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Moment-SOS Relaxations: Applications in Robotics and Control 
Motion Planning 

• A. Majumdar, R. Tedrake, “Funnel libraries for real-time robust feedback motion planning”, international journal of robotics and research(IJRR), Volume: 36 issue: 8, page(s): 947-982, 2017 

• S. Singh, A. Majumdar, J.J. Slotine, M. Pavone “Robust Online Motion Planning via Contraction Theory and Convex Optimization”, IEEE International Conference on Robotics and 
Automation (ICRA), 2017 

• A. Majumdar, M. Tobenkin, R.Tedrake, “Algebraic verification for parameterized motion planning libraries”, American Control Conference (ACC), 2012 

Planning and Controllers for UAV 
• R. Deits, R. Tedrake” Efficient mixed-integer planning for UAVs in cluttered environments”, IEEE International Conference on Robotics and Automation (ICRA) 2015. 

• A. J. Barry, A. Majumdar, R. Tedrake, “Safety verification of reactive controllers for UAV flight in cluttered environments using barrier certificates”, IEEE International Conference on Robotics 
and Automation (ICRA) 2012. 

Legged Robots 
• M.Posa, T. Koolen, R. Tedrake, “Balancing and Step Recovery Capturability via Sums-of-Squares Optimization”, Robotics: Science and Systems, 2017 

• I. R. Manchester, M. M. Tobenkin, M. Levashov, R. Tedrake “Regions of Attraction for Hybrid Limit Cycles of Walking Robots”, 18th IFAC World Congress, Volume 44, Issue 1, Pages 5801-
5806 

Real-Time Planning 
• A. A. Ahmadi, A. Majumdary, “Some applications of polynomial optimization in operations research and real-time decision making”, Optimization Letters, Volume 10, Issue 4, pp 709– 

729, 2016. 

Controller Design 
• A. Majumdar, A. A. Ahmadi, and R. Tedrake , “Control Design Along Trajectories via Sum of Squares Optimization” , International Conference on Robotics and Automation (ICRA), 2013 

• J. Moore, R. Tedrake, “Adaptive control design for underactuated systems using sums-of-squares optimization”, American Control Conference 2014 

• R. Tedrake , I. R. Manchester , M. Tobenkin , J. W. Roberts, “LQR-trees: Feedback Motion Planning via Sums-of-Squares Verification”, International Journal of Robotics Research, Volume 29 
Issue 8, Pages 1038-1052, 2010 
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Moment-SOS Relaxations: Applications in Robotics and Control 

Validation 
• D. Wagner, D. Henrion, M. Hromcik. Measures and LMIs for Adaptive Control Validation. To be registered as a LAAS-CNRS Research Report, March 2019. To be presented at the IEEE 

Conference on Decision and Control, Nice, France, December 2019. 

• A. A. Ahmadi, Pablo A Parrilo , “Sum of Squares Certificates for Stability of Planar, Homogeneous, and Switched Systems” IEEE Transactions on Automatic Control, 2017 

• S. Shen, R. Tedrake, “Compositional Verification of Large-Scale Nonlinear Systems via Sums-of-Squares Optimization” , American Control Conference (ACC) 2018 

Environment Representation 
• A. A. Ahmadi, G. Hall, A. Makadia, and V. Sindhwani, “Sum of Squares Polynomials and Geometry of 3D Environments” Robotics: Science and Systems, 2017 

Control and Analysis 
• M. Korda, D. Henrion, C. N. Jones. Controller design and region of attraction estimation for nonlinear dynamical systems. , October 2013, updated in March 2014, 

• A. Oustry, M. Tacchi, D. Henrion. Inner approximations of the maximal positively invariant set for polynomial dynamical systems. HAL 02064440, March 2019. IEEE Control Systems Letters, 
Vol. 3, No. 3, pp. 733-738, 2019. To be presented at the IEEE Conference on Decision and Control, Nice, France, December 2019. 

• M. Korda, D. Henrion, J. B. Lasserre. Moments and convex optimization for analysis and control of nonlinear partial differential equations. LAAS-CNRS Research Report 18088, April 2018. 
Submitted for publication. Presented at the SIAM Conference on Applications of Dynamical Systems, Snowbird, Utah, USA, May 2019. 

• M. Korda, D. Henrion, C. N. Jones. Controller design and value function approximation for nonlinear dynamical systems. LAAS-CNRS Research Report 15100, March 2015. Automatica, 
67(5):54-66, 2016. 
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Moment-SOS Relaxations 

Convexification 

 Moment Relaxation 

Nonlinear-Nonconvex Optimization  SOS Relaxation Semidefinite Program 
Dual optimization 

 What is the cost of convexification? 
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Nonlinear Optimization: variables (𝑥𝑥1, 𝑥𝑥2) 

Objective Function 

Initial Point of Nonlinear Opt 

Solution of Nonlinear Opt. 

Interior-point method 

Local minimum 



                                                                        

  

   

    

   

 

Objective Function
Objective FunctionObjective Function

Nonlinear Optimization: variables (𝑥𝑥1, 𝑥𝑥2) 

Interior-point method 

Moment SDP: variables are moments 𝑦𝑦𝛼𝛼1𝛼𝛼2 
= E 𝑥𝑥1 

𝛼𝛼1 𝑥𝑥2 
𝛼𝛼2 𝑦𝑦 = [𝑦𝑦𝛼𝛼 , 𝛼𝛼 = 0, … , 6] 

 Number of Moments in ℝn up to order 2𝑑𝑑: 

Objective Function 

Initial Point of Nonlinear Opt 

Solution of Nonlinear Opt. 

Local minimum 

Solution of SDP Solution of SDP 
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Objective Function

Nonlinear Optimization: variables (𝑥𝑥1, 𝑥𝑥2) 

Interior-point method 

Moment SDP: variables are moments 𝑦𝑦𝛼𝛼1𝛼𝛼2 
= E 𝑥𝑥1 

𝛼𝛼1 𝑥𝑥2 
𝛼𝛼2 𝑦𝑦 = [𝑦𝑦𝛼𝛼 , 𝛼𝛼 = 0, … , 6] 



Objective Function 

Initial Point of Nonlinear Opt 
Number of Moments in ℝn up to order 2𝑑𝑑: 

SOS SDP: variables are coefficients of polynomial 
Solution of Nonlinear Opt. 

Local minimum 

 Number of coefficients of a 2𝑑𝑑-degree polynomial in ℝn: 
Solution of SDP Solution of SDP 
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Moment-SOS Relaxations 

Convexification 

 Moment Relaxation 

Nonlinear-Nonconvex Optimization  SOS Relaxation Semidefinite Program 
Dual optimization 

 What is the cost of convexification ? 
Convexification increases the dimension of the search space. 

 Number of variables of the original nonlinear optimization: 

 Number of variables Moment SDP: 
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Moment-SOS Relaxations 

Convexification 

 Moment Relaxation 

Nonlinear-Nonconvex Optimization  SOS Relaxation Semidefinite Program 
Dual optimization 

 What is the cost of convexification ? 
Convexification increases the dimension of the search space. 

 Number of variables of the original nonlinear optimization: 
Cost of solving challenging problems 

 Number of variables Moment SDP: 

Pros: 
 Moment-SOS relaxations solve difficult and challenging mathematical problems. 
 They provide insights into challenging problems where no other solid and comprehensive approach exist. 
(e.g., existing approaches for nonlinear robust and chance constrained optimizations work for particular class of problems,…). 
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Moment-SOS Relaxations 

Moment-SOS Relaxations 
Large Scale Problems Large Scale Semidefinite Programs 

 Current SDP solvers are interior-point based solvers. 

 In the absence of problem structure, sum of squares problems are currently limited, roughly speaking, to a 
several thousands variables (variables in SDP). 

 How to address large scale problems? 
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Moment-SOS Relaxations 

 How to address large scale problems? 

1) Modified SOS optimization to generate i) smaller SDP’s or ii) other types of convex constraints like LP. 
Approaches: 

i) (Scaled) Diagonally Dominant Sum-of-Squares Optimization (DSOS, SDSOS), 
ii) Bounded degree SOS (BSOS) 
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Moment-SOS Relaxations 

 How to address large scale problems? 

1) Modified SOS optimization to generate i) smaller SDP’s or ii) other types of convex constraints like LP. 
Approaches: 

i) (Scaled) Diagonally Dominant Sum-of-Squares Optimization (DSOS, SDSOS), 
ii) Bounded degree SOS (BSOS) 

2) Take advantage of structure of the problem (sparsity) to generate smaller SDP’s. 
Approaches: 

i) Spars Sum-of-Squares Optimization (SSOS) 
ii) Sparse Bounded Degree Sum-of-Squares Optimization (SBSOS) 
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Moment-SOS Relaxations 

 How to address large scale problems? 

1) Modified SOS optimization to generate i) smaller SDP’s or ii) other types of convex constraints like LP. 
Approaches: 

i) (Scaled) Diagonally Dominant Sum-of-Squares Optimization (DSOS, SDSOS), 
ii) Bounded degree SOS (BSOS) 

2) Take advantage of structure of the problem (sparsity) to generate smaller SDP’s. 
Approaches: 

i) Spars Sum-of-Squares Optimization (SSOS) 
ii) Sparse Bounded Degree Sum-of-Squares Optimization (SBSOS) 

3) Efficient Algorithms for Large Scale SDP’s (Lecture 9) 
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Moment-SOS Relaxations 

 How to address large scale problems? 

1) Modified SOS optimization to generate i) smaller SDP’s or ii) other types of convex constraints like LP. 
Approaches: 

i) (Scaled) Diagonally Dominant Sum-of-Squares Optimization (DSOS, SDSOS), 
ii) Bounded degree SOS (BSOS) 

2) Take advantage of structure of the problem (sparsity) to generate smaller SDP’s. 
Approaches: 

i) Spars Sum-of-Squares Optimization (SSOS) 
ii) Sparse Bounded Degree Sum-of-Squares Optimization (SBSOS) 

3) Efficient Algorithms for Large Scale SDP’s (Lecture 9) 

4) Reformulate original optimization problem to reduce the size of the optimization (Lectures 10 and 11) 
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Applications: 
Atlas 

© Boston Dynamics. All rights reserved. This content is 
excluded from our Creative Commons license. For more 
information, see https://ocw.mit.edu/help/faq-fair-use/ 

Topics 

1) (Scaled) Diagonally Dominant Sum-of-Squares Optimization (DSOS, SDSOS) 
Modified SOS optimization that results in LP and Second order cone program 

6-link pendulum 

Control and analyze of high dimensional systems 

• A. A. Ahmadi and A. Majumdar,” DSOS and SDSOS Optimization: More Tractable Alternatives to Sum of Squares and Semidefinite Optimization”, SIAM Journal on 
Applied Algebraic Geometry, 2019. 
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Topics 

1) (Scaled) Diagonally Dominant Sum-of-Squares Optimization (DSOS, SDSOS) 
Modified SOS optimization that results in LP and Second order cone program 

2) Bounded degree SOS (BSOS) 
Modified SOS optimization that results in smaller SDP’s. 

