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Topics: 

 Introduction to Planning Under Uncertainty 

 Approaches and Challenges 

 Technical Idea and Mathematical Tools 

 Applications 

MIT 16.S498: Risk Aware and Robust Nonlinear Planning  Fall 2019 2 



                                                                        

Introduction to Planning Under Uncertainty 
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NASA Google

Planning For Autonomous Systems 
© SpaceX. All rights reserved. This content is excluded from our Creative Commons license.

© Boston Dynamics. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/ For more information, see https://ocw.mit.edu/help/faq-fair-use/ 

Source: public domain/NASA 
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Challenge: Uncertainty 
 Planning under Uncertainty: Planning in presence of imperfect or unknown information. 

© Boston Dynamics. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/ 

 Due to uncertainty, it is impossible to exactly describe 
the “current situation” or “future behavior“ of the 
systems/environment. 
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Challenge: Uncertainty 
 Planning under Uncertainty: Planning in presence of imperfect or unknown information. 
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Goal State 

Initial state 

Planned trajectory from 
initial state to the goal state. 

Actual trajectory due to 
uncertainties. 

https://ocw.mit.edu/help/faq-fair-use/
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© Boston Dynamics. All rights reserved. This content is excluded from our Creative Commons 
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Source of Uncertainty 
1. Environment: 
i) Sensor Noise 
e.g., localizing obstacles or the robot 
ii) Control Disturbance 
e.g., wind disturbances 
iii) Unmodeled Environment 
e.g., rough train 
iii) Intention 
e.g., future behavior of other agents (dynamic environment) 

2. System: 
i) Imperfect system model 
e.g., unknow parameters of system model 

unmodeled dynamics (linear model for nonlinear systems) 
MIT 16.S498: Risk Aware and Robust Nonlinear Planning  Fall 2019 7 

https://ocw.mit.edu/help/faq-fair-use/


  

How to Deal with Uncertainty ? 
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How to Deal with Uncertainty ? 

 Robust Approaches 

 Risk Bounded Approaches 
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Robust Approaches: 

Plan should be valid for all possible realization of uncertainty 

Look at the Uncertainty Set (Range of Uncertainty ) 
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Motion Planning 
Goal 

Obstacle (turtlebot) 

Start 
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Motion Planning 

Obstacle 

Goal 

Start 
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Motion Planning Under Uncertainty: 

Goal 

Moving Obstacle 

Start 
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Motion Planning Under Uncertainty: 

Goal 

Moving Obstacle 

Start 
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Motion Planning Under Uncertainty: 

Goal 

Moving Obstacle 

Start 
MIT 16.S498: Risk Aware and Robust Nonlinear Planning  Fall 2019 15 



 

                                                                                   

Motion Planning Under Uncertainty: 

Goal 

Moving Obstacle 

Start 

There is no path from start to goal region 
that is valid for all possible realization of uncertainty 

Robust approach 

Conservative solution 
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Motion Planning Under Uncertainty: 

Goal 

Start 

Takes 10 days 

There is no path from start to goal region 
that is valid for all possible realization of uncertainty 

Robust approach 

Conservative solution 
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Motion Planning Under Uncertainty: 

Goal 

Start 

Risk Bounded Approach: 
 Look at “frequency of realization” of Uncertainty 
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Motion Planning Under Uncertainty: 

Goal 

Start 

Risk Bounded Approach: 
 Look at “frequency of realization” of Uncertainty 

MIT 16.S498: Risk Aware and Robust Nonlinear Planning  Fall 2019 19 



 

 
 

 

                                                                        

Motion Planning Under Uncertainty: 

Goal 

Start 

Risk Bounded Approach: 
 Look at “frequency of realization” of Uncertainty 

Probability of Collision ≤ Δ ≈ 0 
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Robust Approaches 

Plan should be valid for all possible realization of uncertainty 

Look at the Uncertainty Set (Range of Uncertainty ) 

Risk Bounded Approaches 
Plan should be valid with high probability. 

Look at “frequency of realization” of Uncertainty (Probability Distribution) 
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VS 

Risk Bounded Robust 

Probability  Possibility 

MIT 16.S498: Risk Aware and Robust Nonlinear Planning  Fall 2019 22 



0 1 
Robust 
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0 1 
Risk Bounded 
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Topics: 

 Introduction to Planning Under Uncertainty 

 Approaches and Challenges 

 Technical Idea and Mathematical Tools 

 Applications 
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Optimization Based Planning 
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Optimization Based Planning 

Objective function: cost of execution 

Constraints: safety constraints, resource constraints, dynamical constraints, temporal 
constraints 
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Example: Trajectory Planning 

Dynamical Systems 
𝑥𝑥𝑘𝑘+1 = 𝑓𝑓(𝑥𝑥𝑘𝑘 , 𝑢𝑢𝑘𝑘)

Continuous State space model 
states inputs 

(𝑥𝑥1, 𝑢𝑢1) 

𝑥𝑥5 

(𝑥𝑥2, 𝑢𝑢2) 

(𝑥𝑥3, 𝑢𝑢3) (𝑥𝑥4, 𝑢𝑢4) 

(𝑥𝑥1, 𝑢𝑢1) 

(𝑥𝑥2, 𝑢𝑢2) 

𝑥𝑥: position and velocity 
𝑢𝑢: Steering angle, Torque 

(𝑥𝑥1, 𝑥𝑥2) 

𝑢𝑢2 
𝑢𝑢1 

𝑥𝑥: joint angles and angular velocities 
𝑢𝑢: Torque motor 

𝑥𝑥: joint angles and angular velocities 
𝑢𝑢: Torque motor 
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Example: Trajectory Planning 
Find a sequence of control inputs [𝑢𝑢0, … , 𝑢𝑢𝑁𝑁−1] to derive the robot to the goal point. 

