FEM for the Poisson Problem
in R2

April 14 & 16, 2003



1 Model Problem

1.1 Formulations
1.1.1 Strong Formulation

Find u such that
-V2u = f inQ

u = 0 onT
for Q a polygonal domain.
Note 1 Generalization

We look here at a particularly simple but nevertheless illustrative problem.
First, we require our domain to be polygonal. More general domains demand
— at least for accurate treatment — isoparametric (non-affine) mappings that
result in elements with curved edges. Although the implementation of such
elements is not particularly difficult, it requires more machinery that we can
develop in this short series of lectures.

Second, we consider the homogeneous Dirichlet problem. In one space di-
mension, the difference between homogeneous and inhomogeneous Dirichlet con-
ditions was quite small as regards formulation, analysis, and implemention. In
two space dimensions, unless the inhomogeneous Dirichlet data u” is piecewise
polynomial, in our case here piecewise linear, we will not longer be able to ex-
actly represent u” within our finite element approximation space. In practice,
one typically replaces uP with its interpolant, but this clearly leads to new
complications as regards the theory (a new “variational crime”).

Treatment of Neumann and Robin conditions is a relatively straight-forward
extension of what we present here. It is particularly in higher space dimensions
that the convenience of natural boundary conditions is most beneficial, since
calculation of normals and gradients at the boundary can be complicated (and
in many cases, ambiguous). As regards inhomogeneous Neumann conditions,
the same issues that arise in higher space dimensions for the inhomogeneous
Dirichlet problem also arise for the Neumann problem.

Third, we restrict ourselves to two space dimensions. In fact, three dimen-
sions is quite similar, though obviously the implementation (in particular mesh
generation) is more complex, and computational cost potentially much higher.

1.1.2 Minimization/Weak Formulations
ind u arg min so(w,w) — £(w) ;
J(w)
or find u € X such that
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a(u,v) =£(v),Vv € X ;

where
X ={veH(Q)|vlr =0} =H5(Q),
a(w,v) = Vw - Vv dA SPD ,

£(v) ‘| fodA bounded .

Recall that f need not be in L?(Q): we can consider any £ € H~Y(Q), for
example a “line source” £(v) = 1 on [y, 0 elsewhere, where 'y is some line
of “finite extent” in Q. (Note, however, that the delta distribution is not in
H1(Q) for Q e R2.)

1.2 Regularity
In general, [|ulmi(e) < ¢ r-1()-
If f € L*() and Q is convex,

llulla> @) < CllfllL2@);

important for convergence rate.

Recall that HUH%P(Q) = [o|Vul® + u® dA, and that

(v
Wl = sup
vEHL(Q) ”v”Hl(Q)

Note also that in R? the H? norm includes the square of the cross derivatives
as well.

Note 2 Regularity in R?

In one space dimension it was sufficient that f be suitably smooth to ensure
that u would be in H?(Q). In two space dimensions that is no longer true, due
to the potential conflict between what the boundary data tells the derivatives
to do and what the equation tells the derivatives to do. However, in the case in
which the domain (2 is convex, then f € L?() is sufficient to ensure that u is
in H2(Q).
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It is certainly still possible that u is in H?(Q) even when Q is not convex,
but it is not typically the case. In particular, with a non-convex domain we
introduce “re-entrant” corners and associated singularities. The worst case is a
crack, where the re-entrant corner has an included angle of 27; but even in that
case the solution remains in H'(Q) (and in fact is more regular than H'(f),
but not as regular as H2(Q2)). The effect on the finite element convergence rate
will be discussed briefly subsequently.

2 Finite Element Discretization

2.1 Triangulation

a= |J T

ThETh

T}: elements,
k=1,...,K

\

x;: hodes,
i=1,...,m
zi:i=1,...,mn interior
i =mn+1,...,n boundary

Our numbering of nodes is purely for convenience of exposition; it will greatly
simplify our definitions of spaces and bases, and the description of the imposi-
tion of boundary conditions. In actual practice, in particular for more general
boundary conditions, our numbering will not be the best as regards efficiency
(for direct solvers); but we know we can always renumber ot the end through
our 0(k,a) array.