• Jean B. Lasserre, Kim-Chuan Toh, Shouguang Yang, “A bounded degree SOS hierarchy for polynomial optimization”, EURO Journal on Computational Optimization 
March 2017, Volume 5, Issue 1–2, pp 87–117 
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Topics 

1) (Scaled) Diagonally Dominant Sum-of-Squares Optimization (DSOS, SDSOS) 
Modified SOS optimization that results in LP and Second order cone program 

2) Bounded degree SOS (BSOS) 
Modified SOS optimization that results in smaller SDP’s. 

3) Sparse Sum-of-Squares Optimization (SSOS) 
Takes advantage of sparsity of the original problem to generate smaller SDP. 

• H. Waki, S. Kim, M. Kojima, and M. Muramatsu, “Sums of squares and semidefinite program relaxations for polynomial optimization problems with structured 
sparsity,” SIAM Journal on Optimization, vol. 17, no. 1, pp. 218–242, 2006. 

• Zheng, Y., Fantuzzi, G., & Papachristodoulou, A. “Sparse sum-of-squares (SOS) optimization: A bridge between DSOS/SDSOS and SOS optimization for sparse 
polynomials”, arXiv preprint arXiv:1807.05463. 2018 
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Topics 

1) (Scaled) Diagonally Dominant Sum-of-Squares Optimization (DSOS, SDSOS) 
Modified SOS optimization that results in LP and Second order cone program 

2) Bounded degree SOS (BSOS) 
Modified SOS optimization that results in smaller SDP’s. 

3) Sparse Sum-of-Squares Optimization (SSOS) 
Takes advantage of sparsity of the original problem to generate smaller SDP. 

4) Sparse Bounded Degree Sum-of-Squares Optimization (SBSOS) 
Combination of 2 and 3 

• Tillmann Weisser, Jean B. Lasserre, Kim-Chuan Toh., “Sparse-BSOS: a bounded degree SOS hierarchy for large scale polynomial optimization with sparsity”, Math. 
Prog. Comp. (2018) 10:1–32 
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Topics 

1) (Scaled) Diagonally Dominant Sum-of-Squares Optimization (DSOS, SDSOS) 
Modified SOS optimization that results in LP and Second order cone program 

2) Bounded degree SOS (BSOS) 
Modified SOS optimization that results in smaller SDP’s. 

3) Sparse Sum-of-Squares Optimization (SSOS) 
Takes advantage of sparsity of the original problem to generate smaller SDP. 

4) Sparse Bounded Degree Sum-of-Squares Optimization (SBSOS) 
Combination of 2 and 3 
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(Scaled) Diagonally-Dominant SOS Optimization 
(DSOS, SDSOS) 

A. A. Ahmadi and A. Majumdar,” DSOS and SDSOS Optimization: More Tractable Alternatives to Sum of Squares and Semidefinite Optimization”, SIAM Journal on Applied Algebraic 
Geometry, 2019. 
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Nonlinear Optimization and Nonnegative polynomials 
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Constrained Optimization: 

Unconstrained Optimization: 
linear function 

linear function 

Polynomial Nonnegativity Constraint 

Polynomial Nonnegativity Constraint 

Convex optimization 

Convex optim
ization 

Replace with convex constraints 

Replace with convex constraints 



                                                                        

   

  

   

   
     

Sum of squares Polynomials 

Polynomial 𝑝𝑝 𝑥𝑥 is sum of squares (SOS) polynomial if : 
it can be written as a finite sum of squares of other polynomials. 

SOS 

• If polynomial 𝑝𝑝 𝑥𝑥 is SOS, then it is 𝒑𝒑 𝒙𝒙 ≥ 𝟎𝟎 for all 
SOS Polynomials 

Nonnegative Polynomials 

PSD Matrix representation of SOS polynomials 

:vector of monomials in 𝑥𝑥 where 

PSD Matrix 
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Sum of squares Polynomials 

PSD Matrix 
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Sum of squares Polynomials 

PSD Matrix 

 To avoid SDP and obtain computationally cheap convex optimizations, we obtain relaxed condition for PSD 
matrices. 

 For this, we use the following Results: 

1) Gershgorin Circle Theorem 
2) Diagonally Dominant Matrix (dd) 
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Gershgorin Circle Theorem

𝑅𝑅2 
𝑅𝑅1 

Gershgorin Circle Theorem 

𝑅𝑅3 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 

𝐼𝐼𝐼𝐼 

𝑄𝑄11 𝑄𝑄22𝟎𝟎 𝑄𝑄33 

Gershgorin Discs 
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𝑅𝑅2 
𝑅𝑅1 

 Eigenvalue of lies within the Gershgorin discs. 

𝑅𝑅3 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 

𝐼𝐼𝐼𝐼 

𝑄𝑄11 𝑄𝑄22𝟎𝟎 𝑄𝑄33 

Gershgorin Discs 

Gershgorin Circle TheoremGershgorin Circle Theorem 
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Gershgorin Circle Theorem

𝑅𝑅2 
𝑅𝑅1 

 Eigenvalue of lies within the Gershgorin discs. 

• We use Gershgorin Circle Theorem to obtain relaxed PSD condition in terms of entries of matrices. 

𝑅𝑅3 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 

𝐼𝐼𝐼𝐼 

𝑄𝑄11 𝑄𝑄22𝟎𝟎 𝑄𝑄33 

Gershgorin Discs 

Gershgorin Circle TheoremGershgorin Circle Theorem 
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𝑅𝑅2 
𝑅𝑅1 

 Eigenvalue of lies within the Gershgorin discs. 

𝑅𝑅3 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 

𝐼𝐼𝐼𝐼 

𝑄𝑄11 𝑄𝑄22𝟎𝟎 𝑄𝑄33 

𝑄𝑄11 𝑄𝑄22𝟎𝟎 𝑄𝑄33 

𝑅𝑅3 

(𝑄𝑄33- 𝑅𝑅3) 

Gershgorin Discs 

Gershgorin Circle TheoremGershgorin Circle Theorem 

• We use Gershgorin Circle Theorem to obtain relaxed PSD condition in terms of entries of matrices. 
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𝑅𝑅2 
𝑅𝑅1 

 Eigenvalue of lies within the Gershgorin discs. 

𝑅𝑅3 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 
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𝑄𝑄11 𝑄𝑄22𝟎𝟎 𝑄𝑄33 

𝑄𝑄11 𝑄𝑄22𝟎𝟎 𝑄𝑄33 

𝑅𝑅3 

Gershgorin Discs 

• We use Gershgorin Circle Theorem to obtain relaxed PSD condition in terms of entries of matrices. 

Gershgorin Circle TheoremGershgorin Circle Theorem 

(𝑄𝑄33- 𝑅𝑅3) 
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𝑅𝑅1 
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Gershgorin Discs 

• We use Gershgorin Circle Theorem to obtain relaxed PSD condition in terms of entries of matrices. 

Gershgorin Circle TheoremGershgorin Circle Theorem 

(𝑄𝑄33- 𝑅𝑅3) 
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𝑅𝑅2 
𝑅𝑅1 

 Eigenvalue of lies within the Gershgorin discs. 

𝑅𝑅3 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 

𝐼𝐼𝐼𝐼 

𝑄𝑄11 𝑄𝑄22𝟎𝟎 𝑄𝑄33 

𝑄𝑄11 𝑄𝑄22𝟎𝟎 𝑄𝑄33 

𝑅𝑅3 

Gershgorin Discs 

• We use Gershgorin Circle Theorem to obtain relaxed PSD condition in terms of entries of matrices. 

Gershgorin Circle TheoremGershgorin Circle Theorem 

(𝑄𝑄33- 𝑅𝑅3) 

𝑄𝑄11 𝑄𝑄22𝟎𝟎 𝑄𝑄33(𝑄𝑄33- 𝑅𝑅3) 

𝑅𝑅3 
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𝑅𝑅2 
𝑅𝑅1 

 Eigenvalue of lies within the Gershgorin discs. 

𝑅𝑅3 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 

𝐼𝐼𝐼𝐼 

𝑄𝑄11 𝑄𝑄22𝟎𝟎 𝑄𝑄33 

𝑄𝑄11 𝑄𝑄22𝟎𝟎 𝑄𝑄33 

𝑅𝑅3 

Diagonally Dominant Matrix (dd): 

Gershgorin Discs 

• We use Gershgorin Circle Theorem to obtain relaxed PSD condition in terms of entries of matrices. 

Gershgorin Circle TheoremGershgorin Circle Theorem 
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Nonnegative Polynomials 

PSD Matrix 

Relaxation 

A. A. Ahmadi and A. Majumdar,” DSOS and SDSOS Optimization: More Tractable Alternatives to Sum of Squares and Semidefinite Optimization”, SIAM Journal on Applied Algebraic 
Geometry, 2019. 
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Nonnegative Polynomials 

PSD Matrix 

Diagonally Dominant Matrix 

Relaxation 

Relaxation 

A. A. Ahmadi and A. Majumdar,” DSOS and SDSOS Optimization: More Tractable Alternatives to Sum of Squares and Semidefinite Optimization”, SIAM Journal on Applied Algebraic 
Geometry, 2019. 
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Nonnegative Polynomials 

PSD Matrix 

Diagonally Dominant Matrix 

Relaxation 

Relaxation 

𝑧𝑧𝑖𝑖𝑖𝑖 

Linear 
Constraints 

A. A. Ahmadi and A. Majumdar,” DSOS and SDSOS Optimization: More Tractable Alternatives to Sum of Squares and Semidefinite Optimization”, SIAM Journal on Applied Algebraic 
Geometry, 2019. 
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Nonnegative Polynomials 

PSD Matrix 

Diagonally Dominant Matrix 

Relaxation 

Relaxation 

𝑧𝑧𝑖𝑖𝑖𝑖 

Linear 
Constraints 

A. A. Ahmadi and A. Majumdar,” DSOS and SDSOS Optimization: More Tractable Alternatives to Sum of Squares and Semidefinite Optimization”, SIAM Journal on Applied Algebraic 
Geometry, 2019. 
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Nonnegative Polynomials 

Relaxation 

PSD Matrix 

Diagonally Dominant Matrix 

Linear 
Constraints 

𝑧𝑧𝑖𝑖𝑖𝑖 

Relaxation 

SOS Polynomials 

Nonnegative Polynomials 

DSOS Polynomials 

A. A. Ahmadi and A. Majumdar,” DSOS and SDSOS Optimization: More Tractable Alternatives to Sum of Squares and Semidefinite Optimization”, SIAM Journal on Applied Algebraic 
Geometry, 2019. 
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Unconstrained optimization 

SOS Programing: SOS SDP 

DSOS Programing: Linear Program 
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Unconstrained optimization Constrained optimization 

SOS Programing: SOS SDP 

DSOS Programing: Linear Program 

SOS Programing: SOS SDP 

DSOS Programing: Linear Program 



                                                                        

       DSOS programming searches a small subset of nonnegative polynomials 
set (conservative). 

