes

We say that a scheme is liner if, when applied to a linear equation, produces a
linear relation between the unknonws. i.e.

~n+1 __ Z n
Wy =) cpuj_y.
k

For a linear scheme the ¢’s are constant, whereas for a nonlinear scheme, the
ci’s depend on the values of u.
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4.8 High Resolution Schemes

Consider the linear equation

ou ou

a-i- 2 =0 a>0

First order upwind (Godunov) scheme is

J J j—1
At
c=22
Az
Oscillation free but smeared solutions. o
Lax-Wendroff 12?“ ay — B (aF,, —af ;) + - (4}, — 207 +af_,)
Suffers from oscillations.

’ UPWIND T LAX-WENDROFF

4.8.1 Anti-diffusion

Re-write the Lax-Wendroff schleme :
Wt =q47 - C (ﬁ" —4a ) —-=-C(1-0) (ﬁ_?-i-l - 211? + ay_l)

J N J i=1/ 9
first order upwind anti-diffusive flux
LW N a N N
F]+_ =au; + B} 1-0) (U]'_H — Uj)

We note that au; is simply FUP In order to obtain a TVD scheme, we must
limit the amount of anti- dzﬁuswe fluz.

Introduce flux limiter ¢, 1:

A a 0 U
FINP = ity + 5 (1= C) by (g4 — i)

16
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4.8.2 Flux Limiters

artt = Al —C(af —a} )
1 n _on in _an
- 50(1 -0C) [¢j+% (@f41 —4F) — pj_z (4] — “j—l)}

It is essential that in order to preserve the conservative form of the scheme, the
limiter is applied to the fluzes. At first sight it would appear as though one could
limit the antidiffusion term added to each node directly. Note that this would
clearly violate conservation.

If $; = ¢j—1 =1 = Lax-Wendroff (not TVD)
If ¢; = ¢;_1 = 0 = Upwind (TVD)

Choose the limiter as close as possible to 1 but enforcing TVD conditions

n < " 1 N .
, it = df = CAdy_y = SO = O) (g3 Dty g — by Ay )
Re-write 5
n 1 i+ 3 .
= uj— C’{l+ 5(1 -0) |:"'j+; — ¢ }Auj;
T]+% = A’llj 1/Aﬂj+§
Recall the TVD test:
aitt = af + Dy Ay, — Cy_ 1 AG)y
Take
1 Diy1
J_"_% = C{1+5(1—C) [Tj+1 _(b]_,
Dj+é =0

TVD criterion = 0< Cj+% <1

4.8.3 Smoothness Monitor

Choose ¢;, 1 to be function of r;, 1

17
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r<o0 r~1

AN

L

The ratio of consecutive slopes T gives an indication of the local smoothness of
the discrete solution. When r < 0 we are in the presence of an extremum and
we expect that anything different from ¢ = 0 will produce oscillations. On the
other hand when r = 1 we would expect the algorithm to be second order i.e.

¢~ 1.

4.8.4 TVD region

It can be seen that the above TVD conditions are satisfied if

P (r) ®(r) =7 (BW) &(r) = %(1’+ 1)
2 (FROMM)
pr)=0 r<0 /
P(r) 1 ®(r)=1
0< — <2 TVD REGION W)
0<o(r) <2 :
1 r

In the figure we show the choice of the limiters that would produce the Lax-
Wendroff, Beam-Warming and Fromm’s scheme (which is obtained as the av-
erage of the previous two). It can be seen that none of the limiter functions lies
entirely in he TVD region, Lax- Wendroff being outside for small r, i.e. behind
shocks, and Beam-Warming being outside for large r i.e. in front of shocks.

Since we are interested in second order schemes we further restict the region by
taking it to be that part which is the conver average of the Laz-Wendroff and
Beam-Warming schemes.
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4.8.5 2nd Order TVD Region

®(r)
9 (SB)
(VL)
14 > (Mm)
A) ORDERTVD REGION
1 r

The figure shows some popular choices for the limiter function ¢(r).

4.8.6 Popular Choices

Minmod ¢(r) = max(0,min(1,r)) This is the most “difussive” limiter. It cor-
responds to the lower boundary of the TVD region.

Superbee ¢(r) = max(0, min(2r,1), min(r,2)) This is the least “difussive” lim-

iter. It corresponds to the upper boundary of the TVD region.

r+|r|
Van Leer ¢(r) =
o) =1
All produce second order schemes when the solution is smooth, and reduce to
upwind at discontinuities.

o . Lo _ 4 (1
All the limiters above possess the following symmetry property: TT = ¢ (;)
This property ensures that the top corner of a discontinuity is treated symmet-
rically to a bottom corner.

4.8.7 Examples

Below we show some numerical results, for the same problem considered pre-
viously, using different numerical schemes. The first two schemes are linear
second order and therefore not TVD. It should be pointed out that within this
class Fromm’s scheme does extremely well. In fact, for smooth data is arguably
the best scheme amongst those presented. The last three schemes are TVD and
correspond to the minmod, van Leer and superbee limiters.
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BEAM-WARMING “I" BEAM- /\

i+ WARMING \V/
A

SLIDE 40

FROMM ‘T FROMM
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TVD - MINMOD “" TVD-MINMOD
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TVD - VAN LEER TVD - VAN LEER
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TVD - SUPERBEE “I" TVD-SUPERBEE
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4.8.8 Non-linear extension

For a non-linear conservation law the formulation of flux limiters is extended to
allow both positive and negative wave speeds

Note 11 Nonlinear Extension

Below we just give the expressions required to extend the above high resolution
schemes to the general non-linear case. It can be verified that, for the linear
problem, the expressions below reduce to the ones give above if the upwind
scheme is taken to be the low order scheme.

it = - (PR - FEy)
ot o () ety (A0) = 0501 a5y (3610s) -

Fﬁ_l is a numerical entropy satisfying flux
2

(3401)' =~ (85, )

~ - _ E ~
(afs) =(Ff - 5)
+ *1

of | (Afl_l)

=+ _ i—3g 1—3

rj-i—% - 4 2 E2
iy (8ie1)

+ _1 +

i T2 (1 T s

ot — At (AfH%)i

]+% - Az Au,
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