In general, finite elements are based on largely unstructured meshes; this has
the advantage of flexibility, but also precludes the application of some structured-
mesh notions (e.g., FFT or tensorization concepts).

Note 3 Triangulation in R?

In two (and particularly three) space dimensions, triangulation can be a
difficult task. First, the union of (the closure of) our triangles must cover the
domain; second, the (open) elements must not intersect (overlap) with each
other; third, the intersection of the closure of one element with the closure of
another element must be either an entire edge of both elements or a vertex
of both (or null). These conditions figure prominently in the definition of the
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space that we hang upon this triangulation, though they are so “obvious” that
we sometimes forget their presence. (Note in nonconforming approaches, some
of these constraints can be relaxed.)

In addition of the above zeroth-order constraints, there are first-order con-
straints that must, or at least should, be satisfied in order to ensure that the
approximation properties of the associated finite element space are good. The
first is regularity; there are many ways to state this condition (and it goes by
many names); in short, it requires that the minimum angle of any triangle be
bounded away from zero as h tends to zero. This has many implications as
regards the geometry and topology of the mesh (e.g., it bounds the number of
triangles that can share a common vertex, ensures that the length of a short
side of a triangle does not tend to zero relative to the length of a long side, .. .).
Note that h, the diameter of the triangulation 7, is the maximum of the h;
¥, in turn, is the diameter — length of the longest edge — of triangle TF.

The second condition often imposed on 7, has already been discussed in the
context of one space dimension: gquasi-uniformity requires that the minimum of
h¥ k=1,...,K,divided by the maximum of h*, k = 1, ..., K, remain bounded
away from zero as h tends to zero — the elements must not be increasingly
disparate in size as h — 0.

Finally, there are second-order requirements. We would like our triangulation
to place more elements in regions where the solution will vary more rapidly.
We would like the flexibility to locally adapt and refine the mesh based on a
posteriori error indicators. We would like to specify element aspect ratios and
perhaps the alignment of the elements in order to capture certain features of
the solution, or to control the conditioning of the stiffness matrix.

There are, fortunately, triangulation methods that can often honor most of
the requests above; several very good third—party software packages are available
that provide these capabilities. (The most general packages are quite literally
triangulators, or, in IR?, tetrahedron-based; quadrilateral elements do not admit
the same level of generality, at least not in as convenient a fashion, as “simplex”
elements.) Nevertheless, mesh generation remains a major task, sometimes more
time-consuming than a calculation itself. For this reason it is often of interest to
avoid the construction of a volume-filling mesh if possible (e.g., as in boundary
element methods, discussed next in the course).

2.2 Approximation
2.2.1 Space (Linear Elements)
Xp={ veX |vln, €Pi(Th), VTh € T}

’U|1'* =0,
v e CoQ)
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L.

P (Th): v|, =co+ ¢z T+ ¢y Y, ¢ Cpcy €ER
N~~~ ~—~

Vg Uy

We restrict our attention, as in one space dimension, to linear polynomial ap-
prozimations. The extension to higher order elements is not difficult. In prac-
tice, quadratic elements are often the best in terms of accuracy per unit of work.
We also consider only triangular elements, though in many cases quadrilateral
(bilinear or biquadratic) elements have advantages.

2.2.2 Basis (Nodal)

SLIDE 7
Xp =span {p1,...,on}:
i € Xp, @i(zj) =0i5, 1<4,j<n.
Support of ¢;:
x;
p; nonzero
We see how our requirements on the topology of the triangulation are reflected in
the space and basis. For example, because we require that elements that intersect
on an edge must intersect over an entire edge, we are ensured that, given two
nodal values, a function is perforce continuous over the associated edge.
Note by our node numbering the x;, j = 1,...,n, are all in the interior; it
follows from ¢p; € Xp C X that pi(x;) =0 for j=n+1,...,7
SLIDE 8
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n
v = Z'Ui ei(@) ;
i=1
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2.3 “Projection”
2.3.1 Rayleigh-Ritz or Galerkin
Rayleigh-Ritz:

up = arg wrreli)?h Ta(w,w) — {(w)
| ——

J(w)

Galerkin: wujp € X}, satisfies
a(up,v) = L), YveX,.

