Modified Sum-of-Squares Relaxations for Large Scale Optimizations

MIT 16.S498: Risk Aware and Robust Nonlinear Planning Fall 2019

Ashkan Jasour

Moment-SOS Relaxations

Moment-SOS Relaxations: Applications in Robotics and Control

Motion Planning

- A. Majumdar, R. Tedrake, "Funnel libraries for real-time robust feedback motion planning", international journal of robotics and research(IJRR), Volume: 36 issue: 8 , page(s): $947-982,2017$
- S. Singh, A. Majumdar, J.J. Slotine, M. Pavone "Robust Online Motion Planning via Contraction Theory and Convex Optimization", IEEE International Conference on Robotics and Automation (ICRA), 2017
- A. Majumdar, M. Tobenkin, R.Tedrake, "Algebraic verification for parameterized motion planning libraries", American Control Conference (ACC), 2012

Planning and Controllers for UAV

- R. Deits, R. Tedrake" Efficient mixed-integer planning for UAVs in cluttered environments", IEEE International Conference on Robotics and Automation (ICRA) 2015.
- A. J. Barry, A. Majumdar, R. Tedrake, "Safety verification of reactive controllers for UAV flight in cluttered environments using barrier certificates", IEEE International Conference on Robotics and Automation (ICRA) 2012.

Legged Robots

- M.Posa, T. Koolen, R. Tedrake, "Balancing and Step Recovery Capturability via Sums-of-Squares Optimization", Robotics: Science and Systems, 2017
- I. R. Manchester, M. M. Tobenkin, M. Levashov, R. Tedrake "Regions of Attraction for Hybrid Limit Cycles of Walking Robots", 18th IFAC World Congress, Volume 44, Issue 1, Pages 58015806

Real-Time Planning

- A. A. Ahmadi, A. Majumdary, "Some applications of polynomial optimization in operations research and real-time decision making", Optimization Letters, Volume 10, Issue 4, pp 709729, 2016.

Controller Design

- A. Majumdar, A. A. Ahmadi, and R. Tedrake , "Control Design Along Trajectories via Sum of Squares Optimization" , International Conference on Robotics and Automation (ICRA), 2013
- J. Moore, R. Tedrake, "Adaptive control design for underactuated systems using sums-of-squares optimization", American Control Conference 2014
- R. Tedrake , I. R. Manchester, M. Tobenkin , J. W. Roberts, "LQR-trees: Feedback Motion Planning via Sums-of-Squares Verification", International Journal of Robotics Research, Volume 29 Issue 8, Pages 1038-1052, 2010

Moment-SOS Relaxations: Applications in Robotics and Control

Validation

- D. Wagner, D. Henrion, M. Hromcik. Measures and LMIs for Adaptive Control Validation. To be registered as a LAAS-CNRS Research Report, March 2019. To be presented at the IEEE Conference on Decision and Control, Nice, France, December 2019.
- A. A. Ahmadi, Pablo A Parrilo , "Sum of Squares Certificates for Stability of Planar, Homogeneous, and Switched Systems" IEEE Transactions on Automatic Control, 2017
- S. Shen, R. Tedrake, "Compositional Verification of Large-Scale Nonlinear Systems via Sums-of-Squares Optimization" , American Control Conference (ACC) 2018

Environment Representation

- A. A. Ahmadi, G. Hall, A. Makadia, and V. Sindhwani, "Sum of Squares Polynomials and Geometry of 3D Environments" Robotics: Science and Systems, 2017

Control and Analysis

- M. Korda, D. Henrion, C. N. Jones. Controller design and region of attraction estimation for nonlinear dynamical systems. , October 2013, updated in March 2014,
- A. Oustry, M. Tacchi, D. Henrion. Inner approximations of the maximal positively invariant set for polynomial dynamical systems. HAL 02064440, March 2019. IEEE Control Systems Letters, Vol. 3, No. 3, pp. 733-738, 2019. To be presented at the IEEE Conference on Decision and Control, Nice, France, December 2019.
- M. Korda, D. Henrion, J. B. Lasserre. Moments and convex optimization for analysis and control of nonlinear partial differential equations. LAAS-CNRS Research Report 18088 , April 2018. Submitted for publication. Presented at the SIAM Conference on Applications of Dynamical Systems, Snowbird, Utah, USA, May 2019.
- M. Korda, D. Henrion, C. N. Jones. Controller design and value function approximation for nonlinear dynamical systems. LAAS-CNRS Research Report 15100, March 2015. Automatica, 67(5):54-66, 2016.

Moment-SOS Relaxations

$>$ What is the cost of convexification?

Nonlinear Optimization: variables $\left(x_{1}, x_{2}\right)$

$\mathrm{P}^{*}=\underset{x \in \mathbb{R}^{2}}{\operatorname{minimize}} \quad \frac{1}{3} x_{1}^{6}-\frac{21}{10} x_{1}^{4}+4 x_{1}^{2}+x_{1} x_{2}+4 x_{2}^{4}-4 x_{2}^{2}+\frac{3}{2}$
subject to $\quad x \in \mathbf{K}=\left\{x \in \mathbb{R}^{2}:-\frac{1}{16} x_{1}^{4}+\frac{1}{4} x_{1}^{3}-\frac{1}{4} x_{1}^{2}-\frac{9}{100} x_{2}^{2}+\frac{29}{400} \geq 0\right\}$
Interior-point method

Nonlinear Optimization: variables $\left(x_{1}, x_{2}\right)$

$\mathrm{P}^{*}=\underset{x \in \mathbb{R}^{2}}{\operatorname{minimize}} \quad \frac{1}{3} x_{1}^{6}-\frac{21}{10} x_{1}^{4}+4 x_{1}^{2}+x_{1} x_{2}+4 x_{2}^{4}-4 x_{2}^{2}+\frac{3}{2}$
Interior-point method
subject to $\quad x \in \mathbf{K}=\left\{x \in \mathbb{R}^{2}:-\frac{1}{16} x_{1}^{4}+\frac{1}{4} x_{1}^{3}-\frac{1}{4} x_{1}^{2}-\frac{9}{100} x_{2}^{2}+\frac{29}{400} \geq 0\right\}$

Moment SDP: variables are moments $y_{\alpha_{1} \alpha_{2}}=\mathrm{E}\left[x_{1}^{\alpha_{1}} x_{2}^{\alpha_{2}}\right] y=\left[y_{\alpha}, \alpha=0, \ldots, 6\right]$

$$
\begin{aligned}
\mathrm{P}_{\text {mom }}^{* 3}=\underset{y}{\operatorname{minimize}} & \frac{1}{3} y_{60}-\frac{21}{10} y_{40}+4 y_{20}+y_{11}+4 y_{04}-4 y_{02}+\frac{3}{2} y_{00} \\
\text { subject to } & y_{00}=1 \\
& \mathbf{M}_{3}(y) \succcurlyeq 0, \mathbf{M}_{3-2}(g y) \succcurlyeq 0
\end{aligned}
$$

> Number of Moments in \mathbb{R}^{n} up to order $2 d$:

$$
\binom{n+2 d}{n}=\frac{(2+6)!}{2!6!}=28
$$

Nonlinear Optimization: variables $\left(x_{1}, x_{2}\right)$

$\mathrm{P}^{*}=\underset{x \in \mathbb{R}^{2}}{\operatorname{minimize}} \quad \frac{1}{3} x_{1}^{6}-\frac{21}{10} x_{1}^{4}+4 x_{1}^{2}+x_{1} x_{2}+4 x_{2}^{4}-4 x_{2}^{2}+\frac{3}{2}$
Interior-point method
subject to $\quad x \in \mathbf{K}=\left\{x \in \mathbb{R}^{2}:-\frac{1}{16} x_{1}^{4}+\frac{1}{4} x_{1}^{3}-\frac{1}{4} x_{1}^{2}-\frac{9}{100} x_{2}^{2}+\frac{29}{400} \geq 0\right\}$

Moment SDP: variables are moments $y_{\alpha_{1} \alpha_{2}}=\mathrm{E}\left[x_{1}^{\alpha_{1}} x_{2}^{\alpha_{2}}\right] y=\left[y_{\alpha}, \alpha=0, \ldots, 6\right]$

$$
\mathrm{P}_{\text {mom }}^{* 3}=\underset{y}{\operatorname{minimize}} \quad \frac{1}{3} y_{60}-\frac{21}{10} y_{40}+4 y_{20}+y_{11}+4 y_{04}-4 y_{02}+\frac{3}{2} y_{00}
$$

subject to $\quad y_{00}=1$
$\mathbf{M}_{3}(y) \succcurlyeq 0, \mathbf{M}_{3-2}(g y) \succcurlyeq 0$
> Number of Moments in \mathbb{R}^{n} up to order $2 d$:

$$
\binom{n+2 d}{n}=\frac{(2+6)!}{2!6!}=28
$$

SOS SDP: variables are coefficients of polynomial

$$
\left.\begin{array}{rl}
\mathrm{P}_{\text {sos }}^{* 3}=\underset{\gamma \in \mathbb{R}, \sigma_{1}}{\operatorname{maximize}} & \gamma \\
& \text { subject to }
\end{array} \quad p(x)-\gamma-\sigma_{1}(x) g(x) \in S O S_{6}\right)
$$

$>$ Number of coefficients of a $2 d$-degree polynomial in \mathbb{R}^{n} :

$$
\binom{n+2 d}{n}=\frac{(2+6)!}{2!6!}=28
$$

Moment-SOS Relaxations

$>$ What is the cost of convexification ?

Convexification increases the dimension of the search space.
$>$ Number of variables of the original nonlinear optimization: n
$>$ Number of variables Moment SDP: $\binom{n+2 d}{n}$

Moment-SOS Relaxations

$>$ What is the cost of convexification ?

Convexification increases the dimension of the search space.
$>$ Number of variables of the original nonlinear optimization: n
$>$ Number of variables Moment SDP: $\binom{n+2 d}{n}$

Pros:

> Moment-SOS relaxations solve difficult and challenging mathematical problems.
$>$ They provide insights into challenging problems where no other solid and comprehensive approach exist.
(e.g., existing approaches for nonlinear robust and chance constrained optimizations work for particular class of problems,...).

Moment-SOS Relaxations

$$
\text { Large Scale Problems } \xrightarrow{\text { Moment-SOS Relaxations }} \text { Large Scale Semidefinite Programs }
$$

$>$ Current SDP solvers are interior-point based solvers.
$>$ In the absence of problem structure, sum of squares problems are currently limited, roughly speaking, to a several thousands variables (variables in SDP).

> How to address large scale problems?

Moment-SOS Relaxations

$>$ How to address large scale problems?

1) Modified SOS optimization to generate i) smaller SDP's or ii) other types of convex constraints like LP.

Approaches:
i) (Scaled) Diagonally Dominant Sum-of-Squares Optimization (DSOS, SDSOS),
ii) Bounded degree SOS (BSOS)

Moment-SOS Relaxations

> How to address large scale problems?

1) Modified SOS optimization to generate i) smaller SDP's or ii) other types of convex constraints like LP.

Approaches:
i) (Scaled) Diagonally Dominant Sum-of-Squares Optimization (DSOS, SDSOS),
ii) Bounded degree SOS (BSOS)
2) Take advantage of structure of the problem (sparsity) to generate smaller SDP's.

Approaches:
i) Spars Sum-of-Squares Optimization (SSOS)
ii) Sparse Bounded Degree Sum-of-Squares Optimization (SBSOS)

Moment-SOS Relaxations

> How to address large scale problems?

1) Modified SOS optimization to generate i) smaller SDP's or ii) other types of convex constraints like LP.

Approaches:
i) (Scaled) Diagonally Dominant Sum-of-Squares Optimization (DSOS, SDSOS),
ii) Bounded degree SOS (BSOS)
2) Take advantage of structure of the problem (sparsity) to generate smaller SDP's.

Approaches:
i) Spars Sum-of-Squares Optimization (SSOS)
ii) Sparse Bounded Degree Sum-of-Squares Optimization (SBSOS)
3) Efficient Algorithms for Large Scale SDP's (Lecture 9)

Moment-SOS Relaxations

> How to address large scale problems?

1) Modified SOS optimization to generate i) smaller SDP's or ii) other types of convex constraints like LP.

Approaches:
i) (Scaled) Diagonally Dominant Sum-of-Squares Optimization (DSOS, SDSOS),
ii) Bounded degree SOS (BSOS)
2) Take advantage of structure of the problem (sparsity) to generate smaller SDP's.

Approaches:
i) Spars Sum-of-Squares Optimization (SSOS)
ii) Sparse Bounded Degree Sum-of-Squares Optimization (SBSOS)
3) Efficient Algorithms for Large Scale SDP’s (Lecture 9)
4) Reformulate original optimization problem to reduce the size of the optimization (Lectures 10 and 11)

Topics

1) (Scaled) Diagonally Dominant Sum-of-Squares Optimization (DSOS, SDSOS) Modified SOS optimization that results in LP and Second order cone program

Boston Dynamics. All rights reserved. This content is axcuded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/

Applications:
Control and analyze of high dimensional systems

- A. A. Ahmadi and A. Majumdar," DSOS and SDSOS Optimization: More Tractable Alternatives to Sum of Squares and Semidefinite Optimization", SIAM Journal on Applied Algebraic Geometry, 2019.
MIT 16.S498: Risk Aware and Robust Nonlinear Planning 16

Topics

1) (Scaled) Diagonally Dominant Sum-of-Squares Optimization (DSOS, SDSOS) Modified SOS optimization that results in LP and Second order cone program
2) Bounded degree SOS (BSOS)

Modified SOS optimization that results in smaller SDP's.

- Jean B. Lasserre, Kim-Chuan Toh, Shouguang Yang, "A bounded degree SOS hierarchy for polynomial optimization", EURO Journal on Computational Optimization March 2017, Volume 5, Issue 1-2, pp 87-117

Topics

1) (Scaled) Diagonally Dominant Sum-of-Squares Optimization (DSOS, SDSOS)

Modified SOS optimization that results in LP and Second order cone program
2) Bounded degree SOS (BSOS)

Modified SOS optimization that results in smaller SDP's.
3) Sparse Sum-of-Squares Optimization (SSOS)

Takes advantage of sparsity of the original problem to generate smaller SDP.

- H. Waki, S. Kim, M. Kojima, and M. Muramatsu, "Sums of squares and semidefinite program relaxations for polynomial optimization problems with structured sparsity," SIAM Journal on Optimization, vol. 17, no. 1, pp. 218-242, 2006.
- Zheng, Y., Fantuzzi, G., \& Papachristodoulou, A. "Sparse sum-of-squares (SOS) optimization: A bridge between DSOS/SDSOS and SOS optimization for sparse polynomials", arXiv preprint arXiv:1807.05463. 2018

Topics

1) (Scaled) Diagonally Dominant Sum-of-Squares Optimization (DSOS, SDSOS)

Modified SOS optimization that results in LP and Second order cone program
2) Bounded degree SOS (BSOS)

Modified SOS optimization that results in smaller SDP's.
3) Sparse Sum-of-Squares Optimization (SSOS)

Takes advantage of sparsity of the original problem to generate smaller SDP.
4) Sparse Bounded Degree Sum-of-Squares Optimization (SBSOS)

Combination of 2 and 3

- Tillmann Weisser, Jean B. Lasserre, Kim-Chuan Toh., "Sparse-BSOS: a bounded degree SOS hierarchy for large scale polynomial optimization with sparsity", Math. Prog. Comp. (2018) 10:1-32

Topics

1) (Scaled) Diagonally Dominant Sum-of-Squares Optimization (DSOS, SDSOS) Modified SOS optimization that results in LP and Second order cone program
2) Bounded degree SOS (BSOS)

Modified SOS optimization that results in smaller SDP's.
3) Sparse Sum-of-Squares Optimization (SSOS)

Takes advantage of sparsity of the original problem to generate smaller SDP.
4) Sparse Bounded Degree Sum-of-Squares Optimization (SBSOS)

Combination of 2 and 3

(Scaled) Diagonally-Dominant SOS Optimization (DSOS, SDSOS)

Nonlinear Optimization and Nonnegative polynomials

Unconstrained Optimization: $\begin{aligned} & \quad \underset{x \in \mathbb{R}^{n}}{\operatorname{minimize}^{2}} p(x) \\ & p(x) \in \mathbb{R}[x] \end{aligned}$	
Constrained Optimization: $\begin{aligned} & \underset{x \in \mathbb{R}^{n}}{\operatorname{minimize}} p(x) \\ & \text { subject to } g_{i}(x) \geq 0, i=1, \ldots, m \\ & p(x), g_{i}(x) \in \mathbb{R}[x], \quad i=1, \ldots, m \end{aligned}$	

Sum of squares Polynomials

Polynomial $p(x)$ is sum of squares (SOS) polynomial if: it can be written as a finite sum of squares of other polynomials.

$$
p(x) \in \mathbb{R}[x] \quad p(x)=\sum_{i=1}^{\ell} h_{i}^{2}(x) \quad \quad h_{i}(x) \in \mathbb{R}[x], i=1, \ldots, \ell
$$

- If polynomial $p(x)$ is SOS, then it is $\boldsymbol{p}(\boldsymbol{x}) \geq \mathbf{0}$ for all

PSD Matrix representation of SOS polynomials

$$
p(x)=B(x)^{T} Q B(x)
$$

$$
Q \in \mathcal{S}^{n}, \quad Q \succcurlyeq 0
$$

where $B(x)$:vector of monomials in x PSD Matrix

Sum of squares Polynomials

$$
p(x) \in S O S<\underbrace{Q \in \mathcal{S}^{n}, Q \succcurlyeq 0}_{\text {PSD Matrix }} \square \text { Nonnegative Eigenvalues } \square \text { SDP }
$$

Sum of squares Polynomials

$$
p(x) \in S O S \ll \underbrace{Q \in \mathcal{S}^{n}, Q \succcurlyeq 0}_{\text {PSD Matrix }}
$$

$>$ To avoid SDP and obtain computationally cheap convex optimizations, we obtain relaxed condition for PSD matrices.
$>$ For this, we use the following Results:

1) Gershgorin Circle Theorem
2) Diagonally Dominant Matrix (dd)

Gershgorin Circle Theorem

$$
Q=\left[\begin{array}{lll}
Q_{11} & Q_{12} & Q_{13} \\
Q_{21} & Q_{22} & Q_{23} \\
Q_{31} & Q_{32} & Q_{33}
\end{array}\right] \in \mathbb{R}^{3 \times 3} \operatorname{Disk}_{1}\left(Q_{11}, R_{1}=\left|Q_{12}\right|+\left|Q_{13}\right|\right), \operatorname{Disk}_{2}\left(Q_{22}, R_{2}=\left|Q_{21}\right|+\left|Q_{23}\right|\right)
$$

Gershgorin Circle Theorem

$$
Q=\left[\begin{array}{lll}
Q_{11} & Q_{12} & Q_{13} \\
Q_{21} & Q_{22} & Q_{23} \\
Q_{31} & Q_{32} & Q_{33}
\end{array}\right] \in \mathbb{R}^{3 \times 3} \operatorname{Disk}_{1}\left(Q_{11}, R_{1}=\left|Q_{12}\right|+\left|Q_{13}\right|\right) \operatorname{Disk}_{2}\left(Q_{22}, R_{2}=\left|Q_{21}\right|+\left|Q_{23}\right|\right)
$$

Eigenvalue of Q lies within the Gershgorin discs.