SOS Polynomials 

Nonnegative Polynomials 

DSOS Polynomials 
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 DSOS programming searches a small subset of nonnegative polynomials 
set (conservative). 

 To improve the results, we need to increase the search space. 
 For this, we define “scaled-diagonally-dominant SOS” Polynomials (SDSOS). 

SOS Polynomials 

Nonnegative Polynomials 

DSOS Polynomials 
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SOS Polynomials 

Nonnegative Polynomials 

DSOS Polynomials 
SDSOS Polynomials 



                                                                        

  

          

Scaled Diagonally Dominant Matrix (sdd) 

is sdd, If there exist a diagonal matrix        with positive diagonal entries, such that                  is dd. 

MIT 16.S498: Risk Aware and Robust Nonlinear Planning  Fall 2019 43 



                                                                        

  

          

Scaled Diagonally Dominant Matrix (sdd) 

is sdd, If there exist a diagonal matrix        with positive diagonal entries, such that                  is dd. 
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Scaled Diagonally Dominant Matrix (sdd) 

is sdd, If there exist a diagonal matrix        with positive diagonal entries, such that                  is dd. 










 is sdd. 
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Scaled Diagonally Dominant Matrix (sdd) 

is sdd, If there exist a diagonal matrix        with positive diagonal entries, such that                  is dd. 










 is sdd. 
Every dd matrix is sdd matrix with 𝐷𝐷 = 𝐼𝐼 
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Scaled Diagonally Dominant Matrix (sdd) 

To characterize the “sdd” matrices in terms of its element, we use the  following result: 

is sdd if and only if it can be written as 

where, 
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Scaled Diagonally Dominant Matrix (sdd) 

To characterize the “sdd” matrices in terms of its element, we use the  following result: 

is sdd if and only if it can be written as 

where, with zero every where except at most for 4 entries 

which makes the 2 × 2 matrix                                                symmetric and positive semidefinite. 
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Scaled Diagonally Dominant Matrix (sdd) 

To characterize the “sdd” matrices in terms of its element, we use the  following result: 

is sdd if and only if it can be written as 

where, with zero every where except at most for 4 entries 

which makes the 2 × 2 matrix                                                symmetric and positive semidefinite. 

Example: 
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Scaled Diagonally Dominant Matrix (sdd) 

To characterize the “sdd” matrices in terms of its element, we use the  following result: 

is sdd if and only if it can be written as 

where, with zero every where except at most for 4 entries 

which makes the 2 × 2 matrix                                                symmetric and positive semidefinite. 

Example: 
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Scaled Diagonally Dominant Matrix (sdd) 

Every dd matrix is sdd matrix with 𝐷𝐷 = 𝐼𝐼 Every sdd matrix is sum of psd matrices 𝑀𝑀𝑖𝑖𝑖𝑖 

PSD Matrix 

? 
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Scaled Diagonally Dominant Matrix (sdd) 

is sdd if and only if it can be written as 

where, with zero every where except at most for 4 entries 

which makes the 2 × 2 matrix                                                symmetric and positive semidefinite. 
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Scaled Diagonally Dominant Matrix (sdd) 

is sdd if and only if it can be written as 

where, with zero every where except at most for 4 entries 

which makes the 2 × 2 matrix                                                symmetric and positive semidefinite. 

1) 

2) 

MIT 16.S498: Risk Aware and Robust Nonlinear Planning  Fall 2019 53 



                                                                        

  

  

 

  

 

 

      

Scaled Diagonally Dominant Matrix (sdd) 

is sdd if and only if it can be written as 

where, with zero every where except at most for 4 entries 

which makes the 2 × 2 matrix                                                symmetric and positive semidefinite. 

1) 

2) 

Second Order Cone 

• F. Alizadeh and D. Goldfarb, “Second-order cone programming,” Mathematical programming, vol. 95, no. 1, pp. 3–51, 2003. 
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Scaled Diagonally Dominant Matrix (sdd) 

is sdd, If there exist a diagonal matrix        with positive diagonal entries, such that                  is dd. 

Every dd matrix is sdd matrix with 𝐷𝐷 = 𝐼𝐼 Every sdd matrix is sum of psd matrices 𝑀𝑀𝑖𝑖𝑖𝑖 

PSD Matrix 

Second Order Cone Program (SOCP) 
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Scaled Diagonally Dominant Matrix (sdd) 

is sdd, If there exist a diagonal matrix        with positive diagonal entries, such that                  is dd. 

Every dd matrix is sdd matrix with 𝐷𝐷 = 𝐼𝐼 Every sdd matrix is sum of psd matrices 𝑀𝑀𝑖𝑖𝑖𝑖 

PSD Matrix 

Second Order Cone Program (SOCP) 

SOS Polynomials 

Nonnegative Polynomials 

DSOS Polynomials 
SDSOS Polynomials 

(Appendix I) 
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Unconstrained optimization Constrained optimization 

SOS Programing: SOS SDP 

SDSOS Programing: SOCP 

SOS Programing: SOS SDP 

SDSOS Programing: SOCP 



  

 

    

 

 
   

         
     

       
    

     
     

6-link pendulum Atlas 

information, see https://ocw.mit.edu/help/faq-fair-use/ 

SDSOS/DSOS Programming 

SPOTT: MATLAB package for DSOS and SDSOS optimization written using the SPOT toolbox.

© Boston Dynamics. All rights reserved. This content is 
• A. Ahmadi and A. Majumdar,” DSOS and SDSOS Optimization: More Tractable Alternatives to Sum of Squares and Semidefinite excluded from our Creative Commons license. For more 

Optimization”, SIAM Journal on Applied Algebraic Geometry, 2019. 

• A. Ahmadi, A. Majumdary, “Some applications of polynomial optimization in operations research and real-time decision
making”, Optimization Letters, Volume 10, Issue 4, pp 709–729, 2016.

• A. Majumdar, A. A. Ahmadi, R. Tedrake,, “Control and verification of high-dimensional systems with DSOS and SDSOS
programming”, 53rd IEEE Conference on Decision and Control 2014

Applications: 
Control and analyze of high dimensional systems 
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Nonnegative Polynomials

SDSOS Programming in SPOT 

x = msspoly('x',2); 

prog = spotsosprog; 
prog = prog.withIndeterminate(x); 

p = 3+2*x(1)+2*x(2)+3*x(1)^2+2*x(1)*x(2)+3*x(2)^2+x(1)^4+x(2)^4; 

[prog,gamma] = prog.newFree(1); 

prog = prog . withSDSOS (p-gamma) ; 

sol = prog . minimize ( -gamma,@spot_mosek) ; 

double(sol.eval(gamma)) 

https://github.com/jasour/rarnop19/blob/master/Lecture6_modified-SOS/SDSOS-DSOS/Example_SDSOS_1.m 

SOS Polynomials 

DSOS Polynomials 
SDSOS Polynomials 
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 SDSOS Programming in SPOT 
d=1; 
x = msspoly('x',2); 

prog = spotsosprog;  
prog = prog.withIndeterminate(x); 

p = (1+x(1)*x(2))^2-x(1)*x(2)+(1-x(2))^2 ; 
g=[3-2*x(2)-x(1)^2-x(2)^2;-x(1)-x(2)-x(1)*x(2);1+x(1)*x(2)]; 

[prog,gamma] = prog.newFree(1); 

mos=monomials(x,0:2*d); 
[prog,coeffs1] = prog.newFree(length(mos)); s1 = coeffs1'*mos; 
[prog,coeffs2] = prog.newFree(length(mos)); s2 = coeffs2'*mos; 
[prog,coeffs3] = prog.newFree(length(mos)); s3 = coeffs3'*mos; 

prog = prog . withSDSOS (p-gamma-[s1 s2 s3]*g); 
prog = prog . withSDSOS (s1); 
prog = prog . withSDSOS (s2); 
prog = prog . withSDSOS (s3); 

sol = prog . minimize ( -gamma,@spot_mosek); 

double(sol.eval(gamma)) SOS Polynomials 

DSOS Polynomials 
SDSOS Polynomials 

https://github.com/jasour/rarnop19/blob/master/Lecture6_modified-SOS/SDSOS-DSOS/Example_SDSOS_2.m 
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SOS Polynomials 

DSOS Polynomials 
SDSOS Polynomials 

https://github.com/jasour/rarnop19/blob/master/Lecture6_modified-SOS/SDSOS-DSOS/Example_SDSOS_3.m 

Main Benefit: 
SDSOS/DSOS can scale to problems where SOS programming ceases to run due to memory/computation constraints. 

• A. Ahmadi and A. Majumdar,” DSOS and SDSOS Optimization: More Tractable Alternatives to Sum of Squares and Semidefinite Optimization”, SIAM Journal on Applied Algebraic Geometry, 
2019. 

MIT 16.S498: Risk Aware and Robust Nonlinear Planning  Fall 2019 61 

https://github.com/jasour/rarnop19/blob/master/Lecture6_modified-SOS/SDSOS-DSOS/Example_SDSOS_3.m


                                                                        

                                

                                 

                                 

 

 

Illustrative Example: 

Number of variables Polynomial of order 2 

• SOS:    Variables:200   Relaxation Order=1 time= 286.5458 (s) 𝒑𝒑∗=5 sdp solver: mosek 

• SDSOS:  Variables:200 Relaxation Order=1   time= 3.6338 (s) 𝒑𝒑∗=5 sdp solver: mosek 

• DSOS:    Variables:200 Relaxation Order=1   time=2.6824 (s) 𝒑𝒑∗=5 sdp solver: mosek 

https://github.com/jasour/rarnop19/blob/master/Lecture6_modified-SOS/SDSOS-DSOS/Example_SDSOS_compare_Uncons.m 
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Bounded Degree SOS 

• Jean B. Lasserre, Kim-Chuan Toh, Shouguang Yang, “A bounded degree SOS hierarchy for polynomial optimization”, EURO Journal on Computational Optimization March 2017, Volume 5, 
Issue 1–2, pp 87–117 
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Putinar’s Positivity Certificate 

Nonnegative polynomial 

SDP 

SDP 
Relaxation 
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Nonnegative polynomial 
SDP 

Relaxation 
Putinar’s Positivity Certificate 

SDP 

LP 
Relaxation 

Krivine-Stengle’s Positivity Certificate 

(normalized polynomials) 
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Nonnegative polynomial 
SDP 

Relaxation 
Putinar’s Positivity Certificate 

SDP 

LP 

Krivine-Stengle’s Positivity Certificate 

(normalized polynomials) 

Unknowns: Finitely many Nonnegative scalars 

• Theorem 2.23. Jean Bernard Lasserre, “Moments, Positive Polynomials and Their Applications” Imperial College Press Optimization Series, V. 1, 2009. 