2.4 Discrete Equations
2.4.1 General Case

n
Let up(x) = Zuhj pi(x); v=pi(x), i=1,...,n
i=1

wew

Ahij = a(‘Pia‘Pj): 1 S Z)] S n,
Fri=1L(pi), 1<i<n.

The procedures, either Rayleigh-Ritz or Galerkin, are identical to those we de-
veloped in detail in the one-dimensional case.

2.4.2 Particular Illustrative Case

Uniform Mesh:

ny =4

/—/%(1’1) K = 27’L%
‘l'l‘ i = (ng+1)2
g n = (ng—1)32
(0,0) h h = 1/m

When we refer to a uniform mesh, we shall mean the particular triangulation
above. (Note the diameter of the elements, and hence mesh, is in fact V2h, not

h.)
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Ezpression for Ay:

a(w,v) = / Vw-VvdA = / WaVy + Wyvy dA
Q Q

U

Opi 0p; | 09i 0% 14

A ij = i»Pji) =
hij a(SD SDJ) o 81: az 6:1] 8y

1<i,j <n.
Derivatives of p;: ox;
H h H h
1 —1 X 1 ~1 0 X l
1.1 h 0 1 h
0 1
Opi/ 0z Opi/0y
(piecewise constant) (piecewise constant)
Evaluation of [,(dp;/0x) (8¢;/0x) dA oz
TNw TN TNE ( B%DN //65; ) ' 8 )
NE
vila S0z —2/h?
rw T [T ATE 8i 6(,05E/6.’L' 0 B2
00 { Oyps/O0x pdA= 0 }—
Tsw Ts TSk o Oz Oysw [Ox 0 ) 2
) Opw [0z —2/h
agoz/ail: a(pr/6$ 0
\ 8(101/837 7 \ 4/h’2 7
Evaluation of [,(dpi/dy) (Dp;/0y) dA .z
ey Ty e ( 66(;01\’//633/ ) ( —2({h2 3\
T NE
9 2| V0 Ovr /0y 0
Mo AT dp; | Opse/0y 0 n2
0 / » dps /0y »dA={ —2/n* § —
Tsw TS Tsp 2 % | dpsw /dy 0 2
. dpw [0y 0
Opi/0y Opnw [0y 0
\ acpt/ay ) \ 4/h2 J
Summary or;
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Nonzero entries of -1 -1
row ¢ of Ay:

-1
identical to finite differences.
Actually, not quite identical; the FEM matriz is h® times the finite difference
matriz. Obviously, one of the the advantages of the FEM — to develop ap-
prozimations based on general triangulations Ty of arbitrary domains — is not

exercised in this example. Our purpose rather is to get some sense of how the
i “interact” to form A, .

3 Theoretical Analysis

3.1 General Results

3.1.1 Energy Norm

Recall [||v]||* = a(v,v) = |v|%{1(9) =/ |Vu|? dA .
Q

Then

— inf _ — i
lllelll = inf llu — wall (e=u—wup);

up, is the projection of u on Xj,
in the energy norm.

The proof is identical to that for the one-dimensional case.

3.1.2 H! Norm

Recall ||v||%{1(9) =/ |Vo|? +v? dA .
Q

Then
lellmay < (142) inf flu—wnllz o -
- o) wpheEXy
a: coercivity constant (> 0);
B: continuity constant (= 1).

The proof is identical to that for the one-dimensional case.
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3.2 Particular Results
3.2.1 H! and L? Norms
For f € L?(Q) and Q convex,

llelll < € hflulla () ;

llellzr @) < C hlulla2@) ;

and lellz2) < € 12 flull2o) -
Note 4 Convergence rate and regularity (Optional)

The form of the proofs are very similar, in fact identical, to the forms of
the corresponding proofs in one space dimension. However, the bound for ||u —
Thulla1(q) is now more difficult to derive (note the mesh regularity plays an
important role), requiring some general tools that we will not take the time to
develop here. Nevertheless, in the end, the same h dependence as in one space
dimension is recovered.