$Q \in \mathbb{R}^{n \times n}$
Eigenvalues $\in \cup_{i=1}^{n} \operatorname{Disk}_{i}\left(Q_{i i}, R_{i}=\sum_{i \neq j}\left|Q_{i j}\right|\right), \quad i=1, \ldots, n$

Gershgorin Circle Theorem

$$
Q=\left[\begin{array}{lll}
Q_{11} & Q_{12} & Q_{13} \\
Q_{21} & Q_{22} & Q_{23} \\
Q_{31} & Q_{32} & Q_{33}
\end{array}\right] \in \mathbb{R}^{3 \times 3} \text { Disk }\left(Q_{11}, R_{1}=\left|Q_{12}\right|+\left|Q_{13}\right|\right)
$$

Eigenvalue of Q lies within the Gershgorin discs.
$Q \in \mathbb{R}^{n \times n}$

Eigenvalues $\in \cup_{i=1}^{n} \operatorname{Disk}_{i}\left(Q_{i i}, R_{i}=\sum_{i \neq j}\left|Q_{i j}\right|\right), \quad i=1, \ldots, n$

- We use Gershgorin Circle Theorem to obtain relaxed PSD condition in terms of entries of matrices.

Gershgorin Circle Theorem

$$
Q=\left[\begin{array}{lll}
Q_{11} & Q_{12} & Q_{13} \\
Q_{21} & Q_{22} & Q_{23} \\
Q_{31} & Q_{32} & Q_{33}
\end{array}\right] \in \mathbb{R}^{3 \times 3} \operatorname{Disk}_{1}\left(Q_{11}, R_{1}=\left|Q_{12}\right|+\left|Q_{13}\right|\right) \operatorname{Disk}_{2}\left(Q_{22}, R_{2}=\left|Q_{21}\right|+\left|Q_{23}\right|\right), \operatorname{Disk}_{3}\left(Q_{33}, R_{3}=\left|Q_{31}\right|+\left|Q_{32}\right|\right)
$$

Eigenvalue of Q lies within the Gershgorin discs.

$Q \in \mathbb{R}^{n \times n}$
Eigenvalues $\in \cup_{i=1}^{n} \operatorname{Disk}_{i}\left(Q_{i i}, R_{i}=\sum_{i \neq j}\left|Q_{i j}\right|\right), \quad i=1, \ldots, n$

- We use Gershgorin Circle Theorem to obtain relaxed PSD condition in terms of entries of matrices.

Gershgorin Circle Theorem

$$
Q=\left[\begin{array}{lll}
Q_{11} & Q_{12} & Q_{13} \\
Q_{21} & Q_{22} & Q_{23} \\
Q_{31} & Q_{32} & Q_{33}
\end{array}\right] \in \mathbb{R}^{3 \times 3} \operatorname{Disk}_{1}\left(Q_{11}, R_{1}=\left|Q_{12}\right|+\left|Q_{13}\right|\right) \operatorname{Disk}_{2}\left(Q_{22}, R_{2}=\left|Q_{21}\right|+\left|Q_{23}\right|\right), \operatorname{Disk}_{3}\left(Q_{33}, R_{3}=\left|Q_{31}\right|+\left|Q_{32}\right|\right)
$$

Eigenvalue of Q lies within the Gershgorin discs.

$Q \in \mathbb{R}^{n \times n}$
Eigenvalues $\in \cup_{i=1}^{n} \operatorname{Disk}_{i}\left(Q_{i i}, R_{i}=\sum_{i \neq j}\left|Q_{i j}\right|\right), \quad i=1, \ldots, n$

- We use Gershgorin Circle Theorem to obtain relaxed PSD condition in terms of entries of matrices.

Smallest Eigenvalue $\geq \min _{i=1,2,3}\left(Q_{i i}-R_{i}\right)$

Gershgorin Circle Theorem

$$
Q=\left[\begin{array}{lll}
Q_{11} & Q_{12} & Q_{13} \\
Q_{21} & Q_{22} & Q_{23} \\
Q_{31} & Q_{32} & Q_{33}
\end{array}\right] \in \mathbb{R}^{3 \times 3} \operatorname{Disk}_{1}\left(Q_{11}, R_{1}=\left|Q_{12}\right|+\left|Q_{13}\right|\right) \operatorname{Disk}_{2}\left(Q_{22}, R_{2}=\left|Q_{21}\right|+\left|Q_{23}\right|\right), \operatorname{Disk}_{3}\left(Q_{33}, R_{3}=\left|Q_{31}\right|+\left|Q_{32}\right|\right)
$$

Eigenvalue of Q lies within the Gershgorin discs.

$Q \in \mathbb{R}^{n \times n}$
Eigenvalues $\in \cup_{i=1}^{n} \operatorname{Disk}_{i}\left(Q_{i i}, R_{i}=\sum_{i \neq j}\left|Q_{i j}\right|\right), \quad i=1, \ldots, n$

- We use Gershgorin Circle Theorem to obtain relaxed PSD condition in terms of entries of matrices.

Gershgorin Circle Theorem

$$
Q=\left[\begin{array}{lll}
Q_{11} & Q_{12} & Q_{13} \\
Q_{21} & Q_{22} & Q_{23} \\
Q_{31} & Q_{32} & Q_{33}
\end{array}\right] \in \mathbb{R}^{3 \times 3} \operatorname{Disk}_{1}\left(Q_{11}, R_{1}=\left|Q_{12}\right|+\left|Q_{13}\right|\right) \operatorname{Disk}_{2}\left(Q_{22}, R_{2}=\left|Q_{21}\right|+\left|Q_{23}\right|\right), \operatorname{Disk}_{3}\left(Q_{33}, R_{3}=\left|Q_{31}\right|+\left|Q_{32}\right|\right)
$$

Eigenvalue of Q lies within the Gershgorin discs.

0
$Q \in \mathbb{R}^{n \times n}$
Eigenvalues $\in \cup_{i=1}^{n} \operatorname{Disk}_{i}\left(Q_{i i}, R_{i}=\sum_{i \neq j}\left|Q_{i j}\right|\right), \quad i=1, \ldots, n$

- We use Gershgorin Circle Theorem to obtain relaxed PSD condition in terms of entries of matrices.

Gershgorin Circle Theorem

$Q=\left[\begin{array}{lll}Q_{11} & Q_{12} & Q_{13} \\ Q_{21} & Q_{22} & Q_{23} \\ Q_{31} & Q_{32} & Q_{33}\end{array}\right] \in \mathbb{R}^{3 \times 3} \operatorname{Disk}_{1}\left(Q_{11}, R_{1}=\left|Q_{12}\right|+\left|Q_{13}\right|\right)$
Eigenvalue of Q lies within the Gershgorin discs.

0

Gershgorin Discs
$Q \in \mathbb{R}^{n \times n}$
Eigenvalues $\in \cup_{i=1}^{n} \operatorname{Disk}_{i}\left(Q_{i i}, R_{i}=\sum_{i \neq j}\left|Q_{i j}\right|\right), \quad i=1, \ldots, n$

- We use Gershgorin Circle Theorem to obtain relaxed PSD condition in terms of entries of matrices.
$Q=\left[\begin{array}{lll}Q_{11} & Q_{12} & Q_{13} \\ Q_{12} & Q_{22} & Q_{23} \\ Q_{13} & Q_{23} & Q_{33}\end{array}\right] \in \mathcal{S}^{3}$

$Q_{11} \geq R_{1}=\left|Q_{12}\right|+\left|Q_{13}\right|$
$\mathrm{PSD} \rightarrow$ Smallest Eigenvalue $\geq \min _{i=1,2,3}\left(Q_{i i}-R_{i}\right) \geq 0$
$Q_{22} \geq R_{2}=\left|Q_{12}\right|+\left|Q_{23}\right|$
PSD $\quad \min _{\imath=1,2,3}\left(Q_{\imath} \quad R_{\imath}\right) \quad \geq 0 \quad Q_{33} \geq R_{3}=\left|Q_{13}\right|+\left|Q_{23}\right|$

Diagonally Dominant Matrix (dd): $\quad Q \in \mathcal{S}^{n}$
$Q_{i i} \geq \sum_{i \neq j}\left|Q_{i j}\right|, \quad i=1, \ldots, n$
$Q \in \mathcal{S}_{d d}^{n} \subset \mathcal{S}_{+}^{n}$

Nonnegative Polynomials

$$
p(x) \geq 0
$$

Nonnegative Polynomials

$$
p(x) \geq 0
$$

$$
Q \in \mathcal{S}_{d d}^{n} \quad \square \quad Q_{i i} \geq \sum_{i \neq j}\left|Q_{i j}\right|, \quad i=1, \ldots, n
$$

Diagonally Dominant Matrix

Nonnegative Polynomials

$$
p(x) \geq 0
$$

$$
\underset{\text { ally Dominant Matrix }}{Q \in \mathcal{S}_{d d}^{n}} \quad Q_{i i} \geq \sum_{i \neq j} \underbrace{\left|Q_{i j}\right|}, \quad i=1, \ldots, n
$$

Diagonally Dominant Matrix

$$
z_{i j}
$$

Linear
Constraints

$$
\begin{aligned}
& Q_{i i} \geq \sum_{i \neq j} z_{i j}, \quad i=1, \ldots, n \\
& -z_{i j} \leq Q_{i j} \leq z_{i j}, \quad \forall i, j i \neq j
\end{aligned}
$$

A. A. Ahmadi and A. Majumdar," DSOS and SDSOS Optimization: More Tractable Alternatives to Sum of Squares and Semidefinite Optimization", SIAM Journal on Applied Algebraic Geometry, 2019.

Nonnegative Polynomials

$$
p(x) \geq 0
$$

$$
\begin{gathered}
\begin{array}{c}
\text { Linear } \\
\text { constraints }
\end{array}
\end{gathered}\left\{\begin{array}{l}
Q_{i i} \geq \sum_{i \neq j} z_{i j}, \quad i=1, \ldots, n \\
-z_{i j} \leq Q_{i j} \leq z_{i j}, \quad \forall i, j \quad i \neq j
\end{array}\right.
$$

A. A. Ahmadi and A. Majumdar," DSOS and SDSOS Optimization: More Tractable Alternatives to Sum of Squares and Semidefinite Optimization", SIAM Journal on Applied Algebraic Geometry, 2019.

Nonnegative Polynomials

$$
p(x) \geq 0
$$

$$
Q_{i i} \geq \sum_{i \neq j} \mid \underbrace{\left|Q_{i j}\right|}_{z_{i j}}, \quad i=1, \ldots, n
$$

Nonnegative Polynomials
SOS Polynomials

DSOS Polynomials

$$
Q_{i i} \geq \sum_{i \neq j} z_{i j}, \quad i=1, \ldots, n
$$

$$
-z_{i j} \leq Q_{i j} \leq z_{i j}, \quad \forall i, j i \neq j
$$

Unconstrained optimization

minimize $\quad p(x)$ $x \in \mathbb{R}^{n}$
$\underset{\gamma \in \mathbb{R}}{\operatorname{maximize}}$
$\gamma \in \mathbb{R}$
subject to $\quad p(x)-\gamma \geq 0, \quad \forall x \in \mathbb{R}^{n}$

SOS Programing: SOS SDP

$$
\begin{array}{cl}
\underset{Q \in \mathcal{S}^{n}, \gamma}{\operatorname{maximize}} & \gamma \\
\text { subject to } & p(x)-\gamma=B^{T}(x) Q B(x) \\
& Q \in \mathcal{S}_{+}^{n}
\end{array}
$$

DSOS Programing: Linear Program

maximize
$Q \in \mathcal{S}^{n}, \gamma$
subject to $\quad p(x)-\gamma=B^{T}(x) Q B(x)$ $Q \in \mathcal{S}_{d d}^{n}$
$\underset{x \in \mathbb{R}^{n}}{\operatorname{minimize}} \quad p(x)$
$x \in \mathbb{R}^{n}$
Constrained optimization
subject to $\quad x \in \mathbf{K}=\left\{x \in \mathbb{R}^{n}: g_{i}(x) \geq 0, i=1, \ldots, m\right\}$
$\underset{\gamma \in \mathbb{R}}{\operatorname{maximize}}$
γ
subject to $\quad p(x)-\gamma \geq 0, \quad \forall x \in \mathbf{K}$

SOS Programing: SOS SDP

maximize
$\gamma,\left.Q_{i}\right|_{i=0} ^{m}$
subject to

$$
\begin{aligned}
& p(x)-\gamma-\sum_{i=1}^{m} \sigma_{i}(x) g_{i}(x)=B_{d}(x) Q_{0} B_{d}(x) \\
& \sigma_{i}(x)=B_{d_{i}}^{T}(x) Q_{i} B_{d_{i}}(x), i=1, \ldots, m \\
& Q_{i} \in \mathcal{S}_{+}^{n}, i=0, \ldots, m
\end{aligned}
$$

DSOS Programing: Linear Program

maximize
$\gamma,\left.Q_{i}\right|_{i=0} ^{m}$
subject to

$$
p(x)-\gamma-\sum_{i=1}^{m} \sigma_{i}(x) g_{i}(x)=B_{d}(x) Q_{0} B_{d}(x)
$$

$$
\sigma_{i}(x)=B_{d_{i}}^{T}(x) Q_{i} B_{d_{i}}(x), i=1, \ldots, m
$$

$Q_{i} \in \mathcal{S}_{d d}^{n}, i=0, \ldots, m$
$>$ DSOS programming searches a small subset of nonnegative polynomials set (conservative).

Nonnegative Polynomials

SOS Polynomials

DSOS Polynomials
$>$ DSOS programming searches a small subset of nonnegative polynomials set (conservative).

SOS Polynomials

$>$ To improve the results, we need to increase the search space.
$>$ For this, we define "scaled-diagonally-dominant SOS" Polynomials (SDSOS).

Nonnegative Polynomials

SOS Polynomials

SDSOS Polynomial

Scaled Diagonally Dominant Matrix (sdd)

$Q \in \mathcal{S}^{n}$ is sdd, If there exist a diagonal matrix D with positive diagonal entries, such that $D Q D$ is dd.

Scaled Diagonally Dominant Matrix (sdd)

$Q \in \mathcal{S}^{n}$ is sdd, If there exist a diagonal matrix D with positive diagonal entries, such that $D Q D$ is dd.

$$
Q=\left[\begin{array}{lll}
1 & 0 & 2 \\
0 & 3 & 0 \\
2 & 0 & 4
\end{array}\right] \notin d d \quad \begin{aligned}
& 1 \geq|0|+|2| \quad \boxed{\otimes} \\
& 3 \geq|0|+|0| \boxed{\nabla} \\
& 4 \geq|2|+|0| \boxed{\nabla}
\end{aligned}
$$

Scaled Diagonally Dominant Matrix (sdd)

$Q \in \mathcal{S}^{n}$ is sdd, If there exist a diagonal matrix D with positive diagonal entries, such that $D Q D$ is dd.

$$
Q=\left[\begin{array}{lll}
1 & 0 & 2 \\
0 & 3 & 0 \\
2 & 0 & 4
\end{array}\right] \notin d d \quad \begin{aligned}
& 1 \geq|0|+|2| \quad \mathbf{x} \\
& 3 \geq|0|+|0| \boxed{\square} \\
& 4 \geq|2|+|0| \boxed{\nabla}
\end{aligned}
$$

$$
\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & \frac{1}{2}
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & 2 \\
0 & 3 & 0 \\
2 & 0 & 4
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & \frac{1}{2}
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & 1 \\
0 & 3 & 0 \\
1 & 0 & 1
\end{array}\right] \in d d
$$

$$
D \succcurlyeq 0 \quad Q \quad D \succcurlyeq 0
$$

$>Q$ is sdd.

Scaled Diagonally Dominant Matrix (sdd)

$Q \in \mathcal{S}^{n}$ is sdd, If there exist a diagonal matrix D with positive diagonal entries, such that $D Q D$ is dd.

$$
\begin{aligned}
& Q=\left[\begin{array}{lll}
1 & 0 & 2 \\
0 & 3 & 0 \\
2 & 0 & 4
\end{array}\right] \notin d d \quad \begin{array}{l}
1 \geq|0|+|2| \boldsymbol{\boxed { x }} \\
3 \geq|0|+|0| \boldsymbol{\nabla} \\
\\
4 \geq|2|+|0| \\
\boxed{\nabla}
\end{array} \\
& {\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & \frac{1}{2}
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & 2 \\
0 & 3 & 0 \\
2 & 0 & 4
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & \frac{1}{2}
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & 1 \\
0 & 3 & 0 \\
1 & 0 & 1
\end{array}\right] \in d d} \\
& \begin{array}{l}
1 \geq|0|+|1| \nabla \\
3 \geq|0|+|0| \nabla \\
1 \geq|0|+|1| \nabla
\end{array} \\
& D \succcurlyeq 0 \quad Q \quad D \succcurlyeq 0 \quad \succcurlyeq 0 \\
& \mathcal{S}_{d d}^{n} \subset \mathcal{S}_{s d d}^{n} \subset \mathcal{S}_{+}^{n}
\end{aligned}
$$

Scaled Diagonally Dominant Matrix (sdd)

To characterize the "sdd" matrices in terms of its element, we use the following result:
$Q \in \mathcal{S}^{n}$ is sdd if and only if it can be written as $Q=\sum_{i, j=1, \ldots, n, i<j} M^{i j}$
where, $M^{i j} \in \mathcal{S}^{n}$

Scaled Diagonally Dominant Matrix (sdd)

To characterize the "sdd" matrices in terms of its element, we use the following result:
$Q \in \mathcal{S}^{n}$ is sdd if and only if it can be written as $Q=\sum_{i, j=1, \ldots, n, i<j} M^{i j}$
where, $M^{i j} \in \mathcal{S}^{n}$ with zero every where except at most for 4 entries

$$
\left(M^{i j}\right)_{i i},\left(M^{i j}\right)_{i j},\left(M^{i j}\right)_{j i},\left(M^{i j}\right)_{j j}
$$

which makes the 2×2 matrix $\left[\begin{array}{ll}\left(M^{i j}\right)_{i i} & \left(M^{i j}\right)_{i j} \\ \left(M^{i j}\right)_{j i} & \left(M^{i j}\right)_{j j}\end{array}\right]$ symmetric and positive semidefinite.

