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Problem 1 - Solitons (50p)

Problem Statement

J. Scott Russell wrote in 1844:

“I believe I shall best introduce this phenomenon by describing the circumstances of my
own first acquaintance with it. I was observing the motion of a boat which was rapidly
drawn along a narrow channel by a pair of horses, when the boat suddenly stopped - not
so the mass of water in the channel which it had put in motion; it accumulated round the
prow of the vessel in a state of violent agitation, then suddenly leaving it behind, rolled
forward with great velocity, assuming the form of a large solitary elevation, a rounded,
smooth and well defined heap of water, which continued its course along the channel
apparently without change of form or diminution of speed. I followed it on horseback,
and overtook it still rolling on at a rate of some eight or nine miles an hour, preserving
its original figure some thirty feet long and a foot to a foot and a half in height. Its height
gradually diminished, and after a chase of one or two miles I lost it in the windings of
the channel.”

In 1895, Korteweg and de Vries formulated the equation

ut − 6uux + uxxx = 0, (1)

which models Russell’s observation. The term uux describes the sharpening of the wave and uxxx

the dispersion (i.e., waves with different wave lengths propagate with different velocities). The
balance between these two terms allows for a propagating wave with unchanged form. The primary
application of solitons today are in optical fibers, where the linear dispersion of the fiber provides
smoothing of the wave, and the non-linear properties give the sharpening. The result is a very
stable and long-lasting pulse that is free from dispersion, which is a problem with traditional
optical communication techniques.

Questions

1) (5p) Show using direct substitution that the one-soliton solution

u1(x, t) = − v

2 cosh2
(

1
2

√
v(x− vt− x0)

) (2)

solves the KdV equation (1). Here, v > 0 and x0 are arbitrary parameters.
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2) (10p) We will solve the KdV equation numerically using the method of lines and finite differ-
ence approximations for the space derivatives. Rewrite the equation as

∂u

∂t
= 6uux − uxxx, (3)

and derive a second-order accurate difference approximation of the right-hand side.

3) (15p) For the time integration, we will use a fourth order Runge-Kutta scheme:

α1 = ∆t f(ui) (4)

α2 = ∆t f(ui + α1/2) (5)

α3 = ∆t f(ui + α2/2) (6)

α4 = ∆t f(ui + α3) (7)

ui+1 = ui +
1
6
(α1 + 2α2 + 2α3 + α4). (8)

The stability region for this scheme consists of all z such that |1 + z + z2

2 + z3

6 + z4

24 | ≤ 1. In
particular, all points on the imaginary axis between ±i2

√
2 are included.

Our equation (1) is non-linear, and to make a stability analysis we first have to linearize it.
In this case, it turns out that the stability will be determined by the discretization of the
third-derivative term uxxx. Therefore, consider the simplified problem

∂u

∂t
= −uxxx, (9)

and use von Neumann stability analysis to derive an expression for the maximum allowable
time-step ∆t in terms of ∆x.

4) (20p) Write a program that solves the equation using your discretization. Solve it in the
region −8 ≤ x ≤ 8 with a grid size ∆x = 0.1, and use periodic boundary conditions:

x(−8) = x(8). (10)

Integrate from t = 0 to t = 2, using an appropriate time-step that satisfies the condition
you derived above. For each of the initial conditions below, plot the solution at t = 2 and
comment on the results.

a. To begin with, use a single soliton (2) as initial condition, that is, u(x, 0) = u1(x, 0). Set
v = 16 and x0 = 0.

b. The one-soliton solution looks almost like a Gaussian. Try u(x, 0) = −8e−x2
.

c. Try the two-soliton solution u(x, 0) = −6/ cosh2(x).

d. Create “your own” two-soliton solution by superposing two one-soliton solutions with
v = 16 and v = 4 (both with x0 = 0).

e. Same as before, but with v = 16, x0 = 4 and v = 4, x0 = −4. Describe what happens
when the two solitons cross (amplitudes, velocities), and after they have crossed.
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Problem 2 - Traffic Flow (50p)

Problem Statement

Consider the traffic flow problem, described by the non-linear hyperbolic equation:

∂ρ

∂t
+

∂ρu

∂x
= 0 (11)

with ρ = ρ(x, t) the density of cars (vehicles/km), and u = u(x, t) the velocity. Assume that the
velocity u is given as a function of ρ:

u = umax

(
1− ρ

ρmax

)
. (12)

With umax the maximum speed and 0 ≤ ρ ≤ ρmax. The flux of cars is therefore given by:

f(ρ) = ρumax

(
1− ρ

ρmax

)
. (13)

We will solve this problem using a first order finite volume scheme:

ρn+1
i = ρn

i −
∆t

∆x

(
Fn

i+ 1
2

− Fn
i− 1

2

)
. (14)

For the numerical flux function, we will consider two different schemes:

a) Roe’s Scheme
The expression of the numerical flux is given by:

FR
i+ 1

2

=
1
2

[f(ρi) + f(ρi+1)]−
1
2

∣∣∣ai+ 1
2

∣∣∣ (ρi+1 − ρi) (15)

with

ai+ 1
2

= umax

(
1− ρi + ρi+1

ρmax

)
. (16)

Note that ai+ 1
2

satisfies

f(ρi+1)− f(ρi) = ai+ 1
2
(ρi+1 − ρi). (17)

b) Godunov’s Scheme
In this case the numerical flux is given by:

FG
i+ 1

2

= f
(
ρ

(
xi+ 1

2
, tn+

))
=

{
minρ∈[ρi,ρi+1] f(ρ), ρi < ρi+1

maxρ∈[ρi,ρi+1] f(ρ), ρi > ρi+1.
(18)
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Questions

1) (25p) For both Roe’s Scheme and Godunov’s Scheme, look at the problem of a traffic light
turning green at time t = 0. We are interested in the solution at t = 2 using both schemes.
What do you observe for each of the schemes? Explain briefly why the behavior you get
arises.

Use the following problem parameters:

ρmax = 1.0, ρL = 0.8
umax = 1.0

∆x =
4

400
, ∆t =

0.8∆x

umax
(19)

The initial condition at the instant when the traffic light turns green is

ρ(0) =

{
ρL, x < 0
0, x ≥ 0

(20)

For the rest of this problem use only the scheme(s) which are valid models of the
problem.

2) (25p) Simulate the effect of a traffic light at x = −∆x
2 which has a period of T = T1 + T2 = 2

units. Assume that the traffic light is T1 = 1 units on red and T2 = 1 units on green. Assume
a sufficiently high flow density of cars (e.g. set ρ = ρmax

2 on the left boundary – giving a
maximum flux), and determine the average flow, or capacity of cars over a time period T .

The average flow can be approximated as

q̇ =
1

NT

NT∑
n=1

fn =
1

NT

NT∑
n=1

ρnun, (21)

where NT is the number of time steps for each period T . You should run your computation
until q̇ over a time period does not change. Note that by continuity q̇ can be evaluated over
any point in the interior of the domain (in order to avoid boundary condition effects, we
consider only those points on the interior domain).

Note: A red traffic light can be modeled by simply setting Fi+ 1
2

= 0 at the position where
the traffic light is located.

3) BONUS: (Possible +10p1) Assume now that we simulate two traffic lights, one located at
x = 0, and the other at x = 0.15, both with a period T . Calculate the road capacity (=
average flow) for different delay factors. That is if the first light turns green at time t, then
the second light will turn green at t + τ . Solve for τ = k T

10 , k = 0, . . . , 9. Plot your results of
capacity vs τ and determine the optimal delay τ .

1Only applied to gain a maximum of 100%. Additional bonus points are not carried over to future assignments.
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