MIT OpenCourseWare http://ocw.mit.edu

16.982 Bio-Inspired Structures Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Mechanical Properties of Metals

Strength of Materials How strong is it? Under what sort of deformation?

Figure by MIT OpenCourseWare.

Tensile Test

Figure by MIT OpenCourseWare.

- Basic mechanical behavior
 of material
- Specimen is "pulled" in tension at a constant rate
- Load (F) necessary to produce a given elongation (ΔL) is monitored
- Load vs elongation curve
- Converted to stress-strain
 curve

Engineering Stress and Strain

Engineering Stress, σ

Figure by MIT OpenCourseWare.

where *F* is the applied load and A_0 is the original cross-sectional area. Units: N/m² or Ib/in²

Engineering Strain, ε

$$\varepsilon = \frac{L_i - L_0}{L_0} = \frac{\Delta L}{L_0}$$

Figure by MIT OpenCourseWare.

where L_0 is the original length and L_i is the instantaneous. Unitless.

Stress Strain Curve

Tensile Properties

Yielding occurs

Figure by MIT OpenCourseWare.

Elastic Deformation

Plastic Deformation

Recall force is d(energy)/da

Do we break all bonds at once?

Likely Process for Slipping

Image removed due to copyright restrictions.

Dislocation Motion Along Slip Plane

- Requires only one broken bond at a given time
- Requires minimum energy
- Most plastic deformation occurs via dislocation motion along slip plane for metals and their alloys.

(1)

1.01

Ductility

Figure by MIT OpenCourseWare.

Ductility: degree of plastic deformation at fracture

$$\% RA = \left(\frac{A_0 - A_F}{A_0}\right) \times 100$$
$$\% EL = \left(\frac{L_f - L_0}{L_0}\right) \times 100$$

Brittle Materials have a fracture strain of less than approx. 5%

Resilience

Figure by MIT OpenCourseWare.

- Resilience is the capacity of material to absorb energy as elastic deformation and recover the energy
- Characterized by modulus of resilience, U_r ε_y

$$U_r = \int_0^{\beta} \sigma \, d\varepsilon$$

• If linear elastic region,

$$U_r = \frac{1}{2}\sigma_y \varepsilon_y$$

 These materials tend to have high yield strength and low modulus of elasticity

Fracture Toughness

Fracture Toughness

Energy required to fail \rightarrow area under stress-strain curve. Material must be strong and ductile.

Temperature Effects on Engineering Stress and Strain

Figure by MIT OpenCourseWare.

E, yield and tensile strength decrease with temperature

Ductility usually increases with temperature

Think of a rose or banana dipped in liquid nitrogen

Figure by MIT OpenCourseWare.

Engineering Stress and Strain vs True Stress and Strain

Figure by MIT OpenCourseWare.

Do you notice anything strange about the stressstrain curve after a material exceeds its Tensile Strength?

Engineering Stress and Strain vs True Stress and Strain

- $\sigma = F/A_0$ $\varepsilon = \Delta L / L_0$ $\sigma_T = F/A_i$ $\varepsilon_T = \ln(L_i / L_0)$
- In elastic region, change in crosssectional area and length are negligible
- As material deforms plastically, the initial cross-sectional area and length changes instantaneously
- True stress and true strain are based on instantaneous crosssectional area and instantaneous length

Engineering Stress and Strain vs True Stress and Strain

If no volume occurs during deformation:

$$\sigma_{T} = \sigma(1+\varepsilon)$$

$$\varepsilon_{T} = \ln(1+\varepsilon)$$

Figure by MIT OpenCourseWare.

After plastic deformation until necking: $\sigma_T = K \epsilon^n_T$ where K and n (strain hardening) are constants

Poisson's Ratio, υ

isotropic material

$$\upsilon = -\frac{\varepsilon_x}{\varepsilon_z} = -\frac{\varepsilon_y}{\varepsilon_z}$$

- Elastic strain in compression perpendicular to extension caused by tensile stress
- Cannot be directly obtained from stress-strain curve
- υ = 0.26 to 0.35 for common metal alloys
- $\upsilon < 0.25$ for ceramics
- υ has a maximum value of 0.50 (no volume change)

Figure by MIT OpenCourseWare.

Shear Stress

Shear Stress, τ

$$\tau = \frac{F_s}{A_0}$$

where F_s is the shear load and A_0 is the initial crosssectional area parallel to the loading direction

Shear Strain, γ $\gamma = \tan \theta$ Shear Modulus, G $\tau = G\gamma$

 F^{7}

F

Tensile and Shear Stress Elastic and Shear Modulus

Tensile Stress and Strain

Shear Stress and Strain

 $\gamma = tan\theta$

 $\sigma = \mathsf{E}\varepsilon$

 $\tau = G\gamma$

E = 2G(1+v)

- Upon release of load during a stress-strain test, some fraction of the strain is recovered as elastic strain
- Reapplication of stress will traverse the same curve
- Note the increase in the yield stress – strain hardening
- Ductility decreases

Figure by MIT OpenCourseWare.