Relaxation 
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(normalized polynomials)

Finitely many Nonnegative scalarswns:

Krivine-Stengle’s Positivity Certificate 

Putinar’s Positivity Certificate 

Nonnegative polynomial 

SDP 

SDP 
Relaxation 

LP 
Relaxation 

Unkno 

+ + 

+/- +/-
𝑔𝑔1 𝑥𝑥 ≤ 0 𝑜𝑜𝑜𝑜 𝑔𝑔1 𝑥𝑥 ≥ 1 

or 

• Theorem 2.23. Jean Bernard Lasserre, “Moments, Positive Polynomials and Their Applications” Imperial College Press Optimization Series, V. 1, 2009. 
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Nonnegative polynomial 
SDP 

Relaxation 
Putinar’s Positivity Certificate 

SDP 

LP 
Relaxation 

Krivine-Stengle’s Positivity Certificate 

(normalized polynomials) 

Linear constraints 
on 𝜆𝜆 

Unknowns: Finitely many Nonnegative scalars 

• Determining if   leads to a linear optimization feasibility problem. 
• Theorem 2.23. Jean Bernard Lasserre, “Moments, Positive Polynomials and Their Applications” Imperial College Press Optimization Series, V. 1, 2009. 
• Sherali H.D., Adams W.P. A hierarchy of relaxations between the continuous and convex hull representations for zero-one programming problems, SIAM J. Discr. Math. 3, pp. 411–430, 1990. 
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SDP Relaxation 

LP Relaxation 

• Theorem: 
• Theorem 5.10. Jean Bernard Lasserre, “Moments, Positive Polynomials and Their Applications” Imperial College Press Optimization Series, V. 1, 2009. 
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 LP-relaxations suffer from several serious theoretical and practical drawbacks: 

 The LPs of the hierarchy are numerically ill-conditioned. 

• It involves products of arbitrary powers of the 𝑔𝑔𝑖𝑖(𝑥𝑥) ’s and (1 − 𝑔𝑔𝑖𝑖(𝑥𝑥))’s. 
• In particular, the presence of large coefficients is source of ill-conditioning and numerical instability. 

 The sequence of the associated optimal values converges to the global optimum only asymptotically and not in finitely 
many steps. (Appendix II) 

 Finite convergence even does not hold for convex optimizations. (In standard SOS finite convergence takes place for SOS-
convex problems) 
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 LP-relaxations suffer from several serious theoretical and practical drawbacks: 

 The LPs of the hierarchy are numerically ill-conditioned. 

• It involves products of arbitrary powers of the 𝑔𝑔𝑖𝑖(𝑥𝑥) ’s and (1 − 𝑔𝑔𝑖𝑖(𝑥𝑥))’s. 
• In particular, the presence of large coefficients is source of ill-conditioning and numerical instability. 

 The sequence of the associated optimal values converges to the global optimum only asymptotically and not in finitely 
many steps. (Appendix II) 

 Finite convergence even does not hold for convex optimizations. (In standard SOS finite convergence takes place for SOS-
convex problems) 

Bounded Degree SOS (BSOS): 
Hierarchy of convex relaxations which combines some of the advantages of the SOS and LP hierarchies. 
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Bounded Degree SOS (BSOS): 
Hierarchy of convex relaxations which combines some of the advantages of the SOS- and LP- hierarchies. 

 SOS 
Relaxation 

 LP 
Relaxation 

 BSOS 
Relaxation 

Determines the size of SDP Determines the number Linear Constraints 
• Jean B. Lasserre, Kim-Chuan Toh, Shouguang Yang, “A bounded degree SOS hierarchy for polynomial optimization”, EURO Journal on Computational Optimization March 2017, Volume 5, 

Issue 1–2, pp 87–117 
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• 

• 

SOS SDP Relaxation LP Relaxation 

Bounded SOS Relaxation 

Theorem: Let be fixed. 

 Finite convergence (Like standard SOS) (Finite convergence condition : Rank condition of the dual (moment) problem) (Appendix III) 
 Unlike standard SOS, the size of SDP is fixed 

Section 1.1, Jean B. Lasserre, Kim-Chuan Toh, Shouguang Yang, “A bounded degree SOS hierarchy for polynomial optimization”, EURO Journal on Computational Optimization March 2017, Volume 5, Issue 1–2, pp 87–117 
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Fixed size of SDP 

More examples: https://github.com/jasour/rarnop19/blob/master/Lecture6_modified-SOS/Bounded_Degree_SOS/BSOS_Example1.m 

https://github.com/tweisser/Sparse_BSOS/tree/master/test_suite/Dense 

Code: https://github.com/tweisser/Sparse_BSOS 
• Jean B. Lasserre, Kim-Chuan Toh, Shouguang Yang, “A bounded degree SOS hierarchy for polynomial optimization”, EURO Journal on Computational Optimization March 2017, Volume 5, 

Issue 1–2, pp 87–117 
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Topics 

1) (Scaled) Diagonally Dominant Sum-of-Squares Optimization (DSOS, SDSOS) 
Modified SOS optimization that results in LP and Second order cone program 

2) Bounded degree SOS (BSOS) 
Modified SOS optimization that results in smaller SDP’s. 

3) Spars Sum-of-Squares Optimization (SSOS) 
Takes advantage of sparsity of the original problem to generate smaller SDP. 

4) Sparse Bounded Degree Sum-of-Squares Optimization (SBSOS) 
Combination of 2 and 3 
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Sparse SOS 

• H. Waki, S. Kim, M. Kojima, and M. Muramatsu, “Sums of squares and semidefinite program relaxations for polynomial optimization problems with structured 
sparsity,” SIAM Journal on Optimization, vol. 17, no. 1, pp. 218–242, 2006. 

• Zheng, Y., Fantuzzi, G., & Papachristodoulou, A. “Sparse sum-of-squares (SOS) optimization: A bridge between DSOS/SDSOS and SOS optimization for sparse 
polynomials”, arXiv preprint arXiv:1807.05463. 2018 
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         Take advantage of structure (sparsity) of the problem to solve smaller SDP 
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 Take advantage of structure (sparsity) of the problem to solve smaller SDP 

1) PSD Constraint obtained form SOS/Moment Relaxation. 

• (Under some conditions)We can replace Constraint of the form  by PSD constraints of set of smaller matrices. 

Example: 
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 Take advantage of structure (sparsity) of the problem to solve smaller SDP 

Example: 

1) PSD Constraint obtained form SOS/Moment Relaxation. 

• (Under some conditions)We can replace Constraint of the form  by PSD constraints of set of smaller matrices. 

• (Under some conditions) We can replace constraint of by SOS constraints of low dimensional polynomials. 

Example: 
𝑝𝑝 𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3 = 2(1 + 𝑥𝑥1 + 𝑥𝑥3 + 𝑥𝑥1 

2 + 𝑥𝑥𝑥 𝑥𝑥2 + 𝑥𝑥1 
2 + 𝑥𝑥2𝑥𝑥3 + 𝑥𝑥3 

2) 

𝑝𝑝1 𝑥𝑥1, 𝑥𝑥2 = 1 + 𝑥𝑥1 
2 + 𝑥𝑥1 + 𝑥𝑥2 

2 

𝑝𝑝2 𝑥𝑥2, 𝑥𝑥3 = 1 + 𝑥𝑥3 
2 2 + 𝑥𝑥2 + 𝑥𝑥3 

2 

𝑝𝑝 𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3 = 𝑝𝑝1(𝑥𝑥1, 𝑥𝑥2) + 𝑝𝑝2(𝑥𝑥2, 𝑥𝑥3) 

Polynomial 𝑝𝑝(𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3) is SOS because 𝑝𝑝1(𝑥𝑥1, 𝑥𝑥2) abd 𝑝𝑝2(𝑥𝑥2, 𝑥𝑥3) are SOS. 

2)  SOS relaxation of nonnegative Polynomials 

MIT 16.S498: Risk Aware and Robust Nonlinear Planning  Fall 2019 79 



                                                                        

    

Sparse Polynomials 

Polynomial: number of coefficients 

 Fully dense polynomial: Polynomial is fully dense if all the coefficients are nonzero 
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Sparse Polynomials 

Polynomial: number of coefficients 

 Fully dense polynomial: Polynomial is fully dense if all the coefficients are nonzero 

 Sparse polynomial: Polynomial is sparse if the number of nonzero coefficients is much smaller than the number of 
the total coefficients . 

Number of nonzero coefficients: 4 2Example: Sparse Polynomial 𝑝𝑝 𝑥𝑥1, 𝑥𝑥2 = 0.56 + 0.5𝑥𝑥1 + 2𝑥𝑥22 + 0.75𝑥𝑥13𝑥𝑥2 Number of all coefficients: 
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  Example: Sparse Polynomial

Sparse Polynomials 

Polynomial: number of coefficients 

 Fully dense polynomial: Polynomial is fully dense if all the coefficients are nonzero 

 Sparse polynomial: Polynomial is sparse if the number of nonzero coefficients is much smaller than the number of 
the total coefficients . 

Number of nonzero coefficients: 42Example: Sparse Polynomial 𝑝𝑝 𝑥𝑥1, 𝑥𝑥2 = 0.56 + 0.5𝑥𝑥1 + 2𝑥𝑥22 + 0.75𝑥𝑥13𝑥𝑥2 Number of all coefficients: 

 Correlative Sparsity: It describes coupling between the variables 𝑥𝑥1, … , 𝑥𝑥𝑛𝑛 of a polynomial 

• Variables 𝑥𝑥𝑖𝑖 and 𝑥𝑥𝑖𝑖 are coupled if they appear simultaneously in a monomial of the polynomial. 
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  Example: Sparse Polynomial

Sparse Polynomials 

Polynomial: number of coefficients 

 Fully dense polynomial: Polynomial is fully dense if all the coefficients are nonzero 

 Sparse polynomial: Polynomial is sparse if the number of nonzero coefficients is much smaller than the number of 
the total coefficients . 

Number of nonzero coefficients: 42Example: Sparse Polynomial 𝑝𝑝 𝑥𝑥1, 𝑥𝑥2 = 0.56 + 0.5𝑥𝑥1 + 2𝑥𝑥22 + 0.75𝑥𝑥13𝑥𝑥2 Number of all coefficients: 

 Correlative Sparsity: It describes coupling between the variables 𝑥𝑥1, … , 𝑥𝑥𝑛𝑛 of a polynomial 

• Variables 𝑥𝑥𝑖𝑖 and 𝑥𝑥𝑖𝑖 are coupled if they appear simultaneously in a monomial of the polynomial. 

Example: 𝑝𝑝 𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3, 𝑥𝑥4 = 0.56 + 0.5𝑥𝑥1 + 2𝑥𝑥1𝑥𝑥22 + 0.75𝑥𝑥33𝑥𝑥42 Coupled variables: (𝑥𝑥1, 𝑥𝑥2) , (𝑥𝑥3, 𝑥𝑥4) 

Missing Coupled variables: (𝑥𝑥1, 𝑥𝑥3) , 𝑥𝑥1, 𝑥𝑥4 , (𝑥𝑥2, 𝑥𝑥3), (𝑥𝑥2, 𝑥𝑥4) 
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Example: Sparse Polynomial

Sparse Polynomials 

Polynomial: number of coefficients 

 Fully dense polynomial: Polynomial is fully dense if all the coefficients are nonzero 

 Sparse polynomial: Polynomial is sparse if the number of nonzero coefficients is much smaller than the number of 
the total coefficients . 