Scaled Diagonally Dominant Matrix (sdd)

To characterize the "sdd" matrices in terms of its element, we use the following result:
$Q \in \mathcal{S}^{n}$ is sdd if and only if it can be written as $Q=\sum_{i, j=1, \ldots, n, i<j} M^{i j}$
where, $M^{i j} \in \mathcal{S}^{n}$ with zero every where except at most for 4 entries

$$
\left(M^{i j}\right)_{i i},\left(M^{i j}\right)_{i j},\left(M^{i j}\right)_{j i},\left(M^{i j}\right)_{j j}
$$

which makes the 2×2 matrix $\left[\begin{array}{ll}\left(M^{i j}\right)_{i i} & \left(M^{i j}\right)_{i j} \\ \left(M^{i j}\right)_{j i} & \left(M^{i j}\right)_{j j}\end{array}\right]$ symmetric and positive semidefinite.
Example: $Q=\left[\begin{array}{lll}1 & 0 & 2 \\ 0 & 3 & 0 \\ 2 & 0 & 4\end{array}\right] \notin d d, \in s d d \quad \square \quad Q=\sum_{i, j=1,2,3, i<j} M^{i j}=M^{12}+M^{13}+M^{23}$

$$
\begin{aligned}
& \left(M^{12}\right)_{11},\left(M^{12}\right)_{12},\left(M^{12}\right)_{21},\left(M^{12}\right)_{22} \\
& \left(M^{13}\right)_{11},\left(M^{13}\right)_{13},\left(M^{13}\right)_{31},\left(M^{13}\right)_{33}
\end{aligned} \quad \square Q=\left[\begin{array}{lll}
1 & 0 & 2 \\
0 & 3 & 0 \\
2 & 0 & 4
\end{array}\right]=\underbrace{\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 1.5 & 0 \\
0 & 0 & 0
\end{array}\right]}_{M^{12}}+\underbrace{\left[\begin{array}{lll}
023 \\
\left(M_{22},\left(M^{23}\right)_{23},\left(M^{23}\right)_{32},\left(M^{23}\right)_{33}\right.
\end{array}\left[\begin{array}{lll}
1 & 0 & 2 \\
0 & 0 & 0 \\
2 & 0 & 4
\end{array}\right]\right.}_{M^{13}}+\underbrace{\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 1.5 & 0 \\
0 & 0 & 0
\end{array}\right]}_{M^{23}}
$$

Scaled Diagonally Dominant Matrix (sdd)

To characterize the "sdd" matrices in terms of its element, we use the following result:
$Q \in \mathcal{S}^{n}$ is sdd if and only if it can be written as $Q=\sum_{i, j=1, \ldots, n, i<j} M^{i j}$
where, $M^{i j} \in \mathcal{S}^{n}$ with zero every where except at most for 4 entries

$$
\left(M^{i j}\right)_{i i},\left(M^{i j}\right)_{i j},\left(M^{i j}\right)_{j i},\left(M^{i j}\right)_{j j}
$$

which makes the 2×2 matrix $\left[\begin{array}{ll}\left(M^{i j}\right)_{i i} & \left(M^{i j}\right)_{i j} \\ \left(M^{i j}\right)_{j i} & \left(M^{i j}\right)_{j j}\end{array}\right]$ symmetric and positive semidefinite.
Example: $Q=\left[\begin{array}{lll}1 & 0 & 2 \\ 0 & 3 & 0 \\ 2 & 0 & 4\end{array}\right] \notin d d, \in s d d \quad \square Q=\sum_{i, j=1,2,3, i<j} M^{i j}=M^{12}+M^{13}+M^{23}$

$$
\begin{aligned}
Q=\left[\begin{array}{lll}
1 & 0 & 2 \\
0 & 3 & 0 \\
2 & 0 & 4
\end{array}\right]= & {\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 1.5 & 0 \\
0 & 0 & 0
\end{array}\right]+\left[\begin{array}{lll}
1 & 0 & 2 \\
0 & 0 & 0 \\
2 & 0 & 4
\end{array}\right]+\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 1.5 & 0 \\
0 & 0 & 0
\end{array}\right] } \\
& {\left[\begin{array}{cc}
0 & 0 \\
0 & 1.5
\end{array}\right] \succcurlyeq 0 \quad\left[\begin{array}{ll}
1 & 2 \\
2 & 4
\end{array}\right] \succcurlyeq 0 \quad\left[\begin{array}{cc}
1.5 & 0 \\
0 & 0
\end{array}\right] \succcurlyeq 0 }
\end{aligned}
$$

Scaled Diagonally Dominant Matrix (sdd)

Scaled Diagonally Dominant Matrix (sdd)

$Q \in \mathcal{S}^{n}$ is sdd if and only if it can be written as $Q=\sum_{i, j=1, \ldots, n, i<j} M^{i j}$
where, $M^{i j} \in \mathcal{S}^{n}$ with zero every where except at most for 4 entries

$$
\left(M^{i j}\right)_{i i},\left(M^{i j}\right)_{i j},\left(M^{i j}\right)_{j i},\left(M^{i j}\right)_{j j}
$$

which makes the 2×2 matrix $\left[\begin{array}{ll}\left(M^{i j}\right)_{i i} & \left(M^{i j}\right)_{i j} \\ \left(M^{i j}\right)_{j i} & \left(M^{i j}\right)_{j j}\end{array}\right]$ symmetric and positive semidefinite.

Scaled Diagonally Dominant Matrix (sdd)

$Q \in \mathcal{S}^{n}$ is sdd if and only if it can be written as $Q=\sum_{i, j=1, \ldots, n, i<j} M^{i j}$
where, $M^{i j} \in \mathcal{S}^{n}$ with zero every where except at most for 4 entries

$$
\left(M^{i j}\right)_{i i},\left(M^{i j}\right)_{i j},\left(M^{i j}\right)_{j i},\left(M^{i j}\right)_{j j}
$$

which makes the 2×2 matrix $\left[\begin{array}{ll}\left(M^{i j}\right)_{i i} & \left(M^{i j}\right)_{i j} \\ \left(M^{i j}\right)_{j i} & \left(M^{i j}\right)_{j j}\end{array}\right]$ symmetric and positive semidefinite.
$\left[\begin{array}{cc}\left(M^{i j}\right)_{i i} & \left(M^{i j}\right)_{i j} \\ \left(M^{i j}\right)_{j i} & \left(M^{i j}\right)_{j j}\end{array}\right] \succcurlyeq 0 \square \begin{gathered}\operatorname{trace}(.)=\lambda_{1}+\lambda_{2} \geq 0 \quad \operatorname{det}(.)=\lambda_{1} \lambda_{2} \geq 0 \\ \lambda_{1} \geq 0, \lambda_{2} \geq 0\end{gathered} \Rightarrow \begin{gathered}\text { 1) }\left(M^{i j}\right)_{i i}+\left(M^{i j}\right)_{j j} \geq 0 \\ 2)\left(M^{i j}\right)_{i i}\left(M^{i j}\right)_{j j}-\left(M^{i j}\right)_{j i}\left(M^{i j}\right)_{j i} \geq 0\end{gathered}$

Scaled Diagonally Dominant Matrix (sdd)

$Q \in \mathcal{S}^{n}$ is sdd if and only if it can be written as $Q=\sum_{i, j=1, \ldots, n, i<j} M^{i j}$
where, $M^{i j} \in \mathcal{S}^{n}$ with zero every where except at most for 4 entries

$$
\left(M^{i j}\right)_{i i},\left(M^{i j}\right)_{i j},\left(M^{i j}\right)_{j i},\left(M^{i j}\right)_{j j}
$$

which makes the 2×2 matrix $\left[\begin{array}{ll}\left(M^{i j}\right)_{i i} & \left(M^{i j}\right)_{i j} \\ \left(M^{i j}\right)_{j i} & \left(M^{i j}\right)_{j j}\end{array}\right]$ symmetric and positive semidefinite.

1) $\left(M^{i j}\right)_{i i}+\left(M^{i j}\right)_{j j} \geq 0$
2) $\left(M^{i j}\right)_{i i}\left(M^{i j}\right)_{j j}-\left(M^{i j}\right)_{j i}\left(M^{i j}\right)_{j i} \geq 0$

$$
\left\|C_{i} x+d_{i}\right\|_{2} \leq e_{i}^{T} \underset{\sim}{y} f_{i}, i=1, \ldots, m
$$

Second Order Cone

$\left\|\left[\begin{array}{c}2\left(M^{i j}\right)_{i j} \\ \left(M^{i j}\right)_{i i}-\left(M^{i j}\right)_{j j}\end{array}\right]\right\|_{2} \leq\left(M^{i j}\right)_{i i}+\left(M^{i j}\right)_{j j}$

Scaled Diagonally Dominant Matrix (sdd)

$Q \in \mathcal{S}^{n}$ is sdd, If there exist a diagonal matrix D with positive diagonal entries, such that $D Q D$ is dd.

Scaled Diagonally Dominant Matrix (sdd)

$Q \in \mathcal{S}^{n}$ is sdd, If there exist a diagonal matrix D with positive diagonal entries, such that $D Q D$ is dd.

Unconstrained optimization

minimize $\quad p(x)$ $x \in \mathbb{R}^{n}$
$\underset{\gamma \in \mathbb{R}}{\operatorname{maximize}}$
$\gamma \in \mathbb{R}$
subject to $\quad p(x)-\gamma \geq 0, \quad \forall x \in \mathbb{R}^{n}$

[SOS Programing: SOS SDP

$$
\begin{array}{cl}
\underset{Q \in \mathcal{S}^{n}, \gamma}{\operatorname{maximize}} & \gamma \\
\text { subject to } & p(x)-\gamma=B^{T}(x) Q B(x) \\
& Q \in \mathcal{S}_{+}^{n}
\end{array}
$$

SDSOS Programing: SOCP

maximize γ
$Q \in \mathcal{S}^{n}, \gamma$
subject to

$$
\begin{aligned}
& p(x)-\gamma=B^{T}(x) Q B(x) \\
& Q \in \mathcal{S}_{s d d}^{n}
\end{aligned}
$$

$\underset{x \in \mathbb{R}^{n}}{\operatorname{minimize}} \quad p(x)$
Constrained optimization
subject to $\quad x \in \mathbf{K}=\left\{x \in \mathbb{R}^{n}: g_{i}(x) \geq 0, i=1, \ldots, m\right\}$

```
maximize \(\gamma \in \mathbb{R}\)
\(\gamma\)
subject to \(\quad p(x)-\gamma \geq 0, \quad \forall x \in \mathbf{K}\)
```


SOS Programing: SOS SDP

maximize
$\gamma,\left.Q_{i}\right|_{i=0} ^{m}$
subject to
$p(x)-\gamma-\sum_{i=1}^{m} \sigma_{i}(x) g_{i}(x)=B_{d}(x) Q_{0} B_{d}(x)$ $\sigma_{i}(x)=B_{d_{i}}^{T}(x) Q_{i} B_{d_{i}}(x), i=1, \ldots, m$
$Q_{i} \in \mathcal{S}_{+}^{n}, i=0, \ldots, m$

-SDSOS Programing: SOCP

maximize
$\gamma,\left.Q_{i}\right|_{i=0} ^{m}$
subject to

$$
p(x)-\gamma-\sum_{i=1}^{m} \sigma_{i}(x) g_{i}(x)=B_{d}(x) Q_{0} B_{d}(x)
$$

$$
\sigma_{i}(x)=B_{d_{i}}^{T}(x) Q_{i} B_{d_{i}}(x), i=1, \ldots, m
$$

$Q_{i} \in \mathcal{S}_{s d d}^{n}, i=0, \ldots, m$

SDSOS/DSOS Programming

SPOTT: MATLAB package for DSOS and SDSOS optimization written using the SPOT toolbox.

- A. Ahmadi and A. Majumdar," DSOS and SDSOS Optimization: More Tractable Alternatives to Sum of Squares and Semidefinite
© Boston Dynamics. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/
- A. Ahmadi, A. Majumdary, "Some applications of polynomial optimization in operations research and real-time decision making", Optimization Letters, Volume 10, Issue 4, pp 709-729, 2016.
- A. Majumdar, A. A. Ahmadi, R. Tedrake,, "Control and verification of high-dimensional systems with DSOS and SDSOS programming", 53rd IEEE Conference on Decision and Control 2014

6-link pendulum

Applications:
Control and analyze of high dimensional systems

$$
\mathrm{P}^{*}=\underset{x \in \mathbb{R}^{2}}{\operatorname{minimize}} 3+2 x_{1}+2 x_{2}+3 x_{1}^{2}+2 x_{1} x_{2}+3 x_{2}^{2}+x_{1}^{4}+x_{2}^{4}
$$

SDSOS Programming in SPOT

```
x = msspoly('x',2); }\longrightarrow\mathrm{ variables }\mp@subsup{x}{1}{},\mp@subsup{x}{2}{
prog = spotsosprog;
    eterminate (x); 
    DSOS/SDSOS Programing
prog = prog.withIndeterminate(x);
p = 3+2*x(1)+2*x(2)+3*x(1)^2+2*x(1)*x(2)+3*x(2)^2+x(1)^4+x(2)^4;\longrightarrow p(x)
[prog,gamma] = prog.newFree(1);\longrightarrow variable }
prog = prog . withSDSOS (p-gamma) ; \longrightarrow p (x)-\gamma\inDSOS/SDSOS/SOS
sol = prog . minimize ( -gamma,@spot_mosek) ; \longrightarrow SDP solver, solve SDSOS programming
double(sol.eval(gamma))\longrightarrow obtained lower bound
```

$$
\mathrm{P}_{s d s o s}^{* 2}=2.0877 \leq \mathrm{P}_{\text {sos }}^{* 2}
$$

SOS Polynomials

$$
\mathrm{P}_{\text {sos }}^{* 2}=2.5074=\mathrm{P}^{*}
$$

$$
\mathrm{P}_{d s o s}^{* 2}=1 \leq \mathrm{P}_{s d s o s}^{* 2}
$$

$$
\mathrm{P}^{*}=\underset{x \in \mathbb{R}^{2}}{\operatorname{minimize}} \quad\left(1+x_{1} x_{2}\right)^{2}-x_{1} x_{2}+\left(1-x_{2}\right)^{2}
$$

SDSOS Programming in SPOT
subject to $x \in \mathbf{K}=\left\{x \in \mathbb{R}^{2}: 3-2 x_{2}-x_{1}^{2}-x_{2}^{2} \geq 0,-x_{1}-x_{2}-x_{1} x_{2} \geq 0,1+x_{1} x_{2} \geq 0\right\}$
$\mathrm{d}=1 ;$
$\mathrm{x}=\mathrm{msspoly}\left(' x^{\prime}, 2\right) ; \longrightarrow$ relaxation order
prog $=$ spotsosprog; \longrightarrow DSOS/SDSOS Programing
prog = prog.withIndeterminate(x);
$\mathrm{p}=\left(1+\times(1)^{*} \times(2)\right)^{\wedge 2-x(1)^{*} \times(2)+(1-\times(2))^{\wedge} ;} \longrightarrow p(x)$
$\mathrm{g}=\left[3-2^{*} \times(2)-x(1) \wedge 2-x(2) \wedge 2 ;-x(1)-x(2)-x(1)^{*} x(2) ; 1+x(1) * x(2)\right] ; \longrightarrow \mathrm{K}$
[prog,gamma] $=$ prog.newFree $(1) ; \longrightarrow$ variable γ

sol $=$ prog \cdot minimize (-gamma,@spot_mosek) $\longrightarrow \longrightarrow$ SDP solver, solve SDSOS programming
double(sol.eval(gamma)) \longrightarrow obtained lower bound SOS Polynomials
$\mathrm{P}_{\text {sos }}^{* 1}=0.7549=\mathrm{P}^{*}$
$\mathrm{P}_{\text {sdsos }}^{* 1}=0.7549=\mathrm{P}_{\text {sos }}^{* 1}$
$\mathrm{P}_{\text {dsos }}^{* 1}=0.5 \leq \mathrm{P}_{\text {sdsos }}^{* 1}$
$\mathrm{P}_{\text {dsos }}^{* 2}=0.6585 \quad \mathrm{P}_{\text {dsos }}^{* 3}=0.6891$
$\mathrm{P}_{\text {dsos }}^{* 4}=0.6935 \quad \mathrm{P}_{\text {dsos }}^{* 5}=0.6937 \quad \mathrm{P}_{\text {dsos }}^{* 6}=0.6937$
https://github.com/jasour/rarnop19/blob/master/Lecture6 modified-SOS/SDSOS-DSOS/Example SDSOS 2.m

$$
\begin{aligned}
\mathrm{P}^{*}=\underset{x \in \mathbb{R}^{2}}{\operatorname{minimize}} & \frac{1}{3} x_{1}^{6}-\frac{21}{10} x_{1}^{4}+4 x_{1}^{2}+x_{1} x_{2}+4 x_{2}^{4}-4 x_{2}^{2}+\frac{3}{2} \\
& \text { subject to } \\
& x \in \mathbf{K}=\left\{x \in \mathbb{R}^{2}:-\frac{1}{16} x_{1}^{4}+\frac{1}{4} x_{1}^{3}-\frac{1}{4} x_{1}^{2}-\frac{9}{100} x_{2}^{2}+\frac{29}{400} \geq 0\right\}
\end{aligned}
$$

$$
\begin{array}{ll}
\mathrm{P}_{\text {sos }}^{* 3}=0.4684=\mathrm{P}^{*} \\
\mathrm{P}_{\text {sdsos }}^{* 3}=0.3114 \leq \mathrm{P}_{\text {sos }}^{* 1} & \mathrm{P}_{\text {sdsos }}^{* 5}=0.3132
\end{array} \mathrm{P}_{\text {sdsos }}^{* 7}=0.3538, ~ \mathrm{P}_{\text {dsos }}^{* 7}=-0.0353
$$

SOS Polynomials

SDSOS Polynomial

https://github.com/jasour/rarnop19/blob/master/Lecture6 modified-SOS/SDSOS-DSOS/Example SDSOS 3.m

Main Benefit:

SDSOS/DSOS can scale to problems where SOS programming ceases to run due to memory/computation constraints.
 2019.

Illustrative Example:

$$
\mathrm{P}^{*}=\underset{x \in \mathbb{R}^{n}}{\operatorname{minimize}}=5+\sum_{i=1}^{n}\left(x_{i}-1\right)^{2} \quad p^{*}=5, \quad x^{*}=[1,1, \ldots, 1]^{T} \in \mathbb{R}^{n}
$$

Number of variables Polynomial of order 2

- SOS:	Variables:200	Relaxation Order=1	time= 286.5458 (s)	$\boldsymbol{p}^{*}=5$	sdp solver: mosek
- SDSOS:	Variables:200	Relaxation Order=1	time= 3.6338 (s)	$\boldsymbol{p}^{*}=5$	sdp solver: mosek
- DSOS:	Variables:200	Relaxation Order=1	time=2.6824 (s)	$\boldsymbol{p}^{*}=5$	sdp solver: mosek

[^0]
Bounded Degree SOS

- Jean B. Lasserre, Kim-Chuan Toh, Shouguang Yang, "A bounded degree SOS hierarchy for polynomial optimization", EURO Journal on Computational Optimization March 2017, Volume 5, Issue 1-2, pp 87-117

$$
\text { Nonnegative polynomial } \quad p(x) \geq 0, \quad \forall x \in \mathbf{K}=\left\{x \in \mathbb{R}^{n}: g_{i}(x) \geq 0, i=1, \ldots, m\right\}
$$

Putinar's Positivity Certificate

$$
\begin{gathered}
p(x)=\sigma_{0}(x)+\sum_{i=1}^{m} \sigma_{i}(x) g_{i}(x) \\
\sigma_{i}(x) \in S O S_{2 d_{i}}, \quad i=0, \ldots, m
\end{gathered}
$$

$$
\begin{aligned}
& p(x)-\sum_{i=1}^{m} \sigma_{i}(x) g_{i}(x)=B_{d}(x) Q_{0} B_{d}(x) \\
& \sigma_{i}(x)=B_{d_{i}}^{T}(x) Q_{i} B_{d_{i}}(x), i=1, \ldots, m \\
& Q_{i} \in \mathcal{S}_{+}^{n}, i=0, \ldots, m
\end{aligned}
$$

$$
p(x) \geq 0, \quad \forall x \in \mathbf{K}=\left\{x \in \mathbb{R}^{n}: g_{i}(x) \geq 0, i=1, \ldots, m\right\}
$$

Putinar's Positivity Certificate

$$
\begin{gathered}
p(x)=\sigma_{0}(x)+\sum_{i=1}^{m} \sigma_{i}(x) g_{i}(x) \\
\sigma_{i}(x) \in S O S_{2 d_{i}}, i=0, \ldots, m
\end{gathered}
$$

SDP

$$
\begin{aligned}
& p(x)-\sum_{i=1}^{m} \sigma_{i}(x) g_{i}(x)=B_{d}(x) Q_{0} B_{d}(x) \\
& \sigma_{i}(x)=B_{d_{i}}^{T}(x) Q_{i} B_{d_{i}}(x), \quad i=1, \ldots, m
\end{aligned}
$$

$$
Q_{i} \in \mathcal{S}_{+}^{n}, i=0, \ldots, m
$$

Krivine-Stengle’s Positivity Certificate

Let $\mathbf{K}=\left\{x \in \mathbb{R}^{n}: 0 \leq g_{i}(x) \leq 1, i=1, \ldots, m\right\} \quad$ (normalized polynomials)

$$
p(x) \geq 0, \quad \forall x \in \mathbf{K}=\left\{x \in \mathbb{R}^{n}: g_{i}(x) \geq 0, i=1, \ldots, m\right\}
$$