We can of course replace the H? norm with the broken H? norm, thus
permitting less regular f. However, as indicated earlier, the real issue in higher
space dimensions is geometry—-induced singularities. In the above we exploit the
result that, if f € L?(Q) and Q is convex, then necessarily u € H?(Q2) (a similar
assumption is required for the dual problem associated with the L? estimate).
Of course, even for {2 nonconvex u might be in H2(Q) (depending on f), but it
will not be the case in general for any f € L?(Q).

Just as in our simple example in one space dimension (in which we place a
delta distribution load at a point which is not a node, thus obtaining convergence
in the energy norm as v/h rather than h), if u is not in H2(f2), convergence (say)
in the H! norm will degrade to h® for some o < 1. This effect can be mitigated
by (adaptive) refinement, in which we place progressively smaller elements near
the singularity, compensating for the smaller exponent with a smaller value of
h; there are also more sophisticated procedures that can be applied. In some
problems the singularities dominate; however, in certain other problems, the
singularities are less important — the convergence rate may be slow, but the
constants are so small that the degraded performance is not observed except for
very small h (and hence very small errors).

We note that if the boundary T is some smooth function (that is, Q is
not polygonal), then higher-order isoparametric formulations will recover the
optimal order of convergence.

3.2.2 Output Functionals
Recall s = £9(u) + 2, sp = £9(up) + c°.

For f € L?(Q2) and Q convex,
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if ¢9¢ H_l(Q), |S - Sh| = |€O(e)| <Ch ||u||H2(Q) ;
02, s—snl = @) < C B Jullmae

In fact, we can apply the same adjoint arguments as in R to obtain h? conver-

gence rates for an even wider class of output functionals.

4 Implementation

4.1 Overview

Four steps:
A Proto-Problem;
Elemental Quantities;
Assembly;

Boundary Conditions;

and Numerical Quadrature.

4.2 A Proto-Problem
4.2.1 Space and Basis

Let X, = {v e H' Q) |v|1, € P1(Th), VTh € Tr}
:Spa‘n{@la"':wna CPn-i-l,---,SOﬁ}

Th
A7
x;: nodes,
i=1,...,7
zirti=1,...,m interior
i =mn+1,...,7 boundary

We now include the hat functions associated with the boundary nodes.

member v of X), can be expressed as
7
v(x) =) vigi(),
i=1

with v; = v(x;).

10
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4.2.2 Statement

“Find” @5, € X}, such that
a(tp,v) = £(v), Vv € X, .
We never actually solve this problem;

it serves only as a convenient pre-processing step.

See comments in R related to this all-Newmann problem.

4.2.3 Discrete Equations

[

n
p b, =F, ah(w) Zzﬂhiwi(m)
i=1

Opi Op; | Op; Dy,
Ll 1 dA
Q Ox Oz + oy Oy d

Ah ij = a(‘Pi:‘Pj) =

Fyi = U(pi) (Z/wa), 1<i<n.

See comments in R'. Note in this case, thanks to our convenient numbering,
A, is very simply related to Ah : A, is the left upper n xn submatriz ofAh. For
more efficient and natural numbering schemes, this will no longer be the case
— A, will not be a “contiguous” submatriz of A, .

4.3 Elemental Quantities
4.3.1 Local Definitions
Local Nodes

@ k
Y 24 T

L.

k
@

z;
11

Areaf: area of T}
z¥, 2k, z%: local nodes in element TF,
corresponding to global nodes xg,x11, 24 (say).

Local Basis Functions HE, o =1,2,3:

11
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@ k
Yy 24 T3

HE € Py(T}) )

Hlé(mZ) = 0ap wg
mllc e 11
H] = 909|T,j§ H] = ‘P11|T,Z§ HE = <P24|T,Z .

Since we can represent any v € Xp, restricted to T,f in terms of our HE, we
will be able to express the contribution of element T,’f to A, and F,, in terms of
these local Lagrangian interpolants — just as in R!.