Number of nonzero coefficients: 42Example: Sparse Polynomial 𝑝𝑝 𝑥𝑥1, 𝑥𝑥2 = 0.56 + 0.5𝑥𝑥1 + 2𝑥𝑥22 + 0.75𝑥𝑥13𝑥𝑥2 Number of all coefficients: 

 Correlative Sparsity: It describes coupling between the variables 𝑥𝑥1, … , 𝑥𝑥𝑛𝑛 of a polynomial 

• Variables 𝑥𝑥𝑖𝑖 and 𝑥𝑥𝑖𝑖 are coupled if they appear simultaneously in a monomial of the polynomial. 

Example: 𝑝𝑝 𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3, 𝑥𝑥4 = 0.56 + 0.5𝑥𝑥1 + 2𝑥𝑥1𝑥𝑥22 + 0.75𝑥𝑥33𝑥𝑥42 Coupled variables: (𝑥𝑥1, 𝑥𝑥2) , (𝑥𝑥3, 𝑥𝑥4) 

Missing Coupled variables: (𝑥𝑥1, 𝑥𝑥3) , 𝑥𝑥1, 𝑥𝑥4 , (𝑥𝑥2, 𝑥𝑥3), (𝑥𝑥2, 𝑥𝑥4) 

• Number of all possible coupling between variables 𝑥𝑥1, … , 𝑥𝑥𝑛𝑛 : 
• Polynomial has correlative sparsity if the number of coupled variables is much smaller than the Number of all possible coupling 

MIT 16.S498: Risk Aware and Robust Nonlinear Planning Fall 201984 



                                                                        

    
  

      
 

Sparse Polynomials 

 Sparse polynomial: Polynomial is sparse if the number of nonzero coefficients is much smaller than the 
number of the total coefficients. 

 Correlative Sparsity: Polynomial has correlative sparsity if the number of coupled variables is much smaller 
than the Number of all possible coupling 
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Sparse Polynomials 

 Sparse polynomial: Polynomial is sparse if the number of nonzero coefficients is much smaller than the 
number of the total coefficients. 

 Correlative Sparsity: Polynomial has correlative sparsity if the number of coupled variables is much smaller 
than the Number of all possible coupling 

 Correlative sparsity is a special case of the sparsity. 

 Correlative sparsity implies the sparsity, but the converse is not necessarily true. 

10= 𝑥𝑥1𝑥𝑥2 + 𝑥𝑥1𝑥𝑥3 + 𝑥𝑥13𝑥𝑥4 + 𝑥𝑥2𝑥𝑥3 + 𝑥𝑥2𝑥𝑥4 + 𝑥𝑥3𝑥𝑥4 Sparse Polynomial 
With NO correlative sparsity Number of nonzero coefficients: 6 

𝑝𝑝 𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3, 𝑥𝑥4 

Number of all coefficients: 
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                                      (Under some conditions)Constraint of the form  can be replaced by SOS constraints of low dimensional 
polynomials. 

𝑋𝑋𝑘𝑘: Coupled set variables of 𝑝𝑝(𝑥𝑥) 

If and only if 

H. Waki, S. Kim, M. Kojima, and M. Muramatsu, “Sums of squares and semidefinite program relaxations for polynomial optimization problems with structured sparsity,” SIAM Journal on 
Optimization, vol. 17, no. 1, pp. 218–242, 2006. 
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 (Under some conditions)Constraint of the form  can be replaced by SOS constraints of low dimensional 
polynomials. 

𝑋𝑋𝑘𝑘: Coupled set variables of 𝑝𝑝(𝑥𝑥) 

If and only if 

𝐶𝐶𝑘𝑘 × 𝐶𝐶𝑘𝑘 𝐶𝐶𝑘𝑘 × 1 monomial vector 

If and only if 

matirx 
H. Waki, S. Kim, M. Kojima, and M. Muramatsu, “Sums of squares and semidefinite program relaxations for polynomial optimization problems with structured sparsity,” SIAM Journal on 
Optimization, vol. 17, no. 1, pp. 218–242, 2006. 
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                                      (Under some conditions)Constraint of the form  can be replaced by SOS constraints of low dimensional 
polynomials. 

𝑋𝑋𝑘𝑘: Coupled set variables of 𝑝𝑝(𝑥𝑥) 

If and only if 

𝐶𝐶𝑘𝑘 × 𝐶𝐶𝑘𝑘 𝐶𝐶𝑘𝑘 × 1 monomial vector 

If and only if 

matirx 
H. Waki, S. Kim, M. Kojima, and M. Muramatsu, “Sums of squares and semidefinite program relaxations for polynomial optimization problems with structured sparsity,” SIAM Journal on 
Optimization, vol. 17, no. 1, pp. 218–242, 2006. 

Example: 
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If and only if 

matirx 
H. Waki, S. Kim, M. Kojima, and M. Muramatsu, “Sums of squares and semidefinite program relaxations for polynomial optimization problems with structured sparsity,” SIAM Journal on 
Optimization, vol. 17, no. 1, pp. 218–242, 2006. 
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                                      (Under some conditions)Constraint of the form  can be replaced by SOS constraints of low dimensional 
polynomials. 

𝑋𝑋𝑘𝑘: Coupled set variables of 𝑝𝑝(𝑥𝑥) 

If and only if 

𝐶𝐶𝑘𝑘 × 𝐶𝐶𝑘𝑘 𝐶𝐶𝑘𝑘 × 1 monomial vector 

If and only if 

matirx 
H. Waki, S. Kim, M. Kojima, and M. Muramatsu, “Sums of squares and semidefinite program relaxations for polynomial optimization problems with structured sparsity,” SIAM Journal on 
Optimization, vol. 17, no. 1, pp. 218–242, 2006. 
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                                      (Under some conditions)Constraint of the form  can be replaced by SOS constraints of low dimensional 
polynomials. 

𝑋𝑋𝑘𝑘: Coupled set variables of 𝑝𝑝(𝑥𝑥) 

If and only if 

𝐶𝐶𝑘𝑘 × 𝐶𝐶𝑘𝑘 𝐶𝐶𝑘𝑘 × 1 monomial vector 

If and only if 

matirx 
H. Waki, S. Kim, M. Kojima, and M. Muramatsu, “Sums of squares and semidefinite program relaxations for polynomial optimization problems with structured sparsity,” SIAM Journal on 
Optimization, vol. 17, no. 1, pp. 218–242, 2006. 

 (Under some conditions)  Constraint of the form   can be replaced by PSD constraints of smaller matrices 

If and only if 

𝑛𝑛 × 𝑛𝑛 matirx 𝐶𝐶𝑘𝑘 × 𝐶𝐶𝑘𝑘 matirx 𝐶𝐶𝑘𝑘 × 𝐶𝐶𝑘𝑘 𝐶𝐶𝑘𝑘 × 𝑛𝑛 
matirx constant matrix 

R. Grone, C. R. Johnson, E. M. Sa, and H. Wolkowicz, “Positive definite completions of partial Hermitian matrices,” Linear Algebra and its Applications, vol. 58, pp. 109–124, 1984. 
J. Agler, W. Helton, S. McCullough, and L. Rodman, “Positive semidefinite matrices with a given sparsity pattern,” Linear Algebra. Appl., vol. 107, pp. 101–149, 1988. 
A. Griewank and P. L. Toint, “On the existence of convex decompositions of partially separable functions,” Math. Prog., vol. 28, no. 1, pp. 25–49, 1984. 
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                                      (Under some conditions)Constraint of the form  can be replaced by SOS constraints of low dimensional 
polynomials. 

𝑋𝑋𝑘𝑘: Coupled set variables of 𝑝𝑝(𝑥𝑥) 

If and only if 

𝐶𝐶𝑘𝑘 × 𝐶𝐶𝑘𝑘 𝐶𝐶𝑘𝑘 × 1 monomial vector 

If and only if 

matirx 
H. Waki, S. Kim, M. Kojima, and M. Muramatsu, “Sums of squares and semidefinite program relaxations for polynomial optimization problems with structured sparsity,” SIAM Journal on 
Optimization, vol. 17, no. 1, pp. 218–242, 2006. 

 (Under some conditions)  Constraint of the form   can be replaced by PSD constraints of smaller matrices 

𝑛𝑛 × 𝑛𝑛 matirx 

If and only if 

𝐶𝐶𝑘𝑘 × 𝐶𝐶𝑘𝑘 𝐶𝐶𝑘𝑘 × 𝑛𝑛 𝐶𝐶𝑘𝑘 × 𝐶𝐶𝑘𝑘 matirx 
matirx matirx Example: 
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                                      (Under some conditions)Constraint of the form  can be replaced by SOS constraints of low dimensional 
polynomials. 

If and only if 

𝑋𝑋𝑘𝑘: Coupled set variables of 𝑝𝑝(𝑥𝑥) 

If and only if 
𝐶𝐶𝑘𝑘 × 𝐶𝐶𝑘𝑘 𝐶𝐶𝑘𝑘 × 1 monomial vector matirx 

H. Waki, S. Kim, M. Kojima, and M. Muramatsu, “Sums of squares and semidefinite program relaxations for polynomial optimization problems with structured sparsity,” SIAM Journal on 
Optimization, vol. 17, no. 1, pp. 218–242, 2006. 

 (Under some conditions)  Constraint of the form   can be replaced by PSD constraints of smaller matrices 

If and only if 

𝑛𝑛 × 𝑛𝑛 matirx 𝐶𝐶𝑘𝑘 × 𝐶𝐶𝑘𝑘 matirx 𝐶𝐶𝑘𝑘 × 𝐶𝐶𝑘𝑘 𝐶𝐶𝑘𝑘 × 𝑛𝑛 
matirx matirx 

R. Grone, C. R. Johnson, E. M. Sa, and H. Wolkowicz, “Positive definite completions of partial Hermitian matrices,” Linear Algebra and its Applications, vol. 58, pp. 109–124, 1984. 
J. Agler, W. Helton, S. McCullough, and L. Rodman, “Positive semidefinite matrices with a given sparsity pattern,” Linear Algebra. Appl., vol. 107, pp. 101–149, 1988. 
A. Griewank and P. L. Toint, “On the existence of convex decompositions of partially separable functions,” Math. Prog., vol. 28, no. 1, pp. 25–49, 1984. 
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                                      (Under some conditions)Constraint of the form  can be replaced by SOS constraints of low dimensional 
polynomials. 