Putinar's Positivity Certificate

$$
\begin{gathered}
p(x)=\sigma_{0}(x)+\sum_{i=1}^{m} \sigma_{i}(x) g_{i}(x) \\
\sigma_{i}(x) \in S O S_{2 d_{i}}, i=0, \ldots, m
\end{gathered}
$$

$$
\underset{\text { SDP }}{ }>
$$

$$
\begin{aligned}
& p(x)-\sum_{i=1}^{m} \sigma_{i}(x) g_{i}(x)=B_{d}(x) Q_{0} B_{d}(x) \\
& \sigma_{i}(x)=B_{d_{i}}^{T}(x) Q_{i} B_{d_{i}}(x), \quad i=1, \ldots, m
\end{aligned}
$$

$$
Q_{i} \in \mathcal{S}_{+}^{n}, i=0, \ldots, m
$$

Krivine-Stengle's Positivity Certificate

Let $\mathbf{K}=\left\{x \in \mathbb{R}^{n}: 0 \leq g_{i}(x) \leq 1, i=1, \ldots, m\right\} \quad$ (normalized polynomials)

$$
p(x)=\sum_{\alpha, \beta \in \mathbb{N}^{m}} \lambda_{\alpha \beta} g_{1}^{\alpha_{1}}(x) \ldots g_{m}^{\alpha_{m}}(x)\left(1-g_{1}(x)\right)^{\beta_{1}} \ldots\left(1-g_{m}(x)\right)^{\beta_{m}}
$$

Unknowns: $\lambda_{\alpha \beta}$ Finitely many Nonnegative scalars

$$
p(x) \geq 0, \quad \forall x \in \mathbf{K}=\left\{x \in \mathbb{R}^{n}: g_{i}(x) \geq 0, i=1, \ldots, m\right\}
$$

Putinar's Positivity Certificate

$$
\begin{gathered}
p(x)=\sigma_{0}(x)+\sum_{i=1}^{m} \sigma_{i}(x) g_{i}(x) \\
\sigma_{i}(x) \in S O S_{2 d_{i}}, i=0, \ldots, m
\end{gathered}
$$

SDP

$$
\begin{gathered}
p(x)-\sum_{i=1}^{m} \sigma_{i}(x) g_{i}(x)=B_{d}(x) Q_{0} B_{d}(x) \\
\sigma_{i}(x)=B_{d_{i}}^{T}(x) Q_{i} B_{d_{i}}(x), i=1, \ldots, m
\end{gathered}
$$

$$
Q_{i} \in \mathcal{S}_{+}^{n}, i=0, \ldots, m
$$

Krivine-Stengle’s Positivity Certificate

- Theorem 2.23. Jean Bernard Lasserre, "Moments, Positive Polynomials and Their Applications" Imperial College Press Optimization Series, V. 1, 2009.

$$
\begin{aligned}
& x \in \mathbf{K} \quad p(x)=\sum \lambda_{\alpha \beta} \underbrace{g_{1}^{\alpha_{1}}(x) \ldots g_{m}^{\alpha_{m}}(x)}_{+} \underbrace{\left(1-g_{1}(x)\right)^{\beta_{1}} \ldots\left(1-g_{m}(x)\right)^{\beta_{m}}}_{+} \longrightarrow p(x) \geq 0
\end{aligned}
$$

$$
\begin{aligned}
& g_{1}(x) \leq 0 \text { or } g_{1}(x) \geq 1
\end{aligned}
$$

$$
p(x) \geq 0, \quad \forall x \in \mathbf{K}=\left\{x \in \mathbb{R}^{n}: g_{i}(x) \geq 0, i=1, \ldots, m\right\}
$$

Putinar's Positivity Certificate

$$
\begin{gathered}
p(x)=\sigma_{0}(x)+\sum_{i=1}^{m} \sigma_{i}(x) g_{i}(x) \\
\sigma_{i}(x) \in S O S_{2 d_{i}}, i=0, \ldots, m
\end{gathered}
$$

$$
\xrightarrow[\text { SDP }]{ }>
$$

$$
\begin{aligned}
& p(x)-\sum_{i=1}^{m} \sigma_{i}(x) g_{i}(x)=B_{d}(x) Q_{0} B_{d}(x) \\
& \sigma_{i}(x)=B_{d_{i}}^{T}(x) Q_{i} B_{d_{i}}(x), \quad i=1, \ldots, m
\end{aligned}
$$

$$
Q_{i} \in \mathcal{S}_{+}^{n}, i=0, \ldots, m
$$

Krivine-Stengle’s Positivity Certificate

Let $\mathbf{K}=\left\{x \in \mathbb{R}^{n}: 0 \leq g_{i}(x) \leq 1, i=1, \ldots, m\right\} \quad$ (normalized polynomials)

$$
p(x)=\sum_{\alpha, \beta \in \mathbb{N}^{m}} \lambda_{\alpha \beta} g_{1}^{\alpha_{1}}(x) \ldots g_{m}^{\alpha_{m}}(x)\left(1-g_{1}(x)\right)^{\beta_{1}} \ldots\left(1-g_{m}(x)\right)^{\beta_{m}} \square_{\substack{\text { inear constraints } \\ \text { on } \lambda}}
$$

Unknowns: $\lambda_{\alpha \beta}$ Finitely many Nonnegative scalars

- Determining if $p(x) \geq 0, \quad \forall x \in \mathbf{K}$ leads to a linear optimization feasibility problem.
- Theorem 2.23. Jean Bernard Lasserre, "Moments, Positive Polynomials and Their Applications" Imperial College Press Optimization Series, V. 1, 2009.
- Sherali H.D., Adams W.P. A hierarchy of relaxations between the continuous and convex hull representations for zero-one programming problems, SIAM J. Discr. Math. 3, pp. 411-430, 1990.

$$
\begin{aligned}
\mathbf{P}^{*}= & \underset{x \in \mathbb{R}^{n}}{\operatorname{minimize}} \\
& \text { subject to } \\
& x \in \mathbf{K}=\left\{x \in \mathbb{R}^{n}: g_{i}(x) \geq 0, i=1, \ldots, m\right\}
\end{aligned}
$$

```
maximize }
subject to }\quadp(x)-\gamma\geq0,\quad\forallx\in\mathbf{K
```


SDP Relaxation

$$
\begin{array}{cl}
\underset{\gamma,\left.Q_{i}\right|_{i=0} ^{m}}{\operatorname{maximize}} & \gamma \\
\text { subject to } & p(x)-\gamma-\sum_{i=1}^{m} \sigma_{i}(x) g_{i}(x)=B_{d}(x) Q_{0} B_{d}(x) \\
& \sigma_{i}(x)=B_{d_{i}}^{T}(x) Q_{i} B_{d_{i}}(x), i=1, \ldots, m \\
& Q_{i} \in \mathcal{S}_{+}^{n}, i=0, \ldots, m
\end{array}
$$

LP Relaxation

Let $d \in \mathbb{N}$

$$
\begin{aligned}
& \mathbf{P}_{L}^{* d}=\underset{\gamma, \lambda_{\alpha \beta} \geq 0}{\operatorname{maximize}} \quad \gamma \\
& \text { subject to } p(x)-\gamma=\sum_{\substack{ \\
\forall \alpha, \beta \in \mathbb{N}^{m} \\
\sum_{j=1}^{m} \alpha_{j}+\beta_{j} \leq d}} \lambda_{\alpha \beta} g_{1}^{\alpha_{1}}(x) \ldots g_{m}^{\alpha_{m}}(x)\left(1-g_{1}(x)\right)^{\beta_{1}} \ldots\left(1-g_{m}(x)\right)^{\beta_{m}}
\end{aligned}
$$

- Theorem: Let \mathbf{K} be compact (Archimedean). $\quad \mathbf{P}_{L}^{* d} \leq \mathbf{P}_{L}^{* d+1} \quad \lim _{d \rightarrow \infty} \mathbf{P}_{L}^{* d}=\mathbf{P}^{*}$
-Theorem 5.10. Jean Bernard Lasserre, "Moments, Positive Polynomials and Their Applications" Imperial College Press Optimization Series, V. 1, 2009.

LP-relaxations suffer from several serious theoretical and practical drawbacks:

The LPs of the hierarchy are numerically ill-conditioned.

- It involves products of arbitrary powers of the $g_{i}(x)$'s and (1- $\left.g_{i}(x)\right)$'s.
- In particular, the presence of large coefficients is source of ill-conditioning and numerical instability.
> The sequence of the associated optimal values converges to the global optimum only asymptotically and not in finitely many steps. (Appendix II)
> Finite convergence even does not hold for convex optimizations. (In standard SOS finite convergence takes place for SOSconvex problems)
- LP-relaxations suffer from several serious theoretical and practical drawbacks:

The LPs of the hierarchy are numerically ill-conditioned.

- It involves products of arbitrary powers of the $g_{i}(x)$'s and $\left(1-g_{i}(x)\right)$'s.
- In particular, the presence of large coefficients is source of ill-conditioning and numerical instability.
> The sequence of the associated optimal values converges to the global optimum only asymptotically and not in finitely many steps. (Appendix II)
> Finite convergence even does not hold for convex optimizations. (In standard SOS finite convergence takes place for SOSconvex problems)

Bounded Degree SOS (BSOS):

Hierarchy of convex relaxations which combines some of the advantages of the SOS and LP hierarchies.

Bounded Degree SOS (BSOS):

Hierarchy of convex relaxations which combines some of the advantages of the SOS- and LP- hierarchies.

Relaxation

$$
p(x)=\sigma_{0}(x)+\sum_{i=1}^{m} \sigma_{i}(x) g_{i}(x) \quad \begin{aligned}
& \sigma_{0}(x) \in S O S_{2 d} \\
& \sigma_{i}(x) \in S O S_{2 d_{i}}, i=1, \ldots, m
\end{aligned}
$$

LP

Relaxation

$$
p(x) \sum_{\substack{\forall \alpha, \beta \in \mathbb{N}^{m} \\ \vdots \\ j=1 \\ \alpha_{j}+\beta_{j} \leq i}} \lambda_{\alpha \beta} g_{1}^{\alpha_{1}}(x) \ldots g_{m}^{\alpha_{m}}(x)\left(1-g_{1}(x)\right)^{\beta_{1}} \ldots\left(1-g_{m}(x)\right)^{\beta_{m}}
$$

BSOS Relaxation

$$
\begin{aligned}
& p(x)=\sigma_{0}(x)+\sum_{\substack{\forall \alpha, \beta \in \mathbb{N}^{m} \\
\sum_{j=1}^{n} \alpha_{j}+\beta_{j} \leq d}} \lambda_{\alpha \beta} g_{1}^{\alpha_{1}}(x) \ldots g_{m}^{\alpha_{m}}(x)\left(1-g_{1}(x)\right)^{\beta_{1}} \ldots\left(1-g_{m}(x)\right)^{\beta_{m}} \\
& \sigma_{0}(x) \in S O S_{2 k} \\
& k \in \mathbb{N}: \begin{array}{l}
\text { Degree of SOS polynonial } \\
\text { Determines the size of SDP }
\end{array}
\end{aligned} d \in \mathbb{N} \text { : degree of LP representation } \begin{aligned}
& \text { Determines the number Linear Constraints }
\end{aligned}
$$

- Jean B. Lasserre, Kim-Chuan Toh, Shouguang Yang, "A bounded degree SOS hierarchy for polynomial optimization", EURO Journal on Computational Optimization March 2017, Volume 5, Issue 1-2, pp 87-117
$\mathbf{P}^{*}=\underset{x \in \mathbb{R}^{n}}{\operatorname{minimize}} \quad p(x)$
subject to $\quad x \in \mathbf{K}=\left\{x \in \mathbb{R}^{n}: g_{i}(x) \geq 0, i=1, \ldots, m\right\}$
SOS SDP Relaxation

$$
\begin{gathered}
\mathbf{P}_{L}^{* i}=\underset{\gamma, \lambda_{\alpha \beta} \geq 0}{\operatorname{maximize}} \quad \gamma \\
\text { subject to }
\end{gathered}
$$

LP Relaxation

Bounded SOS Relaxation

subject to

$$
\begin{gathered}
p(x)-\gamma-\sum_{\substack{\forall \alpha, \beta \in \mathbb{N}^{m} \\
\sum_{j=1}^{m} \alpha_{j}+\beta_{j} \leq d}} \lambda_{1}^{\alpha_{1}}(x) \ldots g_{m}^{\alpha_{m}}(x)\left(1-g_{1}(x)\right)^{\beta_{1}} \ldots\left(1-g_{m}(x)\right)^{\beta_{m}}=B_{k}(x) Q_{0} B_{k}(x) \\
Q_{0} \in \mathcal{S}_{+}^{n}
\end{gathered}
$$

- Theorem: Let $k \in \mathbb{N}$ be fixed. $\quad \mathbf{P}_{d}^{* k} \leq \mathbf{P}_{d+1}^{* k} \quad \lim _{d \rightarrow \infty} \mathbf{P}_{d}^{* k}=\mathbf{P}^{*}$
> Finite convergence (Like standard SOS) (Finite convergence condition : Rank condition of the dual (moment) problem) (Appendix III)
> Unlike standard SOS, the size of SDP is fixed $\binom{n+k}{n}$
$\left(P_{1}\right) \quad f=x_{1}^{2} \quad-x_{2}^{2} \quad+x_{3}^{2} \quad-x_{4}^{2} \quad+x_{1} \quad-x_{2}$ s.t. $0 \leq g_{1}=2 x_{1}^{2}+3 x_{2}^{2}+2 x_{1} x_{2}+2 x_{3}^{2}+3 x_{4}^{2}+2 x_{3} x_{4} \leq 1$ $0 \leq g_{2}=3 x_{1}^{2}+2 x_{2}^{2}-4 x_{1} x_{2}+3 x_{3}^{2}+2 x_{4}^{2}-4 x_{3} x_{4} \leq 1$ $0 \leq g_{3}=x_{1}^{2}+6 x_{2}^{2}-4 x_{1} x_{2}+x_{3}^{2}+6 x_{4}^{2}-4 x_{3} x_{4} \leq 1$ $0 \leq g_{4}=x_{1}^{2}+4 x_{2}^{2}-3 x_{1} x_{2} \quad+x_{3}^{2}+4 x_{4}^{2}-3 x_{3} x_{4} \leq 1$ $0 \leq g_{5}=2 x_{1}^{2}+5 x_{2}^{2}+3 x_{1} x_{2}+2 x_{3}^{2}+5 x_{4}^{2}+3 x_{3} x_{4} \leq 1$
$0 \leq x$.

Fixed size of SDP
$k=3 \quad \mathrm{P}_{d=1}^{* k=3}=-0.041855 \quad \mathrm{P}_{d=2}^{* k=3}=-0.037139 \quad \mathrm{P}_{d=3}^{* k=3}=-0.037087 \quad \mathrm{P}_{d=4}^{* k=3}=-0.037073 \quad \mathrm{P}_{d=5}^{* k=3}=-0.037046$
$k=4 \quad \mathrm{P}_{d=1}^{* k=4}=-0.038596 \quad \mathrm{P}_{d=2}^{* k=4}=-0.037046 \quad \mathrm{P}_{d=3}^{* k=4}=-0.037040 \quad \mathrm{P}_{d=4}^{* k=4}=-0.037038 \quad \mathrm{P}_{d=5}^{* k=4}=-0.037037$
More examples: https://github.com/iasour/rarnop19/blob/master/Lecture6 modified-SOS/Bounded Degree SOS/BSOS Example1.m
https://github.com/tweisser/Sparse BSOS/tree/master/test suite/Dense

Code: https://github.com/tweisser/Sparse BSOS

- Jean B. Lasserre, Kim-Chuan Toh, Shouguang Yang, "A bounded degree SOS hierarchy for polynomial optimization", EURO Journal on Computational Optimization March 2017, Volume 5, Issue 1-2, pp 87-117

Topics

1) (Scaled) Diagonally Dominant Sum-of-Squares Optimization (DSOS, SDSOS) Modified SOS optimization that results in LP and Second order cone program
2) Bounded degree SOS (BSOS)

Modified SOS optimization that results in smaller SDP's.
3) Spars Sum-of-Squares Optimization (SSOS)

Takes advantage of sparsity of the original problem to generate smaller SDP.
4) Sparse Bounded Degree Sum-of-Squares Optimization (SBSOS)

Combination of 2 and 3

Sparse SOS

- H. Waki, S. Kim, M. Kojima, and M. Muramatsu, "Sums of squares and semidefinite program relaxations for polynomial optimization problems with structured sparsity," SIAM Journal on Optimization, vol. 17, no. 1, pp. 218-242, 2006.
- Zheng, Y., Fantuzzi, G., \& Papachristodoulou, A. "Sparse sum-of-squares (SOS) optimization: A bridge between DSOS/SDSOS and SOS optimization for sparse polynomials", arXiv preprint arXiv:1807.05463. 2018
$>$ Take advantage of structure (sparsity) of the problem to solve smaller SDP

Take advantage of structure (sparsity) of the problem to solve smaller SDP

1) PSD Constraint obtained form SOS/Moment Relaxation.

- (Under some conditions)We can replace Constraint of the form $Q \succcurlyeq 0$ by PSD constraints of set of smaller matrices.

Example: $\left.Q=\left[\begin{array}{lll}2 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 2\end{array}\right] \quad\right\rangle\left[\begin{array}{lll}2 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 2\end{array}\right]=\left[\begin{array}{ccc}2 & 1 & 0 \\ 1 & 0.5 & 0 \\ 0 & 0 & 0\end{array}\right]+\left[\begin{array}{ccc}0 & 0 & 0 \\ 0 & 0.5 & 1 \\ 0 & 1 & 2\end{array}\right] \square$ Q is PSD becasue :

$$
\left[\begin{array}{cc}
2 & 1 \\
1 & 0.5
\end{array}\right] \succcurlyeq 0 \quad\left[\begin{array}{cc}
0.5 & 1 \\
1 & 2
\end{array}\right] \succcurlyeq 0
$$

Take advantage of structure (sparsity) of the problem to solve smaller SDP

1) PSD Constraint obtained form SOS/Moment Relaxation.

- (Under some conditions) We can replace Constraint of the form $Q \succcurlyeq 0$ by PSD constraints of set of smaller matrices.

Example:

$$
\left.Q=\left[\begin{array}{lll}
2 & 1 & 0 \\
1 & 1 & 1 \\
0 & 1 & 2
\end{array}\right] \quad\right\rangle\left[\begin{array}{lll}
2 & 1 & 0 \\
1 & 1 & 1 \\
0 & 1 & 2
\end{array}\right]=\left[\begin{array}{ccc}
2 & 1 & 0 \\
1 & 0.5 & 0 \\
0 & 0 & 0
\end{array}\right]+\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0.5 & 1 \\
0 & 1 & 2
\end{array}\right] \square
$$

$$
Q \text { is PSD becasue : }
$$

$$
\left[\begin{array}{cc}
2 & 1 \\
1 & 0.5
\end{array}\right] \succcurlyeq 0 \quad\left[\begin{array}{cc}
0.5 & 1 \\
1 & 2
\end{array}\right] \succcurlyeq 0
$$

2) SOS relaxation of nonnegative Polynomials

- (Under some conditions) We can replace constraint of $p(x) \in S O S$ by SOS constraints of low dimensional polynomials.

Example:

$$
\left.p\left(x_{1}, x_{2}, x_{3}\right)=2\left(1+x_{1}+x_{3}+x_{1}^{2}+x 1 x_{2}+x_{1}^{2}+x_{2} x_{3}+x_{3}^{2}\right) \quad \square\right\rangle \quad p\left(x_{1}, x_{2}, x_{3}\right)=p_{1}\left(x_{1}, x_{2}\right)+p_{2}\left(x_{2}, x_{3}\right) ~ 子 \begin{array}{r}
p_{1}\left(x_{1}, x_{2}\right)=\left(1+x_{1}\right)^{2}+\left(x_{1}+x_{2}\right)^{2} \\
p_{2}\left(x_{2}, x_{3}\right)=\left(1+x_{3}^{2}\right)^{2}+\left(x_{2}+x_{3}\right)^{2}
\end{array}
$$

Polynomial $p\left(x_{1}, x_{2}, x_{3}\right)$ is SOS because $p_{1}\left(x_{1}, x_{2}\right)$ abd $p_{2}\left(x_{2}, x_{3}\right)$ are SOS.