Note 5 Reference element and barycentric coordinates

In actual practice, we would proceed as we did in IR!. We would introduce a
reference triangle 7' — in fact the triangle with vertices (0,0), (1,0), and (0,1)
— which we would imbue with a local space and local basis functions. We would
then introduce affine mappings that would permit us to recreate each element
as a simple image of the reference element. (This procedure is then readily
extended to the isoparametric case, in which we have curved edges.) However
the mapping and associated change of variables is a little bit more tedious than
in RY, and so we proceed with a slightly simpler formulation in which we retain
the concepts of local nodes and local basis functions, but without appeal to the
reference element. (It is for this reason that our HX now bear a k superscript
— they are, essentially, the already—mapped version of the H, associated with
the reference element, and thus will be different for each element TF.)

The local coordinates associated with the reference element are denoted area,
or barycentric, coordinates. They have a very nice geometric interpretation — in
effect, the reference element coordinates of a point x in element T,’f correspond
to the relative areas marked off by the point 2 and each of the three sides of
the triangle. (In fact, only two of these three coordinates are used — the third
is directly related to the other two, since the sum of the relative areas must
sum to unity.) A complete discussion of barycentric coordinates and reference
element mappings may be found in most texts (e.g., Quarteroni and Valli).

Eszpression for HE, o =1,2,3:
HE=ch+ck o+ck, v,

a=1 a=2 a=3
—— N —
1 zF b ck 1 0 0
1 ok b sy =10 Jor| 1 Jor[ O
1 zk ok c’; o 0 0 1

12
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= ck bk a=1,2,3.

@ Crar Cya >

4.3.2 Elemental Matrices

90: & 90 & SLIDE 28
i ©Y; 0P i 0P
Ay i = alpi, 95) = L+ = 1 dA
hij (i 05) o Oz 0z Oy Oy
Element T} (say) contributes
6909,11,or24 8909,11,or24 6909,11,or24 8909,11,or24
+ dA .
7 or Or oy oy
SLIDE 29
But
3909,11,or24 6809,11,01‘24 3909,11,or24 6809,11,01‘24
+ dA
7 ox ox oy oy
ar"'i’17,2,0r3 67{17,2,0r3 6/7"[17,2,0r3 67{17,2,0r3
= + dA.
92 9% 9% 9%
constant constant Con;ant con;;ant
SLIDE 30

Define elemental matrices A* € R3*3:

oul OM5 oMk o5
T* or O Oy Oy

= Areaf(c c’;B+c’;ac’;B), 1<a,8<3

T

since derivatives are all constant over T,’f.

> Exercise 1

(a) Find the elemental matrix A* € R®*® for our an element with nodes
(vertices) at ¥ = (0,0), & = (h,0), & = (0, h).

(b) Prove, by invariance arguments or wild hand-waving, that your result
applies to any right-triangular element (with hypotenuse v/2h) at any
orientation or position.

(¢) Find the element mass matriz M* € R?**3 for any right—triangle element
with hypotenuse v/2h.
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4.3.3 Elemental Loads

SLIDE 31
Fri = L(p;) = / fyidA
Q
Element T} (say) contributes
/ fo,11,0r24 dA
T
— [ FHisorsda.
T,
SLIDE 32
Define elemental load vectors Ek € R3:
FF=[ fHEdA, a=1,2,3;
Ty
evaluation — approximation — of integral typically by
numerical quadrature techniques.
4.4 Assembly
4.4.1 The 0(k,a) Array
SLIDE 33

The “idea” is identical to that in R, and already clear from the previous few
slides; we mowve directly to the algorithm.

Introduce local-to-global mapping
0(k,a): {1,...,K}x {1,2,3} = {1,...,7}
————  —— —
element local node global node
such that

z¥ (local node a in element k) =
Tg(k,a) (global node 6(k,)).

For example, in our illustrative case above for element k = 7, we see that
0(7,1) =9, 0(7,2) =11, and 6(7,3) = 24.

14



4.4.2 Procedure for A,
To form A~h:
Zero A"h’

{for k=1,....K

{for «=1,2,3
i=0(k,a);
{for $=1,2,3
J=0,B);
Zhij=ghij+AZﬁ;}}}

Although the algorithm in R? is essentially the same as the algorithm in R!
(only the number of local nodes changes), the algorithm is in fact much more
useful in R2. In particular, it is in R? (and R®) that direct calculation via
@i, ; of the entries of Ah would be immensely tedious; by contrast, the assembly
procedure is very simple. In short, it is much better to run over the elements
and put their entries in the appropriate place than to run over each node and
find all elements and basis functions that contribute.