If and only if 

𝑋𝑋𝑘𝑘: Coupled set variables of 𝑝𝑝(𝑥𝑥) 

If and only if 
𝐶𝐶𝑘𝑘 × 𝐶𝐶𝑘𝑘 𝐶𝐶𝑘𝑘 × 1 monomial vector matirx 

H. Waki, S. Kim, M. Kojima, and M. Muramatsu, “Sums of squares and semidefinite program relaxations for polynomial optimization problems with structured sparsity,” SIAM Journal on 
Optimization, vol. 17, no. 1, pp. 218–242, 2006. 

 (Under some conditions)  Constraint of the form   can be replaced by PSD constraints of smaller matrices 

If and only if 

𝑛𝑛 × 𝑛𝑛 matirx 𝐶𝐶𝑘𝑘 × 𝐶𝐶𝑘𝑘 matirx 𝐶𝐶𝑘𝑘 × 𝐶𝐶𝑘𝑘 𝐶𝐶𝑘𝑘 × 𝑛𝑛 
matirx matirx 

R. Grone, C. R. Johnson, E. M. Sa, and H. Wolkowicz, “Positive definite completions of partial Hermitian matrices,” Linear Algebra and its Applications, vol. 58, pp. 109–124, 1984. 
J. Agler, W. Helton, S. McCullough, and L. Rodman, “Positive semidefinite matrices with a given sparsity pattern,” Linear Algebra. Appl., vol. 107, pp. 101–149, 1988. 
A. Griewank and P. L. Toint, “On the existence of convex decompositions of partially separable functions,” Math. Prog., vol. 28, no. 1, pp. 25–49, 1984. 

 Results rely on sparsity pattern of polynomials and Matrices and its graph representation, and Chordality of sparsity graph 
(the classical theory of graph and cliques). 
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  Undirected Graph  Undirected graph Set of nodes of the graph Set of edges of the graph 
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Undirected Graph  Undirected graph Set of nodes of the graph Set of edges of the graph 

• We use undirected graph to represent polynomials and symmetric matrices. 

2𝑝𝑝 𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3 = 1 + 𝑥𝑥1 + 𝑥𝑥3 + 𝑥𝑥12 + 𝑥𝑥1 𝑥𝑥2 + 𝑥𝑥12 + 𝑥𝑥2𝑥𝑥3 + 𝑥𝑥3 

Coupled variables: (𝑥𝑥1, 𝑥𝑥2), (𝑥𝑥2, 𝑥𝑥3) 

Edges between coupled variables 
sparsity pattern of polynomial 

𝑥𝑥1 𝑥𝑥2 𝑥𝑥3 

1 2 3 4 

1 
2 
3 
4 

3 42 

1 

𝑋𝑋23 𝑋𝑋34 
𝑋𝑋12Edges: Nonzero entries of matrix 

𝑋𝑋24 

sparsity pattern of matrix 
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  Undirected Graph  Undirected graph Set of nodes of the graph Set of edges of the graph 

Cycle: A cycle of length 𝑘𝑘 in a undirected graph is a sequence of nodes (𝑣𝑣1, 𝑣𝑣2, … , 𝑣𝑣𝑘𝑘) such that (𝑣𝑣𝑖𝑖 , 𝑣𝑣𝑖𝑖+1) 𝑖𝑖 = 1, … , 𝑘𝑘 − 1 and 
(𝑣𝑣1, 𝑣𝑣𝑘𝑘) are the edges. 1 

2 

3 cycle of length 𝟒𝟒 

4 

5 

cycle of length 𝟑𝟑 
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  Undirected Graph  Undirected graph Set of nodes of the graph Set of edges of the graph 

Cycle: A cycle of length 𝑘𝑘 in a undirected graph is a sequence of nodes (𝑣𝑣1, 𝑣𝑣2, … , 𝑣𝑣𝑘𝑘) such that (𝑣𝑣𝑖𝑖 , 𝑣𝑣𝑖𝑖+1) 𝑖𝑖 = 1, … , 𝑘𝑘 − 1 and 
(𝑣𝑣1, 𝑣𝑣𝑘𝑘) are the edges. 

Chord: is an edge that connects 2 nonadjacent nodes in a cycle. 

1 2 

3 

4 

5 

1 
2 

3 cycle of length 𝟒𝟒 

4 

5 

cycle of length 𝟑𝟑 

cycle of length 𝟓𝟓 with 2 chords 
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  Undirected Graph  Undirected graph Set of nodes of the graph Set of edges of the graph 

Cycle: A cycle of length 𝑘𝑘 in a undirected graph is a sequence of nodes (𝑣𝑣1, 𝑣𝑣2, … , 𝑣𝑣𝑘𝑘) such that (𝑣𝑣𝑖𝑖 , 𝑣𝑣𝑖𝑖+1) 𝑖𝑖 = 1, … , 𝑘𝑘 − 1 and 
(𝑣𝑣1, 𝑣𝑣𝑘𝑘) are the edges. 1 

2 

3 

4 

5 

Chord: is an edge that connects 2 nonadjacent nodes in a cycle. 

cycle of length 𝟑𝟑 

cycle of length 𝟒𝟒 
1 2 

3 

4 

5 

cycle of length 𝟓𝟓 with 2 chords 

Chordal graph 

Chordal Graph: An undirected graph is chordal if every cycle of the length 𝑘𝑘 ≥ 4 has a chord, 
(if there are no cycles of length ≥ 4) 
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  Undirected Graph  Undirected graph Set of nodes of the graph Set of edges of the graph 

Cycle: A cycle of length 𝑘𝑘 in a undirected graph is a sequence of nodes (𝑣𝑣1, 𝑣𝑣2, … , 𝑣𝑣𝑘𝑘) such that (𝑣𝑣𝑖𝑖 , 𝑣𝑣𝑖𝑖+1) 𝑖𝑖 = 1, … , 𝑘𝑘 − 1 and 
(𝑣𝑣1, 𝑣𝑣𝑘𝑘) are the edges. 1 

2 

3 

4 

5 

Chord: is an edge that connects 2 nonadjacent nodes in a cycle. 

cycle of length 𝟑𝟑 

cycle of length 𝟒𝟒 
1 2 

3 

4 

5 

cycle of length 𝟓𝟓 with 2 chords 

Chordal graph 

Chordal Graph: An undirected graph is chordal if every cycle of the length 𝑘𝑘 ≥ 4 has a chord, 
(if there are no cycles of length ≥ 4) 

Clique: a clique of a graph is a subset of nodes that construct a complete graph (i.e. each node in the clique is connected to 
clique 

3 4

1 

𝑋𝑋12 

𝑋𝑋23
2 

𝑋𝑋34

𝑋𝑋24 

all the nodes in the clique.) 

clique 
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Undirected Graph  Undirected graph Set of nodes of the graph Set of edges of the graph 

Cycle: A cycle of length 𝑘𝑘 in a undirected graph is a sequence of nodes (𝑣𝑣1, 𝑣𝑣2, … , 𝑣𝑣𝑘𝑘) such that (𝑣𝑣𝑖𝑖 , 𝑣𝑣𝑖𝑖+1) 𝑖𝑖 = 1, … , 𝑘𝑘 − 1 and 
(𝑣𝑣1, 𝑣𝑣𝑘𝑘) are the edges. 1 

2 

3 

4 

5 

Chord: is an edge that connects 2 nonadjacent nodes in a cycle. 

cycle of length 𝟑𝟑 

cycle of length 𝟒𝟒 
1 2 

3 

4 

5 

cycle of length 𝟓𝟓 with 2 chords 

Chordal graph 

Chordal Graph: An undirected graph is chordal if every cycle of the length 𝑘𝑘 ≥ 4 has a chord, 
(if there are no cycles of length ≥ 4) 

Clique: a clique of a graph is a subset of nodes that construct a complete graph (i.e. each node in the clique is connected to 
clique 

3 42𝑋𝑋12 

𝑋𝑋23 

1 

𝑋𝑋34

𝑋𝑋24 Maximal clique 

all the nodes in the clique.) 

clique 

Maximal Clique: a clique is maximal if it is not a subset of another clique. 
Maximal clique 
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Theorem 
Let be a chordal graph 1 with maximal cliques  .Then, Matrix with sparsity pattern 

is PSD if and only if there exist PSD matrices 

If and only if 

 Constraint of the form  can be replaced by PSD constraints of smaller matrices 

Matrices constructed form 
the maximal Cliques Number of the nodes 

in maximal Cliques 

Example: 

Maximal clique 

1 2 3 

sparsity pattern of polynomial 

1 1 
Maximal clique 

1: Perfect Elimination and Completable Graph theory, Theorem 7, R. Grone, C. R. Johnson, E. M. Sa, and H. Wolkowicz, “Positive definite completions of partial 
Hermitian matrices,” Linear Algebra and its Applications, vol. 58, pp. 109–124, 1984. 
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Theorem 
Let be a chordal graph 1 with maximal cliques  .Then, Matrix with sparsity pattern 

is PSD if and only if there exist PSD matrices 

If and only if 

 Constraint of the form  can be replaced by PSD constraints of smaller matrices 

Matrices constructed form 
the maximal Cliques Number of the nodes 

in maximal Cliques 

Example: 

1 2 3 

sparsity pattern of polynomial 

1 1 
Maximal clique 

Maximal clique 

Iff 

1: Perfect Elimination and Completable Graph theory, Theorem 7, R. Grone, C. R. Johnson, E. M. Sa, and H. Wolkowicz, “Positive definite completions of partial 
Hermitian matrices,” Linear Algebra and its Applications, vol. 58, pp. 109–124, 1984. 
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Theorem 
Let be a chordal graph 1 with maximal cliques  .Then, Matrix with sparsity pattern 

is PSD if and only if there exist PSD matrices 

If and only if 

 Constraint of the form  can be replaced by PSD constraints of smaller matrices 

Matrices constructed form 
the maximal Cliques Number of the nodes 

in maximal Cliques 

Example: 

Maximal clique 

1 2 3 

sparsity pattern of polynomial 

1 1 
Maximal clique 

Iff 

1: Perfect Elimination and Completable Graph theory, Theorem 7, R. Grone, C. R. Johnson, E. M. Sa, and H. Wolkowicz, “Positive definite completions of partial 
Hermitian matrices,” Linear Algebra and its Applications, vol. 58, pp. 109–124, 1984. 
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Theorem 
Let be a chordal graph 1 with maximal cliques  .Then, Matrix with sparsity pattern 

is PSD if and only if there exist PSD matrices 

If and only if 

 Constraint of the form  can be replaced by PSD constraints of smaller matrices 

Matrices constructed form 
the maximal Cliques Number of the nodes 

in maximal Cliques 

Example: (Appendix IV) 

Maximal clique 

1 2 3 

sparsity pattern of polynomial 

1 1 
Maximal clique 

Iff 

1: Perfect Elimination and Completable Graph theory, Theorem 7, R. Grone, C. R. Johnson, E. M. Sa, and H. Wolkowicz, “Positive definite completions of partial 
Hermitian matrices,” Linear Algebra and its Applications, vol. 58, pp. 109–124, 1984. 
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Theorem 
Let be a chordal graph obtained from the polynomial 𝑝𝑝(𝑥𝑥) with maximal cliques 

Then, polynomial 𝑝𝑝(𝑥𝑥) is SOS if and only if: 

If and only if 

𝑋𝑋𝑘𝑘: Nodes in clique 

 Constraint of the form   can be replaced by SOS constraints on low dimensional polynomials. 
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Theorem 
Let be a chordal graph obtained from the polynomial 𝑝𝑝(𝑥𝑥) with maximal cliques 

Then, polynomial 𝑝𝑝(𝑥𝑥) is SOS if and only if: 

If and only if 

𝑋𝑋𝑘𝑘: Nodes in clique 

 Constraint of the form   can be replaced by SOS constraints on low dimensional polynomials. 