Sparse Polynomials

$$
\text { Polynomial: } p(x): \mathbb{R}^{n} \rightarrow \mathbb{R} \quad p(x)=\sum_{\alpha} p_{\alpha} x^{\alpha} \quad \text { number of coefficients } \quad\binom{n+d}{n}=\frac{(n+d)!}{n!d!}
$$

> Fully dense polynomial: Polynomial is fully dense if all the coefficients are nonzero

Sparse Polynomials

Polynomial: $p(x): \mathbb{R}^{n} \rightarrow \mathbb{R} \quad p(x)=\sum_{\alpha} p_{\alpha} x^{\alpha} \quad$ number of coefficients $\quad\binom{n+d}{n}=\frac{(n+d)!}{n!d!}$
> Fully dense polynomial: Polynomial is fully dense if all the coefficients are nonzero
> Sparse polynomial: Polynomial is sparse if the number of nonzero coefficients is much smaller than the number of the total coefficients

Example: Sparse Polynomial $\quad p\left(x_{1}, x_{2}\right)=0.56+0.5 x_{1}+2 x_{2}^{2}+0.75 x_{1}^{3} x_{2}^{2} \quad \begin{array}{ll}\text { Number of nonzero coefficients: } 4 \\ \text { Number of all coefficients: }\binom{2+5}{2}=\frac{(7)!}{2!5!}=21\end{array}$

Sparse Polynomials

Polynomial: $p(x): \mathbb{R}^{n} \rightarrow \mathbb{R} \quad p(x)=\sum_{\alpha} p_{\alpha} x^{\alpha} \quad$ number of coefficients $\quad\binom{n+d}{n}=\frac{(n+d)!}{n!d!}$
> Fully dense polynomial: Polynomial is fully dense if all the coefficients are nonzero
Sparse polynomial: Polynomial is sparse if the number of nonzero coefficients is much smaller than the number of the total coefficients

Example: Sparse Polynomial $\quad p\left(x_{1}, x_{2}\right)=0.56+0.5 x_{1}+2 x_{2}^{2}+0.75 x_{1}^{3} x_{2}^{2} \quad$ Number of nonzero coefficients: $4 \quad$ Number of all coefficients: $\binom{2+5}{2}=\frac{(7)!}{2!5!}=21$
$>$ Correlative Sparsity: It describes coupling between the variables x_{1}, \ldots, x_{n} of a polynomial $p(x): \mathbb{R}^{n} \rightarrow \mathbb{R}$

- Variables x_{i} and x_{j} are coupled if they appear simultaneously in a monomial of the polynomial.

Sparse Polynomials

Polynomial: $p(x): \mathbb{R}^{n} \rightarrow \mathbb{R} \quad p(x)=\sum_{\alpha} p_{\alpha} x^{\alpha} \quad$ number of coefficients $\quad\binom{n+d}{n}=\frac{(n+d)!}{n!d!}$
Fully dense polynomial: Polynomial is fully dense if all the coefficients are nonzero
Sparse polynomial: Polynomial is sparse if the number of nonzero coefficients is much smaller than the number of the total coefficients

Example: Sparse Polynomial $\quad p\left(x_{1}, x_{2}\right)=0.56+0.5 x_{1}+2 x_{2}^{2}+0.75 x_{1}^{3} x_{2}^{2} \quad$ Number of nonzero coefficients: $4 \quad$ Number of all coefficients: $\binom{2+5}{2}=\frac{(7)!}{2!5!}=21$
$>$ Correlative Sparsity: It describes coupling between the variables x_{1}, \ldots, x_{n} of a polynomial $p(x): \mathbb{R}^{n} \rightarrow \mathbb{R}$

- Variables x_{i} and x_{j} are coupled if they appear simultaneously in a monomial of the polynomial.

$$
\begin{array}{rr}
\text { Example: } \quad p\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=0.56+0.5 x_{1}+2 x_{1} x_{2}^{2}+0.75 x_{3}^{3} x_{4}^{2} \quad \text { Coupled variables: }\left(x_{1}, x_{2}\right),\left(x_{3}, x_{4}\right) \\
\text { Missing Coupled variables: }\left(x_{1}, x_{3}\right),\left(x_{1}, x_{4}\right),\left(x_{2}, x_{3}\right),\left(x_{2}, x_{4}\right)
\end{array}
$$

Sparse Polynomials

Polynomial: $p(x): \mathbb{R}^{n} \rightarrow \mathbb{R} \quad p(x)=\sum_{\alpha} p_{\alpha} x^{\alpha} \quad$ number of coefficients $\quad\binom{n+d}{n}=\frac{(n+d)!}{n!d!}$
Fully dense polynomial: Polynomial is fully dense if all the coefficients are nonzero
Sparse polynomial: Polynomial is sparse if the number of nonzero coefficients is much smaller than the number of the total coefficients

Example: Sparse Polynomial $\quad p\left(x_{1}, x_{2}\right)=0.56+0.5 x_{1}+2 x_{2}^{2}+0.75 x_{1}^{3} x_{2}^{2} \quad$ Number of nonzero coefficients: $4 \quad$ Number of all coefficients: $\binom{2+5}{2}=\frac{(7)!}{2!5!}=21$
$>$ Correlative Sparsity: It describes coupling between the variables x_{1}, \ldots, x_{n} of a polynomial $p(x): \mathbb{R}^{n} \rightarrow \mathbb{R}$

- Variables x_{i} and x_{j} are coupled if they appear simultaneously in a monomial of the polynomial.

$$
\begin{array}{r}
\text { Example: } \quad p\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=0.56+0.5 x_{1}+2 x_{1} x_{2}^{2}+0.75 x_{3}^{3} x_{4}^{2} \quad \text { Coupled variables: }\left(x_{1}, x_{2}\right),\left(x_{3}, x_{4}\right) \\
\text { Missing Coupled variables: }\left(x_{1}, x_{3}\right),\left(x_{1}, x_{4}\right),\left(x_{2}, x_{3}\right),\left(x_{2}, x_{4}\right)
\end{array}
$$

- Number of all possible coupling between variables $x_{1}, \ldots, x_{n}:\binom{n}{2}$
- Polynomial has correlative sparsity if the number of coupled variables is much smaller than the Number of all possible coupling

Sparse Polynomials

$>$ Sparse polynomial: Polynomial is sparse if the number of nonzero coefficients is much smaller than the number of the total coefficients.
$>$ Correlative Sparsity: Polynomial has correlative sparsity if the number of coupled variables is much smaller than the Number of all possible coupling

Sparse Polynomials

Sparse polynomial: Polynomial is sparse if the number of nonzero coefficients is much smaller than the number of the total coefficients.

Correlative Sparsity: Polynomial has correlative sparsity if the number of coupled variables is much smaller than the Number of all possible coupling
$>$ Correlative sparsity is a special case of the sparsity.
$>$ Correlative sparsity implies the sparsity, but the converse is not necessarily true.

$$
p\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=x_{1} x_{2}+x_{1} x_{3}+x_{1}^{3} x_{4}+x_{2} x_{3}+x_{2} x_{4}+x_{3} x_{4}^{10}
$$

Number of nonzero coefficients: 6
Number of all coefficients: $\binom{4+10}{4}=\frac{(14)!}{4!10!}=1001$

Sparse Polynomial
With NO correlative sparsity
(Under some conditions)Constraint of the form $p(x) \in S O S$ can be replaced by SOS constraints of low dimensional polynomials.

$$
p(x) \in S O S<\sqrt{\text { If and only if }}\rangle p(x)=\sum_{k} p_{k}\left(X_{k}\right) \quad \begin{array}{ll}
& p_{k}\left(X_{k}\right) \in S O S \\
& X_{k}: \text { Coupled set variables of } p(x)
\end{array}
$$ Optimization, vol. 17, no. 1, pp. 218-242, 2006.

(Under some conditions)Constraint of the form $p(x) \in S O S$ can be replaced by SOS constraints of low dimensional polynomials.

$$
p(x) \in S O S<\begin{array}{ll}
\text { If and only if } \\
& p(x)=\sum_{k} p_{k}\left(X_{k}\right) \quad \\
p_{k}\left(X_{k}\right) \in S O S \\
& X_{k}: \text { Coupled set variables of } p(x)
\end{array}
$$

$$
\begin{aligned}
& p(x)=B^{T}(x) Q B(x) \\
& Q \in \mathcal{S}_{+}^{n} \\
& \text { If and only if } \\
& \text { If }
\end{aligned} p(x)=\sum_{k} z_{k}^{T}(x) Q_{k} z_{k}(x) \quad Q_{\substack{C_{k} \times C_{k} \\
\text { matirx }}}^{C_{k} \times 1 \text { monomial vector }}<\mathcal{S}_{+}^{C_{k}} \quad C_{k}<n
$$

H. Waki, S. Kim, M. Kojima, and M. Muramatsu, "Sums of squares and semidefinite program relaxations for polynomial optimization problems with structured sparsity," SIAM Journal on Optimization, vol. 17, no. 1, pp. 218-242, 2006.
(Under some conditions)Constraint of the form $p(x) \in S O S$ can be replaced by SOS constraints of low dimensional polynomials.

$$
\begin{aligned}
& p(x) \in S O S<\begin{array}{l}
\text { If and only if }
\end{array} p(x)=\sum_{k} p_{k}\left(X_{k}\right) \quad \begin{array}{l}
p_{k}\left(X_{k}\right) \in S O S \\
\\
X_{k}: \text { Coupled set variables of } p(x)
\end{array} \\
& p(x)=B^{T}(x) Q B(x) \\
& Q \in \mathcal{S}_{+}^{n} \\
& p(x)=\sum_{k} z_{k}^{T}(x) Q_{k} z_{k}(x) \quad \underbrace{C_{k} \times 1 \text { monomial vector }}_{\substack{C_{k} \times C_{k} \\
\text { matirx }}} \\
& C_{k}<n
\end{aligned}
$$

H. Waki, S. Kim, M. Kojima, and M. Muramatsu, "Sums of squares and semidefinite program relaxations for polynomial optimization problems with structured sparsity," SIAM Journal on Optimization, vol. 17, no. 1, pp. 218-242, 2006.

Example:

$$
\begin{gathered}
p\left(x_{1}, x_{2}, x_{3}\right)=2 x_{1}^{2}+2 x_{1} x_{2}+x_{2}^{2}+2 x_{2} x_{3}+2 x_{3}^{2} \\
p(x) \in S O S
\end{gathered}
$$

$$
\begin{aligned}
& p\left(x_{1}, x_{2}, x_{3}\right)=p_{1}\left(x_{1}, x_{2}\right)+p_{2}\left(x_{2}, x_{3}\right) \\
& p_{1}\left(x_{1}, x_{2}\right)=\left(\sqrt{2} x_{1}+\sqrt{0.5} x_{2}\right)^{2} \in S O S \\
& p_{2}\left(x_{2}, x_{3}\right)=\left(\sqrt{0.5} x_{2}+\sqrt{2} x_{3}\right)^{2} \in S O S
\end{aligned}
$$

(Under some conditions)Constraint of the form $p(x) \in S O S$ can be replaced by SOS constraints of low dimensional polynomials.
H. Waki, S. Kim, M. Kojima, and M. Muramatsu, "Sums of squares and semidefinite program relaxations for polynomial optimization problems with structured sparsity," SIAM Journal on Optimization, vol. 17, no. 1, pp. 218-242, 2006.

Example:

$$
\begin{gathered}
p\left(x_{1}, x_{2}, x_{3}\right)=2 x_{1}^{2}+2 x_{1} x_{2}+x_{2}^{2}+2 x_{2} x_{3}+2 x_{3}^{2} \\
p(x) \in S O S
\end{gathered}
$$

$$
\begin{aligned}
& p\left(x_{1}, x_{2}, x_{3}\right)=p_{1}\left(x_{1}, x_{2}\right)+p_{2}\left(x_{2}, x_{3}\right) \\
& p_{1}\left(x_{1}, x_{2}\right)=\left(\sqrt{2} x_{1}+\sqrt{0.5} x_{2}\right)^{2} \in S O S \\
& p_{2}\left(x_{2}, x_{3}\right)=\left(\sqrt{0.5} x_{2}+\sqrt{2} x_{3}\right)^{2} \in S O S
\end{aligned}
$$

$$
p\left(x_{1}, x_{2}, x_{3}\right)=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]^{T}\left[\begin{array}{lll}
2 & 1 & 0 \\
1 & 1 & 1 \\
0 & 1 & 2
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right] \leadsto p\left(x_{1}, x_{2}, x_{3}\right)=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]^{T}\left[\begin{array}{cc}
2 & 1 \\
1 & 0.5
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]+\left[\begin{array}{l}
x_{2} \\
x_{3}
\end{array}\right]^{T}\left[\begin{array}{cc}
0.5 & 1 \\
1 & 2
\end{array}\right]\left[\begin{array}{l}
x_{2} \\
x_{3}
\end{array}\right]
$$

$$
Q \in \mathcal{S}_{+}^{3}
$$

$$
Q_{1} \in \mathcal{S}_{+}^{2}
$$

$$
Q_{2} \in \mathcal{S}_{+}^{2}
$$

$$
\begin{aligned}
& p(x) \in S O S<\begin{array}{l}
\text { If and only if } \\
\end{array} p(x)=\sum_{k} p_{k}\left(X_{k}\right) \quad p_{k}\left(X_{k}\right) \in S O S \\
& p(x)=B^{T}(x) Q B(x) \\
& Q \in \mathcal{S}_{+}^{n} \\
& p(x)=\sum_{k} z_{k}^{T}(x) \underbrace{Q_{k} z_{k}(x) \quad Q_{k} \in 1 \text { monomial vector }}_{\substack{C_{k} \times C_{k} \\
\text { matirx }}} \\
& C_{k}<n
\end{aligned}
$$

(Under some conditions)Constraint of the form $p(x) \in S O S$ can be replaced by SOS constraints of low dimensional polynomials.

$$
p(x) \in S O S<\begin{array}{ll}
\text { If and only if } \\
& p(x)=\sum_{k} p_{k}\left(X_{k}\right) \quad \\
p_{k}\left(X_{k}\right) \in S O S \\
& X_{k}: \text { Coupled set variables of } p(x)
\end{array}
$$

H. Waki, S. Kim, M. Kojima, and M. Muramatsu, "Sums of squares and semidefinite program relaxations for polynomial optimization problems with structured sparsity," SIAM Journal on Optimization, vol. 17, no. 1, pp. 218-242, 2006.
(Under some conditions)Constraint of the form $p(x) \in S O S$ can be replaced by SOS constraints of low dimensional polynomials.

$$
\begin{aligned}
& p(x) \in S O S<\begin{array}{l}
\text { If and only if }
\end{array} p(x)=\sum_{k} p_{k}\left(X_{k}\right) \quad \begin{array}{l}
p_{k}\left(X_{k}\right) \in S O S \\
\\
X_{k} \text { : Coupled set variables of } p(x)
\end{array} \\
& p(x)=B^{T}(x) Q B(x) \\
& Q \in \mathcal{S}_{+}^{n} \\
& p(x)=\sum_{k} z_{k}^{T}(x) Q_{C_{k} \times C_{k}}^{Q_{k}} \underbrace{}_{C_{k} \times 1}(x) \\
& C_{k}<n
\end{aligned}
$$

H. Waki, S. Kim, M. Kojima, and M. Muramatsu, "Sums of squares and semidefinite program relaxations for polynomial optimization problems with structured sparsity," SIAM Journal on Optimization, vol. 17, no. 1, pp. 218-242, 2006.
(Under some conditions) Constraint of the form $X \succcurlyeq 0$ can be replaced by PSD constraints of smaller matrices $X_{k} \succcurlyeq 0$

$$
\begin{aligned}
& X \succcurlyeq 0 \underset{\substack{\text { If and only if }}}{ } X=\sum_{k} E_{k}^{T} X_{k} E_{k} \\
& n \times n \text { matirx } \\
& C_{k} \times C_{k} \quad C_{k} \times n \\
& X_{k} \succcurlyeq 0 \\
& C_{k}<n \\
& \text { matirx constant matrix }
\end{aligned}
$$

R. Grone, C. R. Johnson, E. M. Sa, and H. Wolkowicz, "Positive definite completions of partial Hermitian matrices," Linear Algebra and its Applications, vol. 58, pp. $109-124,1984$.
J. Agler, W. Helton, S. McCullough, and L. Rodman, "Positive semidefinite matrices with a given sparsity pattern," Linear Algebra. Appl., vol. 107, pp. 101-149, 1988.
A. Griewank and P. L. Toint, "On the existence of convex decompositions of partially separable functions," Math. Prog., vol. 28, no. 1, pp. 25-49, 1984.
(Under some conditions)Constraint of the form $p(x) \in S O S$ can be replaced by SOS constraints of low dimensional polynomials.

$$
p(x) \in S O S<\begin{array}{ll}
\text { If and only if }
\end{array} p(x)=\sum_{k} p_{k}\left(X_{k}\right) \quad p_{k}\left(X_{k}\right) \in S O S
$$

H. Waki, S. Kim, M. Kojima, and M. Muramatsu, "Sums of squares and semidefinite program relaxations for polynomial optimization problems with structured sparsity," SIAM Journal on Optimization, vol. 17, no. 1, pp. 218-242, 2006.
(Under some conditions) Constraint of the form $X \succcurlyeq 0$ can be replaced by PSD constraints of smaller matrices $X_{k} \succcurlyeq 0$

$$
\left.X \succcurlyeq 0<\begin{array}{c}
\text { If and only if } \\
n \times n \text { matirx }
\end{array}\right\rangle X=\sum_{k} E_{k}^{T} X_{k} E_{k}
$$

$$
X_{k} \succcurlyeq 0
$$

$$
C_{k}<n
$$

$$
C_{k} \times C_{k} \text { matirx }
$$

Example:

$$
X=\left[\begin{array}{lll}
2 & 1 & 0 \\
1 & 1 & 1 \\
0 & 1 & 2
\end{array}\right]\left\langle\left[\begin{array}{lll}
2 & 1 & 0 \\
1 & 1 & 1 \\
0 & 1 & 2
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1 \\
0 & 0
\end{array}\right]\left[\begin{array}{cc}
2 & 1 \\
1 & 0.5
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right]+\left[\begin{array}{ll}
0 & 0 \\
1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{cc}
0.5 & 1 \\
1 & 2
\end{array}\right]\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right.
$$

$X_{1} \succcurlyeq 0$ $X_{2} \succcurlyeq 0$

$$
\begin{aligned}
& p(x)=B^{T}(x) Q B(x) \\
& Q \in \mathcal{S}_{+}^{n} \\
& p(x)=\sum_{k} z_{k}^{T}(x) Q_{k} z_{k}(x) \quad \underbrace{C_{k} \times 1 \text { monomial vector }}_{\substack{C_{k} \times C_{k} \\
\text { matirx }}} \\
& C_{k}<n
\end{aligned}
$$

(Under some conditions)Constraint of the form $p(x) \in S O S$ can be replaced by SOS constraints of low dimensional polynomials.

$$
\begin{aligned}
& p(x) \in S O S<\underbrace{\text { If }}_{\text {If and only if }}\rangle p(x)=\sum_{k} p_{k}\left(X_{k}\right) \quad \begin{array}{l}
p_{k}\left(X_{k}\right) \in S O S \\
X_{k}: \text { Coupled set variables of } p(x)
\end{array} \\
& p(x)=B^{T}(x) Q B(x) \\
& Q \in \mathcal{S}_{+}^{n}
\end{aligned}
$$

H. Waki, S. Kim, M. Kojima, and M. Muramatsu, "Sums of squares and semidefinite program relaxations for polynomial optimization problems with structured sparsity," SIAM Journal on Optimization, vol. 17, no. 1, pp. 218-242, 2006.
(Under some conditions) Constraint of the form $X \succcurlyeq 0$ can be replaced by PSD constraints of smaller matrices $X_{k} \succcurlyeq 0$

$$
\left.X \succcurlyeq 0<\begin{array}{c}
\text { If and only if } \\
n \times n \text { matirx }
\end{array}\right\rangle X=\sum_{k} E_{k}^{T} X_{k} E_{k} \quad X_{k} \succcurlyeq 0 \quad \begin{gathered}
C_{k} \times C_{k} \text { matirx } \\
C_{k} \times C_{k}^{k} \\
\text { matirx } \begin{array}{c}
C_{k} \times n \\
\text { matirx }
\end{array}
\end{gathered} \quad \begin{gathered}
C_{k}<n
\end{gathered}
$$