> Exercise 2 Consider four right-triangle elements with hypotenuse v/2h
that are joined in a diamond such that the nodes opposing the hypotenuse in
each element all correspond to the same global node, say @;«. Find the row
Ah irqt |
£hivj

4.4.3 Procedure for £,

To form F:
Z€ro Eh;
{for k=1,...,K
{for a=1,2,3
i=0(k, a);

Fy;=Fpi+FF;}}

4.5 Boundary Conditions
4.5.1 Homogeneous Dirichlet

15
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We indicate here only the case of homogeneous Dirichlet conditions; inhomo-
geneous Dirichlet conditions and Neumann conditions then follow directly from
the analogous developments in R'.

Recall:

a(up,v) =L(v), YveXy vlr=0;
Xn = span{pi,...,pn} versus
Xn = span{Qi,...,Pns Prsls--->Pa} -

FEzxplicit Elimination
Xn = Ynt1,-.-,pn not admissible variations, so

REMOVE Rn +1,..., R from A,;

Up nt1y---,Ups = 0, 80O
REMOVE Cn +1,...,C# from A,.

As indicated earlier, in the case of our particular numbering, the above is equiv-
alent to just taking the n x n left upper submatriz of A;,.

Big Number Approach

Place 1 (£ < 1) on entries Apii, i=n+1,...,7.

Place 0 on entries Fj;, i=n+1,...,7.

This replaces Rn + 1,..., Rn with
Upntl = --- Zup s =0 in an easy, symmetric way.

4.6 Quadrature

How do we evaluate

F = / f(@) HE () dA
Tk

h

for general f?

In actual practice the integral would typically be mapped to the reference element,
however even in that case the basic procedure is similar to that discussed here.
As in R, numerical quadrature is not only important for the load vector, but
also for the elemental matrices.

16
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4.6.1 Gauss Quadrature

Asin R, we can also pursue other approaches (e.g., integration by interpolation
via the mass matriz). We restrict attention here to Gauss quadrature.

Approximate
Fy = (@) HE dA
Tk
Nq
Ny ok f(zg) HE(=D) 5
q=1
ph: quadrature weights,
z’;: quadrature points.

On the reference element the weights and points are universal; our superscript
k is needed because we have not mapped to the reference element.

For example:
N, =1, p¥ = Area”, 2% = L(ah + ok + =)
integrates exactly / g(x) dA
Ty
for all g € P1(TF);

higher order formulas tabulated.

Generation of Gauss quadrature (or “cubature”) formulas in R? and R? is a
more challenging task than in R', however effective formulas up to rather high
order have been developed for triangles.

For our linear elements, the one-point formula suffices to preserve our ideal
convergence rates, though often a slightly higher order quadrature is desired in
order to integrate exactly certain quantities (e.g., the mass matriz, which in-
volves quadratics). There are other cases where inezact quadrature is deliberately
pursued (e.g., to force a diagonal mass matrix for explicit time integration).

Note 6 Derivation of one—point Gauss formula

We prove here that this one—point formula does indeed integrate all g €
IP; (T}) exactly. First, we see that z¥ is the centroid of T} (most easily proven

17
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by mapping to the reference element. .. ), and thus
2k = / x dA/Area®.
Ty

Now consider any g € IP1(T}), which we can write as
9=9(zf)+Vg- (x—2t),

where Vg is constant since g € IP1(TF). Then

/ g(x)dA = / 9(2h) + Vg - (@ — 24) dA
Tk Tk

h h

Area® g(2¥) + Vg - /k(m —2f) dA
Th

Area® g(2%) + Vg - [Area® 2F — /,c zN dA]
Th
= Area® g(z})
which is our one-point formula. Note only for z¥ chosen to be the centroid do we

integrate exactly all linear polynomials — for any other choice, only constant
functions are integrated exactly.