𝑝𝑝 𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3 = 2(1 + 𝑥𝑥1 + 𝑥𝑥3 + 𝑥𝑥12 + 𝑥𝑥𝑥 𝑥𝑥2 + 𝑥𝑥12 + 𝑥𝑥2𝑥𝑥3 + 𝑥𝑥32) 

Coupled variables: (𝑥𝑥1, 𝑥𝑥2), (𝑥𝑥2, 𝑥𝑥3) 
Edges between coupled variables 

𝑥𝑥1 𝑥𝑥2 𝑥𝑥3 

Polynomial  with sparsity pattern 
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Theorem 
Let be a chordal graph obtained from the polynomial 𝑝𝑝(𝑥𝑥) with maximal cliques 

Then, polynomial 𝑝𝑝(𝑥𝑥) is SOS if and only if: 

If and only if 

𝑋𝑋𝑘𝑘: Nodes in clique 

 Constraint of the form   can be replaced by SOS constraints on low dimensional polynomials. 

Maximal clique 
𝑝𝑝 𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3 = 2(1 + 𝑥𝑥1 + 𝑥𝑥3 + 𝑥𝑥12 + 𝑥𝑥𝑥 𝑥𝑥2 + 𝑥𝑥12 + 𝑥𝑥2𝑥𝑥3 + 𝑥𝑥32) 

Coupled variables: (𝑥𝑥1, 𝑥𝑥2), (𝑥𝑥2, 𝑥𝑥3) 
Edges between coupled variables 

Polynomial  with sparsity pattern 

𝑥𝑥1 𝑥𝑥2 𝑥𝑥3 

Maximal clique 
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Theorem 
Let be a chordal graph obtained from the polynomial 𝑝𝑝(𝑥𝑥) with maximal cliques 

Then, polynomial 𝑝𝑝(𝑥𝑥) is SOS if and only if: 

If and only if 

𝑋𝑋𝑘𝑘: Nodes in clique 

 Constraint of the form   can be replaced by SOS constraints on low dimensional polynomials. 

Maximal clique 
𝑝𝑝 𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3 = 2(1 + 𝑥𝑥1 + 𝑥𝑥3 + 𝑥𝑥12 + 𝑥𝑥𝑥 𝑥𝑥2 + 𝑥𝑥12 + 𝑥𝑥2𝑥𝑥3 + 𝑥𝑥32) 

Coupled variables: (𝑥𝑥1, 𝑥𝑥2), (𝑥𝑥2, 𝑥𝑥3) 
Edges between coupled variables 

Polynomial  with sparsity pattern 

𝑥𝑥1 𝑥𝑥2 𝑥𝑥3 

Maximal clique 

𝑝𝑝 𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3 ∈ 𝑆𝑆𝑆𝑆𝑆𝑆 𝑖𝑖𝑖𝑖𝑖𝑖 𝑝𝑝 𝑥𝑥1, 𝑥𝑥2 = 𝑝𝑝1 𝑥𝑥1, 𝑥𝑥2 ∈ 𝑆𝑆𝑆𝑆𝑆𝑆 + 𝑝𝑝2 𝑥𝑥2, 𝑥𝑥3 ∈ 𝑆𝑆𝑆𝑆𝑆𝑆 

2 + 2 + 2 2 + 2𝑝𝑝 𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3 = 1 + 𝑥𝑥1 𝑥𝑥1 + 𝑥𝑥2 1 + 𝑥𝑥3 𝑥𝑥2 + 𝑥𝑥3 
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Theorem 
Let be a chordal graph obtained from the polynomial 𝑝𝑝(𝑥𝑥) with maximal cliques 

Then, polynomial 𝑝𝑝(𝑥𝑥) is SOS if and only if: 

If and only if 

𝑋𝑋𝑘𝑘: Nodes in clique 

 Constraint of the form   can be replaced by SOS constraints on low dimensional polynomials. 

Maximal clique 
𝑝𝑝 𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3 = 2(1 + 𝑥𝑥1 + 𝑥𝑥3 + 𝑥𝑥12 + 𝑥𝑥𝑥 𝑥𝑥2 + 𝑥𝑥12 + 𝑥𝑥2𝑥𝑥3 + 𝑥𝑥32) 

Coupled variables: (𝑥𝑥1, 𝑥𝑥2), (𝑥𝑥2, 𝑥𝑥3) 
Edges between coupled variables 

Polynomial  with sparsity pattern 

𝑥𝑥1 𝑥𝑥2 𝑥𝑥3 

Maximal clique 
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𝑝𝑝 𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3 ∈ 𝑆𝑆𝑆𝑆𝑆𝑆 𝑖𝑖𝑖𝑖𝑖𝑖 𝑝𝑝 𝑥𝑥1, 𝑥𝑥2 = 𝑝𝑝1 𝑥𝑥1, 𝑥𝑥2 ∈ 𝑆𝑆𝑆𝑆𝑆𝑆 + 𝑝𝑝2 𝑥𝑥2, 𝑥𝑥3 ∈ 𝑆𝑆𝑆𝑆𝑆𝑆 

2 + 2 + 2 2 + 2𝑝𝑝 𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3 = 1 + 𝑥𝑥1 𝑥𝑥1 + 𝑥𝑥2 1 + 𝑥𝑥3 𝑥𝑥2 + 𝑥𝑥3 
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Unconstrained optimization 

SOS Program: 

SSOS Program: 
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Unconstrained optimization Constrained optimization 

SOS Program: 

SSOS Program: 

should preserve the correlative sparsity of 𝑔𝑔𝑖𝑖 

SOS Program: 

SSOS Program: 



                                                                        

  

          
        

        
   

  
   

    

 

 𝜎𝜎𝑖𝑖 (𝑥𝑥) should preserve the correlative sparsity of 𝑔𝑔𝑖𝑖(𝑥𝑥) 

 Example: 
𝑔𝑔𝑖𝑖 (𝑥𝑥�): is a polynomial in terms of subset of variables 𝑥𝑥� 
𝜎𝜎𝑖𝑖 (𝑥𝑥�): SOS polynomial in terms of variables 𝑥𝑥� 

More information: 

• Section 4.2: H. Waki, S. Kim, M. Kojima, and M. Muramatsu, “Sums of squares and semidefinite program relaxations for polynomial optimization problems 
with structured sparsity,” SIAM Journal on Optimization, vol. 17, no. 1, pp. 218–242, 2006. 

• Lemma 3: , Tillmann Weisser, Jean B. Lasserre, Kim-Chuan Toh., “Sparse-BSOS: a bounded degree SOS hierarchy for large scale polynomial optimization with 
sparsity”, Math. Prog. Comp. (2018) 10:1–32 

Example: https://github.com/jasour/rarnop19/blob/master/Lecture6_modified-SOS/Sparse_SOS/Example_SSOS_compare_Cons.m 

MIT 16.S498: Risk Aware and Robust Nonlinear Planning  Fall 2019 115 

https://github.com/jasour/rarnop19/blob/master/Lecture6_modified-SOS/Sparse_SOS/Example_SSOS_compare_Cons.m


                                                                          

  

    

   

            
    

        
 

            
  

      

Sparse SOS using Yalmip 

1) Copy “corrsparsity.m” to the folder of /modules/sos, and replace the original corrsparsity.m. 

https://github.com/zhengy09/sos_csp 

2) Add the “ops.sos.csp = 1” to the Yalmip SOS optimization code. 

• Zheng, Y., Fantuzzi, G., & Papachristodoulou, A. “Sparse sum-of-squares (SOS) optimization: A bridge between DSOS/SDSOS and SOS optimization for sparse 
polynomials”, arXiv preprint arXiv:1807.05463. 2018 

• Zheng, Y., Fantuzzi, G., & Papachristodoulou, A. (2018, December). Decomposition and completion of sum-of-squares matrices. In 2018 IEEE Conference on 
Decision and Control (CDC) (pp. 4026-4031). IEEE. 

sparsePOP 3.03 (MATLAB Package) 

This package also provides the optimal solution 𝑥𝑥∗ of SSOS optimization. 

https://sourceforge.net/projects/sparsepop/ 

• H. Waki, S. Kim, M. Kojima, and M. Muramatsu, “Sums of squares and semidefinite program relaxations for polynomial optimization problems with structured 
sparsity,” SIAM Journal on Optimization, vol. 17, no. 1, pp. 218–242, 2006. 
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https://github.com/zhengy09/sos_csp
https://sourceforge.net/projects/sparsepop/


                                                                        

 

 

   

 

            
    

Example 1: Unconstrained Optimization cpu time cpu time (Number of Clique)*(Size 0f the Clique) 
(sparseSOS) (SOS) 

Number of variables 

Objective function 

Example 2: Unconstrained Optimization 

• H. Waki, S. Kim, M. Kojima, and M. Muramatsu, “Sums of squares and semidefinite program relaxations for polynomial optimization problems with structured 
sparsity,” SIAM Journal on Optimization, vol. 17, no. 1, pp. 218–242, 2006. 
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Illustrative Example: 

Number of variables Polynomial of order 2 

• SOS:    Variables:200   Relaxation Order=1 time= 286.5458 (s) 𝒑𝒑∗=5 sdp solver: mosek 

• SDSOS:  Variables:200 Relaxation Order=1   time= 3.6338 (s) 𝒑𝒑∗=5 sdp solver: mosek 

• DSOS:    Variables:200 Relaxation Order=1   time=2.6824 (s) 𝒑𝒑∗=5 sdp solver: mosek 

• Spars SOS:  Variables:200   Relaxation Order=1  time=0.2374 (s) 𝒑𝒑∗=5 sdp solver: mosek 

• SparsPOP:   Variables:200    Relaxation Order=1   time=0.95 (s) 𝒑𝒑∗=5 𝒙𝒙∗ =[𝟏𝟏, … , 𝟏𝟏] sdpt3 

https://github.com/jasour/rarnop19/blob/master/Lecture6_modified-SOS/SDSOS-DSOS/Example_SDSOS_compare_Uncons.m 

https://github.com/jasour/rarnop19/blob/master/Lecture6_modified-SOS/Sparse_SOS/Example_SSOS_compare_Uncons.m 
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https://github.com/jasour/rarnop19/blob/master/Lecture6_modified-SOS/SDSOS-DSOS/Example_SDSOS_compare_Uncons.m
https://github.com/jasour/rarnop19/blob/master/Lecture6_modified-SOS/Sparse_SOS/Example_SSOS_compare_Uncons.m
https://time=0.95


                                                                        

  
   

   

  
        

 

Topics 

1) (Scaled) Diagonally Dominant Sum-of-Squares Optimization (DSOS, SDSOS) 
Modified SOS optimization that results in LP and Second order cone program 

2) Bounded degree SOS (BSOS) 
Modified SOS optimization that results in smaller SDP’s. 