R. Grone, C. R. Johnson, E. M. Sa, and H. Wolkowicz, "Positive definite completions of partial Hermitian matrices," Linear Algebra and its Applications, vol. 58, pp. $109-124,1984$. J. Agler, W. Helton, S. McCullough, and L. Rodman, "Positive semidefinite matrices with a given sparsity pattern," Linear Algebra. Appl., vol. 107, pp. 101-149, 1988.
A. Griewank and P. L. Toint, "On the existence of convex decompositions of partially separable functions," Math. Prog., vol. 28, no. 1, pp. 25-49, 1984.
> (Under some conditions)Constraint of the form $p(x) \in S O S$ can be replaced by SOS constraints of low dimensional polynomials.

$$
p(x) \in S O S<\sqrt{\text { If and only if }}\rangle p(x)=\sum_{k} p_{k}\left(X_{k}\right) \quad \begin{aligned}
& p_{k}\left(X_{k}\right) \in S O S \\
& \\
& X_{k} \text { : Coupled set variables of } p(x)
\end{aligned}
$$

$$
\left.\begin{array}{l}
p(x)=B^{T}(x) Q B(x) \\
Q \in \mathcal{S}_{+}^{n}
\end{array} \underset{\text { If and only if }}{ }\right\rangle p(x)=\sum_{k} z_{k}^{T}(x) Q_{k} z_{k}(x) \quad Q_{k} \in \mathcal{S}_{+}^{C_{k} \times C_{k}} \underset{\substack{C_{k} \times 1 \text { monomial vector }}}{ } \quad C_{k}<n
$$

H. Waki, S. Kim, M. Kojima, and M. Muramatsu, "Sums of squares and semidefinite program relaxations for polynomial optimization problems with structured sparsity," SIAM Journal on Optimization, vol. 17, no. 1, pp. 218-242, 2006.
(Under some conditions) Constraint of the form $X \succcurlyeq 0$ can be replaced by PSD constraints of smaller matrices $X_{k} \succcurlyeq 0$

$$
X \succcurlyeq 0<\begin{array}{cc}
\\
n \times n \text { matirx }
\end{array}>X=\sum_{k} E_{k}^{T} X_{k} E_{k} \quad X_{k} \succcurlyeq 0 \quad \begin{aligned}
& C_{k} \times C_{k} \text { matirx }
\end{aligned} \quad C_{k}<n
$$

R. Grone, C. R. Johnson, E. M. Sa, and H. Wolkowicz, "Positive definite completions of partial Hermitian matrices," Linear Algebra and its Applications, vol. 58, pp. $109-124,1984$.
J. Agler, W. Helton, S. McCullough, and L. Rodman, "Positive semidefinite matrices with a given sparsity pattern," Linear Algebra. Appl., vol. 107, pp. 101-149, 1988.
A. Griewank and P. L. Toint, "On the existence of convex decompositions of partially separable functions," Math. Prog., vol. 28, no. 1, pp. 25-49, 1984.

Results rely on sparsity pattern of polynomials and Matrices and its graph representation, and Chordality of sparsity graph (the classical theory of graph and cliques).

Undirected Graph
 Undirected graph \mathcal{G}

\mathcal{V} Set of nodes of the graph
\mathcal{E} Set of edges of the graph

Undirected Graph

- We use undirected graph to represent polynomials and symmetric matrices.

$$
p\left(x_{1}, x_{2}, x_{3}\right)=1+x_{1}+x_{3}+x_{1}^{2}+x_{1} x_{2}+x_{1}^{2}+x_{2} x_{3}+x_{3}^{2}
$$

$$
\text { Coupled variables: }\left(x_{1}, x_{2}\right),\left(x_{2}, x_{3}\right)
$$

Edges between coupled variables

sparsity pattern of polynomial

Edges: Nonzero entries of matrix

sparsity pattern of matrix

Undirected Graph
 Undirected graph \mathcal{G}

Set of nodes of the graph
\mathcal{E} Set of edges of the graph

Cycle: A cycle of length k in a undirected graph is a sequence of nodes $\left(v_{1}, v_{2}, \ldots, v_{k}\right)$ such that $\left(v_{i}, v_{i+1}\right) i=1, \ldots, k-1$ and (v_{1}, v_{k}) are the edges.

Undirected Graph
 Undirected graph \mathcal{G}

Cycle: A cycle of length k in a undirected graph is a sequence of nodes $\left(v_{1}, v_{2}, \ldots, v_{k}\right)$ such that $\left(v_{i}, v_{i+1}\right) i=1, \ldots, k-1$ and (v_{1}, v_{k}) are the edges.

Chord: is an edge that connects 2 nonadjacent nodes in a cycle.

Undirected Graph
 Undirected graph \mathcal{G}

\mathcal{V} Set of nodes of the graph
\mathcal{E} Set of edges of the graph

Cycle: A cycle of length k in a undirected graph is a sequence of nodes $\left(v_{1}, v_{2}, \ldots, v_{k}\right)$ such that $\left(v_{i}, v_{i+1}\right) i=1, \ldots, k-1$ and (v_{1}, v_{k}) are the edges.

Chord: is an edge that connects 2 nonadjacent nodes in a cycle.

Chordal Graph: An undirected graph is chordal if every cycle of the length $k \geq 4$ has a chord, (if there are no cycles of length ≥ 4)

Undirected Graph > Undirected graph \mathcal{G}

Cycle: A cycle of length k in a undirected graph is a sequence of nodes $\left(v_{1}, v_{2}, \ldots, v_{k}\right)$ such that $\left(v_{i}, v_{i+1}\right) i=1, \ldots, k-1$ and (v_{1}, v_{k}) are the edges.

Chord: is an edge that connects 2 nonadjacent nodes in a cycle.

Chordal graph

Chordal Graph: An undirected graph is chordal if every cycle of the length $k \geq 4$ has a chord, (if there are no cycles of length ≥ 4)

Clique: a clique of a graph is a subset of nodes that construct a complete graph (i.e. each node in the clique is connected to all the nodes in the clique.)

Undirected Graph > Undirected graph \mathcal{G}

Cycle: A cycle of length k in a undirected graph is a sequence of nodes $\left(v_{1}, v_{2}, \ldots, v_{k}\right)$ such that $\left(v_{i}, v_{i+1}\right) i=1, \ldots, k-1$ and (v_{1}, v_{k}) are the edges.

Chord: is an edge that connects 2 nonadjacent nodes in a cycle.

Chordal graph
Chordal Graph: An undirected graph is chordal if every cycle of the length $k \geq 4$ has a chord, (if there are no cycles of length ≥ 4)

Clique: a clique of a graph is a subset of nodes that construct a complete graph (i.e. each node in the clique is connected to all the nodes in the clique.)

Maximal clique

Theorem

Let $\mathcal{G}(\mathcal{V}, \mathcal{E})$ be a chordal graph ${ }^{1}$ with maximal cliques $\left\{\mathcal{C}_{1}, \mathcal{C}-2, \ldots, \mathcal{C}_{t}\right\}$.Then, Matrix $X \in \mathcal{S}^{n}$ with sparsity pattern $\mathcal{G}(\mathcal{V}, \mathcal{E})$ is PSD if and only if there exist PSD matrices $X_{k} \in \mathcal{S}^{\left|\mathcal{C}_{k}\right|} \succcurlyeq 0$

$$
X \succcurlyeq 0\left\langle\begin{array}{l}
\text { If and only if } \\
\left\langle=\sum_{k} E_{\mathcal{C}_{k}}^{T} X_{k} E_{\mathcal{C}_{k}} .\right. \\
\end{array}\right.
$$

$X_{k} \in \mathcal{S}^{\left\|\mathcal{C}_{k}\right\|} \succcurlyeq 0$
Matrices constructed form

Number of the nodes
> Constraint of the form $X \succcurlyeq 0$ can be replaced by PSD constraints of smaller matrices $X_{k} \succcurlyeq 0$ in maximal Cliques

Example:

$$
\begin{gathered}
X=\left[\begin{array}{lll}
2 & 1 & 0 \\
1 & 1 & 1 \\
0 & 1 & 2
\end{array}\right] \\
X \succcurlyeq 0
\end{gathered}
$$

1: Perfect Elimination and Completable Graph theory, Theorem 7, R. Grone, C. R. Johnson, E. M. Sa, and H. Wolkowicz, "Positive definite completions of partial Hermitian matrices," Linear Algebra and its Applications, vol. 58, pp. 109-124, 1984.

Theorem

Let $\mathcal{G}(\mathcal{V}, \mathcal{E})$ be a chordal graph ${ }^{1}$ with maximal cliques $\left\{\mathcal{C}_{1}, \mathcal{C}-2, \ldots, \mathcal{C}_{t}\right\}$.Then, Matrix $X \in \mathcal{S}^{n}$ with sparsity pattern $\mathcal{G}(\mathcal{V}, \mathcal{E})$ is PSD if and only if there exist PSD matrices $X_{k} \in \mathcal{S}^{\left|\mathcal{C}_{k}\right|} \succcurlyeq 0$

$$
X \succcurlyeq 0\left\langle\begin{array}{l}
\text { If and only if } \\
\left\langle=\sum_{k} E_{\mathcal{C}_{k}}^{T} X_{k} E_{\mathcal{C}_{k}} .\right. \\
\end{array}\right.
$$

$X_{k} \in \mathcal{S}^{\left\|\mathcal{C}_{k}\right\|} \succcurlyeq 0$
Matrices constructed form

Number of the nodes
$>$ Constraint of the form $X \succcurlyeq 0$ can be replaced by PSD constraints of smaller matrices $X_{k} \succcurlyeq 0$

Example:

$$
\begin{gathered}
X=\left[\begin{array}{lll}
2 & 1 & 0 \\
1 & 1 & 1 \\
0 & 1 & 2
\end{array}\right] \\
X \succcurlyeq 0
\end{gathered}
$$

$$
\exists \quad X_{1} \in \mathcal{S}^{\left|\mathcal{C}_{1}\right|} \succcurlyeq 0 \quad X_{2} \in \mathcal{S}^{\left|\mathcal{C}_{2}\right|} \succcurlyeq 0 \stackrel{\text { Iff }}{\Longleftrightarrow} X \succcurlyeq 0
$$

$$
X=\sum_{k} E_{\mathcal{C}_{k}}^{T} X_{k} E_{\mathcal{C}_{k}}
$$

1: Perfect Elimination and Completable Graph theory, Theorem 7, R. Grone, C. R. Johnson, E. M. Sa, and H. Wolkowicz, "Positive definite completions of partial Hermitian matrices," Linear Algebra and its Applications, vol. 58, pp. 109-124, 1984.

Theorem

Let $\mathcal{G}(\mathcal{V}, \mathcal{E})$ be a chordal graph ${ }^{1}$ with maximal cliques $\left\{\mathcal{C}_{1}, \mathcal{C}-2, \ldots, \mathcal{C}_{t}\right\}$.Then, Matrix $X \in \mathcal{S}^{n}$ with sparsity pattern $\mathcal{G}(\mathcal{V}, \mathcal{E})$ is PSD if and only if there exist PSD matrices $X_{k} \in \mathcal{S}^{\left|\mathcal{C}_{k}\right|} \succcurlyeq 0$

$$
X \succcurlyeq 0\left\langle\begin{array}{l}
\text { If and only if }
\end{array}\right\rangle=\sum_{k} E_{\mathcal{C}_{k}}^{T} X_{k} E_{\mathcal{C}_{k}}
$$

$X_{k} \in \mathcal{S}^{\left\|\mathcal{C}_{k}\right\|} \succcurlyeq 0$
Matrices constructed form

$>$ Constraint of the form $X \succcurlyeq 0$ can be replaced by PSD constraints of smaller matrices $X_{k} \succcurlyeq 0$

Example:

$$
\begin{gathered}
X=\left[\begin{array}{lll}
2 & 1 & 0 \\
1 & 1 & 1 \\
0 & 1 & 2
\end{array}\right] \\
X \succcurlyeq 0
\end{gathered}
$$

1: Perfect Elimination and Completable Graph theory, Theorem 7, R. Grone, C. R. Johnson, E. M. Sa, and H. Wolkowicz, "Positive definite completions of partial Hermitian matrices," Linear Algebra and its Applications, vol. 58, pp. 109-124, 1984.

Theorem

Let $\mathcal{G}(\mathcal{V}, \mathcal{E})$ be a chordal graph ${ }^{1}$ with maximal cliques $\left\{\mathcal{C}_{1}, \mathcal{C}-2, \ldots, \mathcal{C}_{t}\right\}$.Then, Matrix $X \in \mathcal{S}^{n}$ with sparsity pattern $\mathcal{G}(\mathcal{V}, \mathcal{E})$ is PSD if and only if there exist PSD matrices $X_{k} \in \mathcal{S}^{\left|\mathcal{C}_{k}\right|} \succcurlyeq 0$

$$
X \succcurlyeq 0\left\langle\begin{array}{l}
\text { If and only if }
\end{array}\right\rangle=\sum_{k} E_{\mathcal{C}_{k}}^{T} X_{k} E_{\mathcal{C}_{k}}
$$

$\begin{gathered}X_{k} \in \mathcal{S}^{\left|\mathcal{C}_{k}\right|} \succcurlyeq 0 \\ \text { Matrices constructed form }\end{gathered} \quad\left|\mathcal{C}_{k}\right|<n$ the maximal Cliques

Number of the nodes in maximal Cliques
> Constraint of the form $X \succcurlyeq 0$ can be replaced by PSD constraints of smaller matrices $X_{k} \succcurlyeq 0$
-(Appendix IV)

Example:

$$
\begin{gathered}
X=\left[\begin{array}{lll}
2 & 1 & 0 \\
1 & 1 & 1 \\
0 & 1 & 2
\end{array}\right]\left\langle\left[\begin{array}{lll}
2 & 1 & 0 \\
1 & 1 & 1 \\
0 & 1 & 2
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1 \\
0 & 0
\end{array}\right]\left[\begin{array}{ll}
2 & 1 \\
1 & 0.5
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right]+\left[\begin{array}{cc}
0 & 0 \\
1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{cc}
0.5 & 1 \\
1 & 2
\end{array}\right]\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right. \\
X \succcurlyeq 0 \\
X_{2} \succcurlyeq 0 \\
X_{1} \succcurlyeq 0
\end{gathered}
$$

1: Perfect Elimination and Completable Graph theory, Theorem 7, R. Grone, C. R. Johnson, E. M. Sa, and H. Wolkowicz, "Positive definite completions of partial Hermitian matrices," Linear Algebra and its Applications, vol. 58, pp. 109-124, 1984.

$$
\begin{array}{lll}
\text { SDP } & \underset{X}{\operatorname{minimize}} & C \bullet X \\
& \text { subject to } & A_{i} \bullet X=b_{i} \quad i=1, \ldots, m . \\
& X \succcurlyeq 0 . \quad X \in \mathcal{S}^{n}
\end{array}
$$

Sparsity pattern of matrix X : Chordal graph $\mathcal{G}(\mathcal{V}, \mathcal{E})$

$$
\begin{array}{ll}
\underset{X}{\operatorname{minimize}} & C \bullet X \\
\text { subject to } & A_{i} \bullet\left(\sum_{k} E_{\mathcal{C}_{k}}^{T} X_{k} E_{\mathcal{C}_{k}}\right)=b_{i} \quad i=1, \ldots, m . \\
& X_{k} \succcurlyeq 0, k=1,2, \ldots \quad X_{k} \in \mathcal{S}^{\left|\mathcal{C}_{k}\right|}
\end{array}
$$

Theorem

Let $\mathcal{G}(\mathcal{V}, \mathcal{E})$ be a chordal graph obtained from the polynomial $p(x)$ with maximal cliques $\left\{\mathcal{C}_{1}, \mathcal{C}-2, \ldots, \mathcal{C}_{t}\right\}$ Then, polynomial $p(x)$ is SOS if and only if:

$$
p(x) \in S O S<\begin{array}{ll}
\text { If and only if } \\
>
\end{array} p(x)=\sum_{k} p_{k}\left(X_{k}\right) \quad \begin{aligned}
& p_{k}\left(X_{k}\right) \in S O S \\
& \\
& X_{k}: \text { Nodes in clique } \mathcal{C}_{k}
\end{aligned}
$$

> Constraint of the form $p(x) \in S O S$ can be replaced by SOS constraints on low dimensional polynomials.

Theorem

Let $\mathcal{G}(\mathcal{V}, \mathcal{E})$ be a chordal graph obtained from the polynomial $p(x)$ with maximal cliques $\left\{\mathcal{C}_{1}, \mathcal{C}-2, \ldots, \mathcal{C}_{t}\right\}$ Then, polynomial $p(x)$ is SOS if and only if:

$$
p(x) \in S O S<\begin{array}{ll}
\\
\text { If and only if } \\
\hline
\end{array} p(x)=\sum_{k} p_{k}\left(X_{k}\right) \quad \begin{aligned}
& p_{k}\left(X_{k}\right) \in S O S \\
& \\
& X_{k}: \text { Nodes in clique } \mathcal{C}_{k}
\end{aligned}
$$

> Constraint of the form $p(x) \in S O S$ can be replaced by SOS constraints on low dimensional polynomials.
$p\left(x_{1}, x_{2}, x_{3}\right)=2\left(1+x_{1}+x_{3}+x_{1}^{2}+x 1 x_{2}+x_{1}^{2}+x_{2} x_{3}+x_{3}^{2}\right)$

Coupled variables: $\left(x_{1}, x_{2}\right),\left(x_{2}, x_{3}\right)$
Edges between coupled variables

Polynomial with sparsity pattern

$$
\mathcal{G}(\mathcal{V}, \mathcal{E})
$$

Theorem

Let $\mathcal{G}(\mathcal{V}, \mathcal{E})$ be a chordal graph obtained from the polynomial $p(x)$ with maximal cliques $\left\{\mathcal{C}_{1}, \mathcal{C}-2, \ldots, \mathcal{C}_{t}\right\}$ Then, polynomial $p(x)$ is SOS if and only if:

$$
p(x) \in S O S<\begin{array}{ll}
\\
\text { If and only if } \\
\hline
\end{array} p(x)=\sum_{k} p_{k}\left(X_{k}\right) \quad \begin{aligned}
& p_{k}\left(X_{k}\right) \in S O S \\
& \\
& X_{k}: \text { Nodes in clique } \mathcal{C}_{k}
\end{aligned}
$$

> Constraint of the form $p(x) \in S O S$ can be replaced by SOS constraints on low dimensional polynomials.
$p\left(x_{1}, x_{2}, x_{3}\right)=2\left(1+x_{1}+x_{3}+x_{1}^{2}+x 1 x_{2}+x_{1}^{2}+x_{2} x_{3}+x_{3}^{2}\right)$
Coupled variables: $\left(x_{1}, x_{2}\right),\left(x_{2}, x_{3}\right)$
Edges between coupled variables

Polynomial with sparsity pattern

$$
\mathcal{G}(\mathcal{V}, \mathcal{E})
$$

Theorem

Let $\mathcal{G}(\mathcal{V}, \mathcal{E})$ be a chordal graph obtained from the polynomial $p(x)$ with maximal cliques $\left\{\mathcal{C}_{1}, \mathcal{C}-2, \ldots, \mathcal{C}_{t}\right\}$ Then, polynomial $p(x)$ is SOS if and only if:

$$
p(x) \in S O S<\begin{aligned}
& \text { If and only if } \\
& \hline
\end{aligned} p(x)=\sum_{k} p_{k}\left(X_{k}\right) \quad \begin{aligned}
& p_{k}\left(X_{k}\right) \in S O S \\
& \\
& X_{k}: \text { Nodes in clique } \mathcal{C}_{k}
\end{aligned}
$$