5 Solution Methods for A; u;, = F},

5.1 Overview

We make our remarks here very brief, with specific attention to the FEM context.

Topics

Direct Methods — Banded LU.

Iterative Methods — Conjugate Gradients:
algorithm and interpretation;
convergence rate and conditioning;
action of 4.

18
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5.2 Direct Methods — Banded LU
5.2.1 TUniform Mesh

SLIDE 43
ny = 4 5
e N (1’ 1) K = 2n1
‘l'l‘ i = (ng+1)2
g n = (ng—1)>2
(0,0) h ho= 1/m
SLIDE 44
Stencil
-1
Nonzero entries of -1 -1
row ¢ of Ay: 4
-1
5.2.2 Operation Count and Storage
SLIDE 45
For “z—then—y” node numbering,
bandwidth b = O(nq).
LU: O(n? n?) operations; O(n? ny) storage.
Forward/Back Solves: O(n? n1) operations.
Banded LU is viable in R?, though not in R®. Note for general domains and
unstructured meshes Q0 (without any particular obvious ordering) there are a
number of heuristic methods to minimize bandwidth. More generally, graph-
based sparse matriz techniques can be applied — the edges and vertices of the
matriz graph are simply the edges and vertices of the triangulation.
5.3 Conjugate Gradient Iteration
5.3.1 Algorithm
SLIDE 46
u, =0 (say); r° = F;
Fork=1,...
,Bk — (Ek—l)T £k—l/(ﬂk—2)T Ek_2 . o
_ _ p=r
Ek _ £k1+ﬂk2k1 p

19



ak — (zk—l)T fli:—l/(l_)li:)T (Ah Qk)

ko k—1 k ok
Up u,  to p
ko k-1 k k
r-.=r -« (Ahp )

Here o and B* are obviously not related to our coercivity and continuity con-

stants, a and B, and the k obviously refers to iteration index, not element. The

r* are the residuals, F), — Aj, uf, and the p* are the search directions.

Note 7 Conjugate gradients and the finite element method

The conjugate gradient (CG) method is a Krylov method particularly well
suited (in fact, restricted) to SPD systems. At each iteration, the CG method
(implicitly) minimizes the iteration error u, — u¥ in the “A,” norm,

(wp, — uf)" Ay (uy, — uf)

(hence the requirement that A, be SPD) over the Krylov space K* = span
{r° ..., A5 'r% = span{p° p',...,p*'}. The method exploits the symmetry
of A, in order to perform an orthogonalization which, in turn, permits very
efficient calculation of yfl The CG technique is truly remarkable: simple to
implement, yet very effective.

The CG method has a particularly nice interpretation in the FEM context.
To show this, we first note that, for e¥ = u, — uf, and hence

n
ei(@) =) efpi(e)
i=1

we have that

(QIIC)TAhQIIc = Zzelﬁa(%,%)eﬁ
i=1 j=1

n

n

a| D ehipi D el
i=1 j=1

llle§ 11,

which is the energy norm of e¥. Note that e¥, the iteration error, is not our
discretization error of earlier. In particular, even if we run the CG algorithm
to termination and ey = 0, e = u — up, the discretization error, will still of
course be nonzero. Indeed, this tells us that we should balance errors: there is
no reason for ey to be zero if e is nonzero.

We can now readily visualize the CG method in terms of our J(w) paraboloid.
We recall that the finite element approximation uj, minimizes J over all func-
tions in Xj; this is equivalent (our MIRACLE) to minimizing |||u — ug]||. The
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CG method iterate uf minimizes J over all functions engendered by K* =

span {p°,p',...,pF 71}, that is, all functions which can be expressed as
k-1 n )
k@) =) > pleil) ;
J=0 =1
this is equivalent (by our same MIRACLE) to minimizing |||up, — uf|[|. In

short, the CG method applied to our finite element discretization is a Rayleigh-
Ritz method within a Rayleigh-Ritz method: minimization over a k-dimensional
subslice (the space engendered by K*) of an n-dimensional slice (the space X},)
of an infinite-dimensional paraboloid (the space X). As always, choice of basis is
important: orthogonality for the CG subslice, and sparsity for the finite element
slice.