3) Spars Sum-of-Squares Optimization (SSOS) 
Takes advantage of sparsity of the original problem to generate smaller SDP. 

4) Sparse Bounded Degree Sum-of-Squares Optimization (SBSOS) 
Combination of 2 and 3 
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Sparse Bounded Degree Sum-of-Squares Optimization (SBSOS) 

 Combines Bounded degree SOS (BSOS) and Chordal-Sparse SOS. 
• Tillmann Weisser, Jean B. Lasserre, Kim-Chuan Toh., “Sparse-BSOS: a bounded degree SOS hierarchy for large scale polynomial optimization with sparsity”, 

Math. Prog. Comp. (2018) 10:1–32 

 Takes advantages of sparsity of the original problem to reduce the size of the bounded degree SOS. 

 It relies on “Running Intersection Property” (Chordal sparsity of the graph) 
• M. Tacchi, T. Weisser,  J. B. Lasserre, D. Henrion,”Exploiting Sparsity for Semi-Algebraic Set Volume Computation”, https://arxiv.org/abs/1902.02976 

• J. R. S. Blair, B. Peyton. An introduction to chordal graphs and clique trees. Pages 1–29 in Graph Theory and Sparse Matrix Computation, Springer, New York, 
1993 

• Example:https://github.com/jasour/rarnop19/blob/master/Lecture6_modified-SOS/Sparse_Bounded_Degree_SOS/SBSOS_Example1.m 

 MATLAB Code 
https://github.com/tweisser/Sparse_BSOS 

This package also provides the optimal solution 𝑥𝑥∗ of SBSOS optimization. 
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https://arxiv.org/abs/1902.02976
https://github.com/tweisser/Sparse_BSOS
https://github.com/jasour/rarnop19/blob/master/Lecture6_modified-SOS/Sparse_Bounded_Degree_SOS/SBSOS_Example1.m


Example 1: Constrained Optimization (Chained Singular Function) 

Number of variables 

                                                                        

   

 

      
   

        
 

• Tillmann Weisser, Jean B. Lasserre, Kim-Chuan Toh., “Sparse-BSOS: a bounded degree SOS hierarchy for large scale 
polynomial optimization with sparsity”, Math. Prog. Comp. (2018) 10:1–32 

Application 
M. Giamou, F. Maric, V. Peretroukhin, J. Kelly “Sparse Bounded Degree Sum of Squares Optimization for Certifiably Globally Optimal 

Rotation Averaging”, https://arxiv.org/pdf/1904.01645.pdf, 2019 
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https://arxiv.org/pdf/1904.01645.pdf


                                                                        

  
   

   

  
        

 

Relaxation 

Sparsity 

Sparsity and Relaxation 

1) (Scaled) Diagonally Dominant Sum-of-Squares Optimization (DSOS, SDSOS) 
Modified SOS optimization that results in LP and Second order cone program 

2) Bounded degree SOS (BSOS) 
Modified SOS optimization that results in smaller SDP’s. 

3) Spars Sum-of-Squares Optimization (SSOS) 
Takes advantage of sparsity of the original problem to generate smaller SDP. 

4) Sparse Bounded Degree Sum-of-Squares Optimization (SBSOS) 
Combination of 2 and 3 
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    (Scaled) Diagonally Dominant Sum-of-Squares Optimization (DSOS, SDSOS) 
• A. Ahmadi and A. Majumdar,” DSOS and SDSOS Optimization: More Tractable Alternatives to Sum of Squares and Semidefinite 
Optimization”, SIAM Journal on Applied Algebraic Geometry, 2019. 
Code: https://github.com/anirudhamajumdar/spotless/tree/spotless_isos 

Bounded Degree Sum-of-Squares Optimization (BSOS) 
• Jean B. Lasserre, Kim-Chuan Toh, Shouguang Yang, “A bounded degree SOS hierarchy for polynomial optimization”, EURO Journal on Computational 

Optimization March 2017, Volume 5, Issue 1–2, pp 87–117 
Code: https://github.com/tweisser/Sparse_BSOS 

Sparse Sum-of-Squares Optimization (SSOS) 
• H. Waki, S. Kim, M. Kojima, and M. Muramatsu, “Sums of squares and semidefinite program relaxations for polynomial optimization problems with structured 

sparsity,” SIAM Journal on Optimization, vol. 17, no. 1, pp. 218–242, 2006. 

Code: https://sourceforge.net/projects/sparsepop/ 

• Zheng, Y., Fantuzzi, G., & Papachristodoulou, A. “Sparse sum-of-squares (SOS) optimization: A bridge between DSOS/SDSOS and SOS optimization for sparse 
polynomials”, arXiv preprint arXiv:1807.05463. 2018 

Code: https://github.com/zhengy09/sos_csp 

Sparse Bounded Degree Sum-of-Squares Optimization (SBSOS) 
• Tillmann Weisser, Jean B. Lasserre, Kim-Chuan Toh., “Sparse-BSOS: a bounded degree SOS hierarchy for large scale polynomial optimization with sparsity”, 

Math. Prog. Comp. (2018) 10:1–32 

Code: https://github.com/tweisser/Sparse_BSOS 
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https://github.com/tweisser/Sparse_BSOS
https://github.com/zhengy09/sos_csp
https://sourceforge.net/projects/sparsepop/
https://github.com/tweisser/Sparse_BSOS
https://github.com/anirudhamajumdar/spotless/tree/spotless_isos


                                                                        

Appendix I: SDSOS/DSOS Polynomials 
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Polynomial Nonnegative Polynomial 
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Sum-Of-Squares Polynomials 

Diagonally-Dominant-Sum-Of-Squares Polynomials 

Scaled-Diagonally-Dominant-Sum-Of-Squares Polynomials 

                                                                        



                                                                        

Appendix II: Convergence of LP Relaxation 
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SDP Relaxation 
𝑥𝑥 

Equivalent problems 

optimal solution 
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SDP Relaxation 
𝑥𝑥 

Equivalent problems 

Hence, This constraint is imposed by 

optimal solution 

                                                                        

  



                                                                        

 

SOS 
Relaxation 

Obtained solution (Yalmip) 

 At 𝑥𝑥∗ = 1 ∈ 𝑖𝑖𝑛𝑛𝑖𝑖 𝐊𝐊 
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LP Relaxation 𝑥𝑥 

Equivalent problems 

optimal solution 

                                                                        

           • Section 5.4.2, Jean Bernard Lasserre, “Moments, Positive Polynomials and Their Applications” Imperial College Press Optimization Series, V. 1, 2009. 
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LP Relaxation 𝑥𝑥 

Equivalent problems 

optimal solution 

                                                                        

           • Section 5.4.2, Jean Bernard Lasserre, “Moments, Positive Polynomials and Their Applications” Imperial College Press Optimization Series, V. 1, 2009. 
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LP Relaxation 𝑥𝑥 

Equivalent problems 

optimal solution 

• convergence cannot be finite • Hence, 𝛾𝛾∗ (optimal solution of the original problem ) can not be attained. 

Convergences 
to zero 

                                                                        

           

       

 

• Section 5.4.2, Jean Bernard Lasserre, “Moments, Positive Polynomials and Their Applications” Imperial College Press Optimization Series, V. 1, 2009. 
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• Example 5.5. Jean Bernard Lasserre, “Moments, Positive Polynomials and Their Applications” Imperial College Press Optimization Series, V. 1, 2009. 

LP Relaxation 

𝐏𝐏𝐿𝐿 
∗2 = − 

1 

3 
𝐏𝐏𝐿𝐿 
∗4= − 

1 

3 
𝐏𝐏𝐿𝐿 
∗6 = −0.3 𝐏𝐏𝐿𝐿 

∗10 = −0.27 𝐏𝐏𝐿𝐿 
∗15 = −0.2695 

Slow monotone convergence to −0.25: 

Example: 

Example: 

Some of 𝑔𝑔𝑖𝑖 𝑥𝑥 ′𝑠𝑠, (1 − 𝑔𝑔𝑖𝑖 𝑥𝑥 )′𝑠𝑠 are zero. Hence, finite convergence can take place. 

LP Representation 
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 Appendix III: Bounded Degree SOS 
Lagrangian Perspective 
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To gain more insight into how the BSOS optimization works, consider the following Nonlinear optimization and its dual: 

Lagrange function 

Lagrange multipliers 

Dual Optimization: nonlinear optimization 

To solve    , we can use SOS relaxation. 
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This results in BSOS formulation 



                                                                        

     
                                     

    
                                      

• For 𝑘𝑘 = 0, this is results in “Krivine-Stengle’s Positivity Certificate” based LP. 
(brutal simplification of  ) 

• For 𝑘𝑘 > 0, this is results in “BSOS” relaxation. 
(tractable simplification of ) 
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• For 𝑘𝑘 = 0, this is results in “Krivine-Stengle’s Positivity Certificate” based LP. 
(brutal simplification of  ) 

• 
(tractable simplification of 

For 𝑘𝑘 > 0, this is results in “BSOS” relaxation. 
) 

 Hence, in LP and BSOS are approximation of the Lagrange multipliers. 

 Based on KKT optimality condition: 

 Hence, when finite convergence in BSOS occurs : 
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• For 𝑘𝑘 = 0, this is results in “Krivine-Stengle’s Positivity Certificate” based LP. 
(brutal simplification of  ) 

• For 𝑘𝑘 > 0, this is results in “BSOS” relaxation. 
(tractable simplification of ) 

 Hence, in LP and BSOS are approximation of the Lagrange multipliers. 

 Based on KKT optimality condition: 

 Hence, when finite convergence in BSOS occurs : 

• Section 9.2: Jean B. Lasserre,”An Introduction to Polynomial and Semi-Algebraic Optimization”, Cambridge University Press, 2015 
• Jean B. Lasserre, Kim-Chuan Toh, Shouguang Yang, “A bounded degree SOS hierarchy for polynomial optimization”, EURO Journal on Computational Optimization March 2017, Volume 5, Issue 

1–2, pp 87–117 
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Appendix IV: 
Maximal Clique and Principal Submatrix 
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Maximal Clique and Principal Submatrix 1 

2 

• Matrix  with sparsity pattern  defined by Graph 

• is maximal clique of graph  with    nodes.   

• Define matrix as follows: 

3 

1 2 3 

1 2 3 

Where is 𝑖𝑖 − 𝑖𝑖𝑡 node in 
Maximal clique Maximal clique 

nodes in the graph 
1 
2 

2 
3 

nodes in 
Extracts the Principal submatrix of  defined by 
the indices in cliques 

nodes in 
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