> Constraint of the form $p(x) \in S O S$ can be replaced by SOS constraints on low dimensional polynomials.
$p\left(x_{1}, x_{2}, x_{3}\right)=2\left(1+x_{1}+x_{3}+x_{1}^{2}+x 1 x_{2}+x_{1}^{2}+x_{2} x_{3}+x_{3}^{2}\right)$
Coupled variables: $\left(x_{1}, x_{2}\right),\left(x_{2}, x_{3}\right)$ Edges between coupled variables

$$
\begin{aligned}
& p\left(x_{1}, x_{2}, x_{3}\right) \in \text { SOS iff } p\left(x_{1}, x_{2}\right)=p_{1}\left(x_{1}, x_{2}\right) \in S O S+p_{2}\left(x_{2}, x_{3}\right) \in \operatorname{SOS} \\
& p\left(x_{1}, x_{2}, x_{3}\right)=\overline{\left(1+x_{1}\right)^{2}+\left(x_{1}+x_{2}\right)^{2}}+\overbrace{\left(1+x_{3}^{2}\right)^{2}+\left(x_{2}+x_{3}\right)^{2}}^{2}
\end{aligned}
$$

Polynomial with sparsity pattern

Theorem

Let $\mathcal{G}(\mathcal{V}, \mathcal{E})$ be a chordal graph obtained from the polynomial $p(x)$ with maximal cliques $\left\{\mathcal{C}_{1}, \mathcal{C}-2, \ldots, \mathcal{C}_{t}\right\}$ Then, polynomial $p(x)$ is SOS if and only if:

$$
p(x) \in S O S<\begin{aligned}
& \text { If and only if } \\
& \hline
\end{aligned} p(x)=\sum_{k} p_{k}\left(X_{k}\right) \quad \begin{aligned}
& p_{k}\left(X_{k}\right) \in S O S \\
& \\
& X_{k}: \text { Nodes in clique } \mathcal{C}_{k}
\end{aligned}
$$

> Constraint of the form $p(x) \in S O S$ can be replaced by SOS constraints on low dimensional polynomials.
$p\left(x_{1}, x_{2}, x_{3}\right)=2\left(1+x_{1}+x_{3}+x_{1}^{2}+x 1 x_{2}+x_{1}^{2}+x_{2} x_{3}+x_{3}^{2}\right)$
Coupled variables: $\left(x_{1}, x_{2}\right),\left(x_{2}, x_{3}\right)$ Edges between coupled variables

$$
\begin{aligned}
& p\left(x_{1}, x_{2}, x_{3}\right) \in \text { SOS iff } p\left(x_{1}, x_{2}\right)=p_{1}\left(x_{1}, x_{2}\right) \in S O S+p_{2}\left(x_{2}, x_{3}\right) \in \operatorname{SOS} \\
& p\left(x_{1}, x_{2}, x_{3}\right)=\overline{\left(1+x_{1}\right)^{2}+\left(x_{1}+x_{2}\right)^{2}}+\overbrace{\left(1+x_{3}^{2}\right)^{2}+\left(x_{2}+x_{3}\right)^{2}}^{2}
\end{aligned}
$$

Polynomial with sparsity pattern

$$
p\left(x_{1}, x_{2}, x_{3}\right) \in S O S \longrightarrow p\left(x_{1}, x_{2}, x_{3}\right) \in S S O S
$$

Unconstrained optimization

$\underset{x}{\operatorname{minimize}} \quad p(x)$
x

SOS Program:

$$
\begin{array}{ll}
\underset{Q \in \mathcal{S}^{n}, \gamma}{\operatorname{maximize}} & \gamma \\
\text { subject to } & p(x)-\gamma \in S O S
\end{array}
$$

SSOS Program:

$\underset{Q \in S^{n} \gamma}{\operatorname{maximize}} \quad \gamma$
$Q \in \mathcal{S}^{n}, \gamma$
subject to $\quad p(x)-\gamma \in S S O S$

Unconstrained optimization

$$
\underset{x}{\operatorname{minimize}} \quad p(x)
$$

SOS Program:

$$
\begin{array}{ll}
\underset{Q \in \mathcal{S}^{n}, \gamma}{\operatorname{maximize}} & \gamma \\
\text { subject to } & p(x)-\gamma \in S O S
\end{array}
$$

SSOS Program:

$\begin{array}{ll}\underset{Q \in \mathcal{S}^{n}, \gamma}{\operatorname{maximize}} & \gamma \\ \text { subject to } & p(x)-\gamma \in S S O S\end{array}$

Constrained optimization

$$
\begin{array}{ll}
\underset{x}{\operatorname{minimize}} & p(x) \\
\text { subject to } & g_{i}(x) \geq 0, i=1, \ldots, n
\end{array}
$$

SOS Program:

$$
\underset{\gamma, \sigma_{i}}{\operatorname{maximize}} \quad \gamma
$$

subject to $\quad p(x)-\gamma-\sum_{i=1}^{m} \sigma_{i}(x) g_{i}(x) \in S O S$

$$
\sigma_{i}(x) \in S O S_{2 d_{i}}, i=0, \ldots, m
$$

SSOS Program:

$\underset{\gamma, \sigma_{i}}{\operatorname{maximize}} \quad \gamma$
subject to $p(x)-\gamma-\sum_{i=1}^{m}\left(\sigma_{i}(x) g_{i}(x) \in S S O S\right.$
$\sigma_{i}(x) \in S O S_{2 d_{i}}, \quad i=0, \ldots, m$
should preserve the correlative sparsity of g_{i}

$$
\begin{aligned}
& p(x)-\gamma-\sum_{i=1}^{m}\left(\underline{\sigma_{i}(x)}, g_{i}(x) \in S S O S\right. \\
& \sigma_{i}(x) \in S O S_{2 d_{i}}, i=0, \ldots, m
\end{aligned}
$$

$>\sigma_{i}(x)$ should preserve the correlative sparsity of $g_{i}(x)$

> Example:

$g_{i}(\tilde{x})$: is a polynomial in terms of subset of variables \tilde{x} $\sigma_{i}(\tilde{x})$: SOS polynomial in terms of variables \tilde{x}

More information:

- Section 4.2: H. Waki, S. Kim, M. Kojima, and M. Muramatsu, "Sums of squares and semidefinite program relaxations for polynomial optimization problems with structured sparsity," SIAM Journal on Optimization, vol. 17, no. 1, pp. 218-242, 2006.
- Lemma 3: , Tillmann Weisser, Jean B. Lasserre, Kim-Chuan Toh., "Sparse-BSOS: a bounded degree SOS hierarchy for large scale polynomial optimization with sparsity", Math. Prog. Comp. (2018) 10:1-32

Example: https://github.com/iasour/rarnop19/blob/master/Lecture6 modified-SOS/Sparse SOS/Example SSOS compare Cons.m

Sparse SOS using Yalmip

1) Copy "corrsparsity.m" to the folder of /modules/sos, and replace the original corrsparsity.m.

https://github.com/zhengy09/sos csp

2) Add the "ops. sos.csp $=1$ " to the Yalmip SOS optimization code.

- Zheng, Y., Fantuzzi, G., \& Papachristodoulou, A. "Sparse sum-of-squares (SOS) optimization: A bridge between DSOS/SDSOS and SOS optimization for sparse polynomials", arXiv preprint arXiv:1807.05463. 2018
- Zheng, Y., Fantuzzi, G., \& Papachristodoulou, A. (2018, December). Decomposition and completion of sum-of-squares matrices. In 2018 IEEE Conference on Decision and Control (CDC) (pp. 4026-4031). IEEE.

sparsePOP 3.03 (MATLAB Package)

This package also provides the optimal solution x^{*} of SSOS optimization.

https://sourceforge.net/projects/sparsepop/

- H. Waki, S. Kim, M. Kojima, and M. Muramatsu, "Sums of squares and semidefinite program relaxations for polynomial optimization problems with structured sparsity," SIAM Journal on Optimization, vol. 17, no. 1, pp. 218-242, 2006.

Example 1: Unconstrained Optimization

$$
\begin{aligned}
f_{\mathrm{cs}}(x)= & \sum_{i \in J}\left(\left(x_{i}+10 x_{i+1}\right)^{2}+5\left(x_{i+2}-x_{i+3}\right)^{2}\right. \\
& \left.+\left(x_{i+1}-2 x_{i+2}\right)^{4}+10\left(x_{i}-10 x_{i+3}\right)^{4}\right),
\end{aligned}
$$

$$
J=\{1,3,5, \ldots, n-3\}
$$

Number of variables	(Number of Clique)*(Size Of the Clique)			cpu time (sparseSOS)	cpu time (SOS)
	n	cl.str	$\epsilon_{\text {obj }}$	sparse	dense
	16	3*14	3.5e-7	0.6	3059.5
	40	$3 * 38$	$8.4 \mathrm{e}-7$	1.4	-
	100	$3 * 98$	5.5e-7	3.8	-
	200	3*198	$3.0 \mathrm{e}-7$	8.4	-
	400	$3 * 398$	$3.6 \mathrm{e}-7$	19.3	-

Objective function

Example 2: Unconstrained Optimization

$$
\begin{aligned}
& f_{\mathrm{Bb}}(x)=\sum_{i=1}^{n}\left(x_{i}\left(2+5 x_{i}^{2}\right)+1-\sum_{j \in J_{t}}\left(1+x_{j}\right) x_{j}\right)^{2}, \\
& J_{i}=\{j \mid j \neq i, \max (1, i-5) \leq j \leq \min (n, i+1)\} .
\end{aligned}
$$

Broyden banded function				
n	cl.str	$\epsilon_{\text {obj }}$	sparse	dense
6	$6^{*} 1$	$8.0 \mathrm{e}-9$	11.3	11.6
7	7^{*}	1.9e-8	69.5	69.5
8	$7^{*} 2$	$2.8 \mathrm{e}-8$	164.1	373.7
9	$7^{* 3}$	$9.1 \mathrm{e}-8$	240.3	1835.6
10	$7^{*} 4$	$6.2 \mathrm{e}-8$	348.7	8399.4

- H. Waki, S. Kim, M. Kojima, and M. Muramatsu, "Sums of squares and semidefinite program relaxations for polynomial optimization problems with structured sparsity," SIAM Journal on Optimization, vol. 17, no. 1, pp. 218-242, 2006.

Illustrative Example:

$$
\mathrm{P}^{*}=\underset{x \in \mathbb{R}^{n}}{\operatorname{minimize}}=5+\sum_{i=1}^{n}\left(x_{i}-1\right)^{2} \quad p^{*}=5, \quad x^{*}=[1,1, \ldots, 1]^{T} \in \mathbb{R}^{n}
$$

Number of variables Polynomial of order 2

- SOS: Variables:200 Relaxation Order=1 time= 286.5458 (s) p^{*}
- SDSOS: Variables:200 Relaxation Order=1 time=3.6338 (s) $p^{*}=5 \quad$ sdp solver: mosek
- DSOS: Variables:200 Relaxation Order=1 time=2.6824 (s) $p^{*}=5 \quad$ sdp solver: mosek
- Spars SOS: Variables:200 Relaxation Order=1 time=0.2374 (s) $\boldsymbol{p}^{*}=5$ sdp solver: mosek
- SparsPOP: Variables:200 Relaxation Order=1 time=0.95 (s) $p^{*}=5 \quad x^{*}=[1, \ldots, 1]$ sdpt3

[^1]
Topics

1) (Scaled) Diagonally Dominant Sum-of-Squares Optimization (DSOS, SDSOS) Modified SOS optimization that results in LP and Second order cone program
2) Bounded degree SOS (BSOS)

Modified SOS optimization that results in smaller SDP's.
3) Spars Sum-of-Squares Optimization (SSOS)

Takes advantage of sparsity of the original problem to generate smaller SDP.
4) Sparse Bounded Degree Sum-of-Squares Optimization (SBSOS) Combination of 2 and 3

Sparse Bounded Degree Sum-of-Squares Optimization (SBSOS)

$>$ Combines Bounded degree SOS (BSOS) and Chordal-Sparse SOS.

- Tillmann Weisser, Jean B. Lasserre, Kim-Chuan Toh., "Sparse-BSOS: a bounded degree SOS hierarchy for large scale polynomial optimization with sparsity", Math. Prog. Comp. (2018) 10:1-32
$>$ Takes advantages of sparsity of the original problem to reduce the size of the bounded degree SOS.
$>$ It relies on "Running Intersection Property" (Chordal sparsity of the graph)
- M. Tacchi, T. Weisser, J. B. Lasserre, D. Henrion,"Exploiting Sparsity for Semi-Algebraic Set Volume Computation", https://arxiv.org/abs/1902.02976
- J. R. S. Blair, B. Peyton. An introduction to chordal graphs and clique trees. Pages 1-29 in Graph Theory and Sparse Matrix Computation, Springer, New York, 1993
- Example: https://github.com/iasour/rarnop19/blob/master/Lecture6 modified-SOS/Sparse Bounded Degree SOS/SBSOS Example1.m

MATLAB Code
https://github.com/tweisser/Sparse BSOS
This package also provides the optimal solution x^{*} of SBSOS optimization.

Example 1: Constrained Optimization (Chained Singular Function)

$$
\begin{aligned}
& f:=\sum_{j \in H}\left(\left(x_{j}+10 x_{j+1}\right)^{2}+5\left(x_{j+2}-x_{j+3}\right)^{2}+\left(x_{j+1}-2 x_{j+2}\right)^{4}+10\left(x_{j}-x_{j+3}\right)^{4}\right) \\
& H:=\{2 i-1: i=1, \ldots, n / 2-1\} \\
& \mathbf{K}=\left\{x \in \mathbb{R}^{n}: 1-\sum_{i \in I_{\ell}} x_{i} \geq 0, \quad \ell=1, \ldots, p ; \quad x_{i} \geq 0, \quad i=1, \ldots, n\right\},
\end{aligned}
$$

- Tillmann Weisser, Jean B. Lasserre, Kim-Chuan Toh., "Sparse-BSOS: a bounded degree SOS hierarchy for large scale polynomial optimization with sparsity", Math. Prog. Comp. (2018) 10:1-32

Table 6 Comparison Sparse-BSOS $(k=2)$

Chained Singular Number of variables	rel.	Sparse-BSOS		
		Solution	rk	Time (s)
$n=500$	$d=1$	$-1.4485 \mathrm{e}-02 *$	1.0	19.6
	$d=2$	-9.7833e-10	1	17.8
$n=600$	$d=1$	-2.7372e-03*	1.0	40.1
	$d=2$	-1.2640e-09	1	21.4
$n=700$	$d=1$	$-1.7548 \mathrm{e}-03 *$	1.0	41.6
	$d=2$	-1.7613e-09	1	25.3
$n=800$	$d=1$	-1.9438e-03*	1.0	58.9
	$d=2$	2.1935e-09	1	29.0
$n=900$	$d=1$	$-1.8924 \mathrm{e}-02^{*}$	1.0	43.5
	$d=2$	-2.6072e-09	1	33.5
$n=1000$	$d=1$	-4.4914e-02*	1.0	35.5
	$d=2$	-9.3508e-10	1	39.5

Application

1) (Scaled) Diagonally Dominant Sum-of-Squares Optimization (DSOS, SDSOS) Modified SOS optimization that results in LP and Second order cone program
2) Bounded degree SOS (BSOS)

Modified SOS optimization that results in smaller SDP's.
3) Spars Sum-of-Squares Optimization (SSOS)

Takes advantage of sparsity of the original problem to generate smaller SDP.
4) Sparse Bounded Degree Sum-of-Squares Optimization (SBSOS) Combination of 2 and 3

(Scaled) Diagonally Dominant Sum-of-Squares Optimization (DSOS, SDSOS)

- A. Ahmadi and A. Majumdar," DSOS and SDSOS Optimization: More Tractable Alternatives to Sum of Squares and Semidefinite Optimization", SIAM Journal on Applied Algebraic Geometry, 2019.
Code: https://github.com/anirudhamajumdar/spotless/tree/spotless isos

Bounded Degree Sum-of-Squares Optimization (BSOS)

- Jean B. Lasserre, Kim-Chuan Toh, Shouguang Yang, "A bounded degree SOS hierarchy for polynomial optimization", EURO Journal on Computational Optimization March 2017, Volume 5, Issue 1-2, pp 87-117
Code: https://github.com/tweisser/Sparse BSOS

Sparse Sum-of-Squares Optimization (SSOS)

- H. Waki, S. Kim, M. Kojima, and M. Muramatsu, "Sums of squares and semidefinite program relaxations for polynomial optimization problems with structured sparsity," SIAM Journal on Optimization, vol. 17, no. 1, pp. 218-242, 2006.
Code: https://sourceforge.net/projects/sparsepop/
- Zheng, Y., Fantuzzi, G., \& Papachristodoulou, A. "Sparse sum-of-squares (SOS) optimization: A bridge between DSOS/SDSOS and SOS optimization for sparse polynomials", arXiv preprint arXiv:1807.05463. 2018

Code: https://github.com/zhengy09/sos csp

Sparse Bounded Degree Sum-of-Squares Optimization (SBSOS)

- Tillmann Weisser, Jean B. Lasserre, Kim-Chuan Toh., "Sparse-BSOS: a bounded degree SOS hierarchy for large scale polynomial optimization with sparsity", Math. Prog. Comp. (2018) 10:1-32
Code: https://github.com/tweisser/Sparse BSOS

Appendix I: SDSOS/DSOS Polynomials

Sum-Of-Squares Polynomials

$p(x) \in S O S \quad \longrightarrow p(x)=\sum_{i=1}^{\ell} h_{i}^{2}(x)$

$$
p(x)=B(x)^{T} Q B(x)
$$

$$
\text { where } Q \in \mathcal{S}_{+}^{n}
$$

where $h_{i}(x) \in \mathbb{R}[x], \quad i=1, \ldots, \ell$

Diagonally-Dominant-Sum-Of-Squares Polynomials

```
\(p(x) \in D S O S\)
```

$p(x) \stackrel{\downarrow}{=} \sum_{i} \alpha_{i} m_{i}^{2}(x)+\sum_{i, j} \beta_{i j}^{+}\left(m_{i}(x)+m_{j}(x)\right)^{2}+\sum_{i, j} \beta_{i j}^{-}\left(m_{i}(x)-m_{j}(x)\right)^{2}$
for some nonnegative scalars $\alpha_{i}, \beta_{i j}^{+}, \beta_{i j}^{-} \quad$ for some polynomials $m_{i}(x), m_{i}(x)$

$p(x)=B(x)^{T} Q B(x)$ where $Q \in \mathcal{S}_{d d}^{n}$

Scaled-Diagonally-Dominant-Sum-Of-Squares Polynomials

$p(x) \in S D S O S$

where $Q \in \mathcal{S}_{s d d}^{n}$
$p(x)=\sum_{i} \alpha_{i} m_{i}^{2}(x)+\sum_{i, j}\left(\hat{\beta}_{i j}^{+} m_{i}(x)+\tilde{\beta}_{i j}^{+} m_{j}(x)\right)^{2}+\sum_{i, j}\left(\hat{\beta}_{i j}^{-} m_{i}(x)-\tilde{\beta}_{i j}^{-} m_{j}(x)\right)^{2}$
for some scalars $\alpha_{i} \geq 0, \hat{\beta}_{i j}^{+}, \tilde{\beta}_{i j}^{+}, \hat{\beta}_{i j}^{-}, \tilde{\beta}_{i j}^{-} \quad$ for some polynomials $m_{i}(x), m_{i}(x)$