Note the Krylov nature of CG is crucial to these arguments. If we were to
simply perform steepest descent minimization (Qk = r*) we would not obtain
the same error minimization statement over K*, with corresponding detriment
to the convergence rate.

5.3.2 Convergence Rate

In general,

Here Amax(4;,) and Amin(A,) refer to the mazimum eigenvalue and minimum
eigenvalue of Ay.

In addition to the above result, we also obtain, at least in infinite precision,
the finite termination property up} = uw,,, though this is generally not of much
interest. For steepest descent we lose this property (except for very particular
starting vectors); also, for steepest descent, \/k in the above relation must be
replaced by k — a significant degradation with great practical import.

For FEM A,:
k(4,) < Ch™?
for quasi-uniform, regular meshes 7}, ;

thus niger ~ O(

=
~—
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The condition number result is proven in Quarteroni and Valli, pp. 192—-196.
It is wvalid for any SPD second—order elliptic PDE and any order of polynomial
approximation, though C will depend on the polynomial order and the problem
particulars (coercivity and continuity constants) — but not on h.

In the above slide, niter is the number of iterations required to reduce the iteration
error in the energy norm by some fized fraction €. The result can be obtained
starting with the equation

1-1
lng = Njter In (J> )

1+1/vk

expanding out the expression involving k, and using the Taylor series for In(1+
z). The dependence on € is only logarithmic.

We see that nier depends on h: as h decreases, k increases, which in turn
decreases the convergence rate. However, the dependence on h is not so strong,
and is also independent of spatial dimension.

5.3.3 Computational Effort
For uniform FEM mesh: —=m

Niter ~ 0("1) ;
work/iteration ~ O(n?) ; (Slide 44)

= O(n}) total operations, O(n?) storage.

Note in the above, operations refers to total operations to reduce the iteration
error in the energy norm to some fized small fraction €.

We see that already in R? CG can be better (depending on the constants...)
than banded LU. In IR the improvement is even more dramatic. Despite the
relatively good convergence rate of CG, it is often of interest to improve things
further by preconditioning; good preconditioners can be developed even for very
unstructured or only semi-structured triangulations (e.g., domain decomposition
methods).
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5.3.4 General Evaluation of y = A4, p

In the operation and storage estimates of the previous slide, we implicitly used
the finite different stencil to conclude that work/iteration is O(n?) and storage
only O(n?). But more generally — on any mesh — we need to have an algorithm
that allows us to evalute the action of A, efficiently without every forming A, .

Givenpe R", py=p;, i=1,...,n

Pi=0i=n+1,...

Evaluate § = A, p;
Sety; =gi, i=1,...,n,; 9, =0, i=n+1,... 7.

Note 8 Boundary conditions in the iterative context

In practice, the CG method of Slide 46 is implemented with a &, rather
than a u,. The homogeneous Dirichlet boundary conditions are first imposed
ona) ITEEE , 49 - (more generally, at the nodes on the boundary, however they
might be numbered). Then, by virtue of the masking step implemented in the
last line of Slide 50, we maintain this boundary condition as we proceed — we
effectively operate with A,. The advantage of working with all 72 nodes, and
first finding the action of Ah and then masking, is ease of implementation. The
notion is readily extended to inhomogeneous Dirichlet conditions and Neumann
conditions as well.

Evaluation of Ahé: O(K) operations

zero §; {for k=1,...,K (elements)

{for a=1,23
i=0(k,a) ;

{for $=1,2,3
J=0(k,B) ;

Ui =i +| Ak 5;‘;}}}

In essense, the above procedure performs assembly, or direct stiffness summa-
tion, on the fly, never forming Ah — only the element matrices are needed, with
the necessary matrix multiplication being done triangle by triangle. There are
several variants of the above, some more efficient than others.
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Note that for our uniform mesh, K = O(n?), thus verifying our earlier estimate
for work/iteration (the other work required by the CG iteration, inner products,
is also O(K) = O(n?)). We also confirm that the storage requirement for CG
is only the elemental matrices and the field vectors, both of which are O(K) =
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