Appendix II: Convergence of LP Relaxation

$$
\begin{aligned}
& \mathrm{P}^{*}=\underset{x \in \mathbb{R}^{n}}{\operatorname{minimize}} \quad p(x) \\
& \text { subject to } \quad x \in \mathbf{K}=\left\{x \in \mathbb{R}^{n}: g_{i}(x) \geq 0, i=1, \ldots, m\right\} \\
& \mathrm{P}^{*}=\underset{\gamma \in \mathbb{R}}{\operatorname{maximize}} \\
& \text { subject to } \quad p(x)-\gamma \geq 0, \quad \forall x \in \mathbf{K} \xrightarrow[\text { optimal solution }]{ } \gamma^{*}=p\left(x^{*}\right) \\
& p(x)-\gamma^{*}=\sigma_{0}(x)+\sum_{i=1}^{m} \sigma_{i}(x) g_{i}(x) \quad \exists \gamma^{*} \in \mathbb{R}, \sigma_{0}(x) \in S O S_{2 d}, \sigma_{i}(x) \in S O S_{2 d_{i}}, i=1, \ldots, m \\
& \text { if } \gamma^{*}=p\left(x^{*}\right)=\mathrm{P}^{*} \xrightarrow{p\left(x^{*}\right)-\gamma^{*}=0} \sigma_{0}\left(x^{*}\right)+\sum_{i=1}^{m} \sigma_{i}\left(x^{*}\right) g_{i}\left(x^{*}\right)=0
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{P}^{*}=\underset{x \in \mathbb{R}^{n}}{\operatorname{minimize}} \quad p(x) \\
& \text { subject to } \quad x \in \mathbf{K}=\left\{x \in \mathbb{R}^{n}: g_{i}(x) \geq 0, i=1, \ldots, m\right\} \\
& \mathrm{P}^{*}=\text { maximize } \\
& \gamma \in \mathbb{R} \\
& \text { subject to } \quad p(x)-\gamma \geq 0, \quad \forall x \in \mathbf{K} \xrightarrow[\text { optimal solution }]{ } \gamma^{*}=p\left(x^{*}\right) \\
& p(x)-\gamma^{*}=\sigma_{0}(x)+\sum_{i=1}^{m} \sigma_{i}(x) g_{i}(x) \\
& \exists \gamma^{*} \in \mathbb{R}, \sigma_{0}(x) \in S O S_{2 d}, \sigma_{i}(x) \in S O S_{2 d_{i}}, i=1, \ldots, m \\
& \text { if } \gamma^{*}=p\left(x^{*}\right)=\mathrm{P}^{*} \xrightarrow{p\left(x^{*}\right)-\gamma^{*}=0} \sigma_{0}\left(x^{*}\right)+\sum_{i=1}^{m} \sigma_{i}\left(x^{*}\right) g_{i}\left(x^{*}\right)=0
\end{aligned}
$$

$$
\text { if } x^{*} \in \operatorname{int} \mathbf{K} \longrightarrow \sigma_{0}\left(x^{*}\right)+\sum_{i=1}^{m} \sigma_{i}\left(x^{*}\right) \underset{\substack{g_{i}\left(x^{*}\right) \\ g_{i}\left(x^{*}\right)>0}}{g_{i}}=0
$$

Hence, This constraint is imposed by

$$
\sigma_{i}\left(x^{*}\right) i=0, \ldots, m
$$

(The same situation for $x^{*} \in \partial \mathbf{K}$)

$$
\begin{aligned}
\mathrm{P}^{*}= & \underset{x}{\operatorname{minimize}} \\
& x^{2}-2 x+2 \\
& \text { subject to }
\end{aligned} \quad x \in \mathbf{K}=\{x: x(2-x) \geq 0\}
$$

$$
\begin{array}{rlrl}
\mathrm{P}_{\text {sos }}^{*}= & \underset{\gamma \in \mathbb{R}, \sigma_{0}(x) \in S O S, \sigma_{1}(x) \in S O S}{\operatorname{maximize}} \gamma \\
& \text { subject to } & x^{2}-2 x+2-\gamma=\sigma_{0}(x)+\sigma_{1}(x) x(2-x)
\end{array}
$$


```
\gamma}=1\longrightarrow\mp@subsup{x}{}{*}=
\sigma}(x)=(-0.291570596593-0.0571934472478x1+0.348740011438x\mp@subsup{1}{}{2}\mp@subsup{)}{}{2}+(-0.956549252584+1.50888962843x1-0.552282590362x\mp@subsup{1}{}{2}\mp@subsup{)}{}{2
\sigma}(x)=(-0.653185546681+0.653173513801x1)\mp@subsup{)}{}{2
```

- At $x^{*}=1 \in \operatorname{int} \mathbf{K}$

$$
p\left(x^{*}\right)-\gamma^{*}=0 \quad \underbrace{\sigma_{0}\left(x^{*}\right)}_{=0}+\underbrace{\sigma_{1}\left(x^{*}\right)}_{=0} \underbrace{x^{*}\left(2-x^{*}\right)}_{=1}=0
$$

$$
\begin{aligned}
\mathrm{P}^{*}= & \underset{x \in \mathbb{R}^{n}}{\operatorname{minimize}} \quad p(x) \\
& \text { subject to } \quad x \in \mathbf{K}=\left\{x \in \mathbb{R}^{n}: 0 \leq g_{i}(x) \leq 1, i=1, \ldots, m\right\} \\
\mathrm{P}^{*}= & \underset{\gamma \in \mathbb{R}}{\operatorname{maximize}} \quad \gamma \\
& \text { subject to } \\
& p(x)-\gamma \geq 0, \quad \forall x \in \mathbf{K} \xrightarrow[\text { optimal solution }]{ } \gamma^{*}=p\left(x^{*}\right)
\end{aligned}
$$

LP Relaxation

$$
\begin{aligned}
& p(x)-\gamma^{*}=\sum \lambda_{\alpha \beta}^{*} g_{1}^{\alpha_{1}}(x) \ldots g_{m}^{\alpha_{m}}(x)\left(1-g_{1}(x)\right)^{\beta_{1}} \ldots\left(1-g_{m}(x)\right)^{\beta_{m}} \quad \exists \gamma^{*} \in \mathbb{R}, \lambda_{\alpha \beta}^{*} \geq 0 \\
& \text { if } \gamma^{*}=p\left(x^{*}\right)=\mathrm{P}^{*} \xrightarrow{p\left(x^{*}\right)-\gamma^{*}=0} \sum \lambda_{\alpha \beta}^{*} g_{1}^{\alpha_{1}}\left(x^{*}\right) \ldots g_{m}^{\alpha_{m}}\left(x^{*}\right)\left(1-g_{1}\left(x^{*}\right)\right)^{\beta_{1}} \ldots\left(1-g_{m}\left(x^{*}\right)\right)^{\beta_{m}}=0
\end{aligned}
$$

- Section 5.4.2, Jean Bernard Lasserre, "Moments, Positive Polynomials and Their Applications" Imperial College Press Optimization Series, V. 1, 2009.

$$
\begin{aligned}
\mathrm{P}^{*}= & \underset{x \in \mathbb{R}^{n}}{\operatorname{minimize}} \\
& \text { subject to } \\
& x \in \mathbf{K}=\left\{x \in \mathbb{R}^{n}: 0 \leq g_{i}(x) \leq 1, i=1, \ldots, m\right\}
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{P}^{*}= & \underset{\gamma \in \mathbb{R}}{\operatorname{maximize}} \\
& \text { subject to } \\
& p(x)-\gamma \geq 0, \quad \forall x \in \mathbf{K} \xrightarrow[\text { optimal solution }]{ } \gamma^{*}=p\left(x^{*}\right)
\end{aligned}
$$

LP Relaxation

$$
\begin{aligned}
& p(x)-\gamma^{*}=\sum \lambda_{\alpha \beta}^{*} g_{1}^{\alpha_{1}}(x) \ldots g_{m}^{\alpha_{m}}(x)\left(1-g_{1}(x)\right)^{\beta_{1}} \ldots\left(1-g_{m}(x)\right)^{\beta_{m}} \quad \exists \gamma^{*} \in \mathbb{R}, \lambda_{\alpha \beta}^{*} \geq 0 \\
& \text { if } \gamma^{*}=p\left(x^{*}\right)=\mathrm{P}^{*} \xrightarrow[p\left(x^{*}\right)-\gamma^{*}=0]{\sum \lambda_{\alpha \beta}^{*} g_{1}^{\alpha_{1}}\left(x^{*}\right) \ldots g_{m}^{\alpha_{m}}\left(x^{*}\right)\left(1-g_{1}\left(x^{*}\right)\right)^{\beta_{1}} \ldots\left(1-g_{m}\left(x^{*}\right)\right)^{\beta_{m}}=0}
\end{aligned}
$$

- Hence, γ^{*} (optimal solution of the original problem) can not be attained. - convergence cannot be finite $\lim _{d \rightarrow \infty} \mathbf{P}_{L}^{* d}=\mathbf{P}^{*}$
- Section 5.4.2, Jean Bernard Lasserre, "Moments, Positive Polynomials and Their Applications" Imperial College Press Optimization Series, V. $1,2009$.

Example:

$$
\begin{aligned}
\mathrm{P}^{*}= & \underset{x \in \mathbb{R}^{n}}{\operatorname{minimize}}
\end{aligned} \quad p(x)=x^{2}-x .
$$

$$
\begin{aligned}
& x^{*}=\frac{1}{2} \in \operatorname{int} \mathbf{K} \\
& p\left(x^{*}\right)=-0.25
\end{aligned}
$$

LP Relaxation

$$
\begin{array}{cl}
\mathbf{P}_{L}^{* i}=\underset{\gamma, \lambda_{\alpha \beta} \geq 0}{\operatorname{maximize}} & \gamma \\
\text { subject to } & p(x)-\gamma=\sum_{\substack{ \\
\forall \alpha, \beta \in \mathbb{N}^{m} \\
\sum_{j=1}^{m} \alpha_{j}+\beta_{j} \leq i}} \lambda_{1}^{\alpha_{1}}(x) \ldots g_{m}^{\alpha_{m}}(x)\left(1-g_{1}(x)\right)^{\beta_{1}} \ldots\left(1-g_{m}(x)\right)^{\beta_{m}} \\
&
\end{array}
$$

Slow monotone convergence to -0.25 :

$$
\mathbf{P}_{L}^{* 2}=-\frac{1}{3} \quad \mathbf{P}_{L}^{* 4}=-\frac{1}{3} \quad \mathbf{P}_{L}^{* 6}=-0.3 \quad \mathbf{P}_{L}^{* 10}=-0.27 \quad \mathbf{P}_{L}^{* 15}=-0.2695
$$

Example:	$\mathrm{P}^{*}=\underset{x \in \mathbb{R}^{n}}{\operatorname{minimize}}$	$p(x)=x-x^{2}$
subject to	$x \in \mathbf{K}=\left\{x \in \mathbb{R}^{n}: g_{1}(x)=x \geq 0, g_{2}(x)=1-x \geq 0\right\}$	
LP Representation		
$p(x)-\gamma^{*}=g_{1}(x) g_{2}(x) \longrightarrow$	$\longrightarrow-x^{2}=x(1-x)$	

Some of $g_{i}(x)^{\prime} s,\left(1-g_{i}(x)\right)^{\prime} s$ are zero. Hence, finite convergence can take place.

- Example 5.5. Jean Bernard Lasserre, "Moments, Positive Polynomials and Their Applications" Imperial College Press Optimization Series, V. 1, 2009.

Appendix III: Bounded Degree SOS Lagrangian Perspective

To gain more insight into how the BSOS optimization works, consider the following Nonlinear optimization and its dual:

$$
\begin{aligned}
\mathbf{P}^{*}= & \underset{x \in \mathbb{R}^{n}}{\operatorname{minimize}} \quad p(x) \\
& \text { subject to } \quad g_{1}^{\alpha_{1}}(x) \ldots g_{m}^{\alpha_{m}}(x)\left(1-g_{1}(x)\right)^{\beta_{1}} \ldots\left(1-g_{m}(x)\right)^{\beta_{m}} \geq 0, \quad \forall \sum_{j=1}^{m} \alpha_{j}+\beta_{j} \leq d
\end{aligned}
$$

Lagrange multipliers
Lagrange function $L(\lambda, x)=p(x)-\sum_{\sum_{j=1}^{m} \alpha_{j}+\beta_{j} \leq d} \lambda_{\alpha \beta}^{\alpha} g_{1}^{\alpha_{1}}(x) \ldots g_{m}^{\alpha_{m}}(x)\left(1-g_{1}(x)\right)^{\beta_{1}} \ldots\left(1-g_{m}(x)\right)^{\beta_{m}}$

To solve $\underset{x \in \mathbb{R}^{n}}{\operatorname{minimize}} L(x, \lambda)$, we can use SOS relaxation.


```
maximize }
\gamma,Q0\succcurlyeq0
subject to }L(x,\lambda)-\gamma\inSO\mp@subsup{S}{k}{
```

For $k=0$, this is results in "Krivine-Stengle's Positivity Certificate" based LP. (brutal simplification of $\underset{x \in \mathbb{R}^{n}}{\operatorname{minimize}} L(x, \lambda)$)

- For $k>0$, this is results in "BSOS" relaxation.
(tractable simplification of $\underset{x \in \mathbb{R}^{n}}{\operatorname{minimize}} L(x, \lambda)$)

```
maximize }
\gamma,Q}\mp@subsup{Q}{0}{}\succcurlyeq
subject to }L(x,\lambda)-\gamma\inSO\mp@subsup{S}{k}{
```

For $k=0$, this is results in "Krivine-Stengle's Positivity Certificate" based LP. (brutal simplification of $\underset{x \in \mathbb{R}^{n}}{\operatorname{minimize}} \quad L(x, \lambda)$)

- For $k>0$, this is results in "BSOS" relaxation.
(tractable simplification of $\underset{x \in \mathbb{R}^{n}}{\operatorname{minimize}} \quad L(x, \lambda)$)
> Hence, $\lambda_{\alpha \beta}$ in LP and BSOS are approximation of the Lagrange multipliers.

Based on KKT optimality condition:

$$
\lambda_{\alpha \beta} g_{1}^{\alpha_{1}}\left(x^{*}\right) \ldots g_{m}^{\alpha_{m}}\left(x^{*}\right)\left(1-g_{1}\left(x^{*}\right)\right)^{\beta_{1}} \ldots\left(1-g_{m}\left(x^{*}\right)\right)^{\beta_{m}}=0
$$

> Hence, when finite convergence in BSOS occurs :

$$
\begin{aligned}
\lambda_{\alpha \beta} g_{1}^{\alpha_{1}}\left(x^{*}\right) & \ldots g_{m}^{\alpha_{m}}\left(x^{*}\right)\left(1-g_{1}\left(x^{*}\right)\right)^{\beta_{1}} \ldots\left(1-g_{m}\left(x^{*}\right)\right)^{\beta_{m}}=0 \\
\quad & \square p\left(x^{*}\right)-\gamma^{*}=0
\end{aligned}
$$

```
maximize }
\gamma,Q}\mp@subsup{Q}{0}{}\succcurlyeq
```

```
subject to \(L(x, \lambda)-\gamma \in S O S_{k}\)
```

For $k=0$, this is results in "Krivine-Stengle's Positivity Certificate" based LP. (brutal simplification of $\underset{x \in \mathbb{R}^{n}}{\operatorname{minimize}} L(x, \lambda)$)

- For $k>0$, this is results in "BSOS" relaxation.
(tractable simplification of $\underset{x \in \mathbb{R}^{n}}{\operatorname{minimize}} \quad L(x, \lambda)$)
> Hence, $\lambda_{\alpha \beta}$ in LP and BSOS are approximation of the Lagrange multipliers.
Based on KKT optimality condition: $\quad \lambda_{\alpha \beta} g_{1}^{\alpha_{1}}\left(x^{*}\right) \ldots g_{m}^{\alpha_{m}}\left(x^{*}\right)\left(1-g_{1}\left(x^{*}\right)\right)^{\beta_{1}} \ldots\left(1-g_{m}\left(x^{*}\right)\right)^{\beta_{m}}=0$
$>$ Hence, when finite convergence in BSOS occurs: $\quad \lambda_{\alpha \beta} g_{1}^{\alpha_{1}}\left(x^{*}\right) \ldots g_{m}^{\alpha_{m}}\left(x^{*}\right)\left(1-g_{1}\left(x^{*}\right)\right)^{\beta_{1}} \ldots\left(1-g_{m}\left(x^{*}\right)\right)^{\beta_{m}}=0$

$$
\square p\left(x^{*}\right)-\gamma^{*}=0
$$

- Section 9.2: Jean B. Lasserre,"An Introduction to Polynomial and Semi-Algebraic Optimization", Cambridge University Press, 2015
- Jean B. Lasserre, Kim-Chuan Toh, Shouguang Yang, "A bounded degree SOS hierarchy for polynomial optimization", EURO Journal on Computational Optimization March 2017, Volume 5, Issue 1-2, pp 87-117

Appendix IV:
 Maximal Clique and Principal Submatrix

Maximal Clique and Principal Submatrix

- Matrix $X \in \mathcal{S}^{n}$ with sparsity pattern defined by $\operatorname{Graph} \mathcal{G}(\mathcal{V}, \mathcal{E})$
- \mathcal{C}_{k} is maximal clique of graph $\mathcal{G}(\mathcal{V}, \mathcal{E})$ with $\left|\mathcal{C}_{k}\right|$ nodes.
- Define matrix $E_{\mathcal{C}_{k}} \in \mathbb{R}^{\left|\mathcal{C}_{k}\right| \times n}$ as follows:

$$
E_{\mathcal{C}_{k}} \in \mathbb{R}^{\left|\mathcal{C}_{k}\right| \times n} \quad\left[E_{\mathcal{C}_{k}}\right]_{i j}= \begin{cases}1, & \text { if } \mathcal{C}_{k}(i)=j \\ 0, & \text { otherwise }\end{cases}
$$

Where $\mathcal{C}_{k}(i)$ is $i-t h$ node in \mathcal{C}_{k}

\mathcal{C}_{1}
Maximal clique
(1) (2) (3) nodes in the graph
$E_{\mathcal{C}_{1}} \in \mathbb{R}^{2 \times 3} \quad E_{\mathcal{C}_{1}}=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right] \quad$ (1) 2$]$ nodes in $\mathcal{C}_{1} \quad X_{\mathcal{C}_{1}}=E_{\mathcal{C}_{1}} X E_{\mathcal{C}_{1}}^{T}=\left[\begin{array}{cc}2 & 1 \\ 1 & 0.5\end{array}\right]$
$\left.E_{\mathcal{C}_{2}} \in \mathbb{R}^{2 \times 3} \quad E_{\mathcal{C}_{2}}=\left[\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right] \begin{array}{l}(2) \\ (3)\end{array}\right]$ nodes in $\mathcal{C}_{2} \quad X_{\mathcal{C}_{2}}=E_{\mathcal{C}_{2}} X E_{\mathcal{C}_{2}}^{T}=\left[\begin{array}{cc}0.5 & 1 \\ 1 & 2\end{array}\right]$

Extracts the Principal submatrix of X defined by the indices in cliques $\mathcal{C}_{1}, \mathcal{C}_{2}$
$X=E_{\mathcal{C}_{1}}^{T} X_{1} E_{\mathcal{C}_{1}}+E_{\mathcal{C}_{2}}^{T} X_{2} E_{\mathcal{C}_{2}} \longrightarrow\left[\begin{array}{ccc}2 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 2\end{array}\right]=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right]^{T}\left[\begin{array}{cc}2 & 1 \\ 1 & 0.5\end{array}\right]\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right]+\left[\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]^{T}\left[\begin{array}{cc}0.5 & 1 \\ 1 & 2\end{array}\right]\left[\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$

MIT OpenCourseWare
https://ocw.mit.edu/
16.S498 Risk Aware and Robust Nonlinear Planning

Fall 2019

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

[^0]: https://github.com/jasour/rarnop19/blob/master/Lecture6 modified-SOS/SDSOS-DSOS/Example SDSOS compare Uncons.m

[^1]: https://github.com/jasour/rarnop19/blob/master/Lecture6 modified-SOS/SDSOS-DSOS/Example SDSOS compare Uncons.m
 https://github.com/iasour/rarnop19/blob/master/Lecture6 modified-SOS/Sparse SOS/Example SSOS compare Uncons.m