Control cost 

Boundary conditions 

Dynamical constraints 

Safety constraints 

Resource constraints 

Obstacle 

∗𝑥𝑥0 

       

  

∗𝑥𝑥𝑁𝑁 

29 
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 Optimization Based Planning 
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Mathematical Formulation 

30 



  

   
     

Optimization Based Planning Under Uncertainty 
 Robust Optimization 
 Risk Aware Optimization, i.e., Chance optimization and Chance Constrained Optimization 
 Distributionally Robust Optimization 
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  Robust Optimization Based Planning 
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Uncertainty Set Uncertainty 

Mathematical Formulation 

32 



Example: Robust Trajectory Optimization 
Uncertain Dynamical Systems and Uncertain Safety Constraints 

𝑥𝑥𝑘𝑘+1 

𝜔𝜔𝑘𝑘 ∈ Ω 

Uncertainty Set 

inputs states 
Continuous State space model 𝑥𝑥𝑘𝑘+1 = 𝑓𝑓(𝑥𝑥𝑘𝑘 , 𝑢𝑢𝑘𝑘 , 𝜔𝜔𝑘𝑘) 

Uncertainty, 𝜔𝜔𝑘𝑘 ∈ Ω 

Obstacle(𝝎𝝎𝒐𝒐𝒐𝒐𝒐𝒐)𝑔𝑔 𝑥𝑥, 𝜔𝜔𝑜𝑜𝑜𝑜𝑜𝑜 ≥ 0 

Uncertain Obstacle 

𝜔𝜔𝑜𝑜𝑜𝑜𝑜𝑜 
2 − 𝑥𝑥1 

2 − 𝑥𝑥2 
2 ≥ 0 𝜔𝜔𝑜𝑜𝑜𝑜𝑜𝑜2 

𝜔𝜔𝑜𝑜𝑜𝑜𝑜𝑜1 

𝜔𝜔𝑜𝑜𝑜𝑜𝑜𝑜 ∈ [𝜔𝜔𝑜𝑜𝑜𝑜𝑜𝑜1 
, 𝜔𝜔𝑜𝑜𝑜𝑜𝑜𝑜2 

] 

Example: Uncertain circular obstacle 

Uncertainty parameters of the obstacle 
𝜔𝜔𝑜𝑜𝑜𝑜𝑜𝑜 ∈ Ωobs 

𝒙𝒙𝟐𝟐 

𝒙𝒙𝟏𝟏 

  

  
 

  

 
 

 

 

𝑥𝑥0 
∗ 

Family of trajectories 
Due to uncertainty 

= 𝑓𝑓(𝑥𝑥𝑘𝑘 , 𝑢𝑢𝑘𝑘 , 𝜔𝜔𝑘𝑘) 
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Example: Robust Trajectory Optimization 
Find a sequence of control inputs [𝑢𝑢0, … , 𝑢𝑢𝑁𝑁−1] to derive the robot to the goal region in 
the presence of uncertainties. 

𝑥𝑥0 
∗ 

𝑥𝑥𝑁𝑁 
∗ 

Family of trajectories 
Due to uncertainty 

Obstacle(𝝎𝝎𝒐𝒐𝒐𝒐𝒐𝒐) 
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  Robust Optimization Based Planning 
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Uncertainty Set Uncertainty 

Mathematical Formulation 
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3. Risk Aware Optimization Based Planning 

MIT 16.S498: Risk Aware and Robust Nonlinear Planning  Fall 2019 

Chance Constrained Optimization 

Chance Optimization 

Acceptable risk level 

36 



  

  

   

 
 

 

 

  Example: Chance Constrained Trajectory Optimization 
Probabilistic Dynamical Systems and Probabilistic Safety Constraints 

MIT 16.S498: Risk Aware and Robust Nonlinear Planning  Fall 2019 

inputs states 
Continuous State space model 𝑥𝑥𝑘𝑘+1 = 𝑓𝑓(𝑥𝑥𝑘𝑘 , 𝑢𝑢𝑘𝑘 , 𝜔𝜔𝑘𝑘) 

Family of trajectories 
Due to uncertainty 

𝑥𝑥𝑘𝑘+1 = 𝑓𝑓(𝑥𝑥𝑘𝑘 , 𝑢𝑢𝑘𝑘 , 𝜔𝜔𝑘𝑘) 

𝜔𝜔𝑘𝑘~pr(𝜔𝜔𝑘𝑘) 

Uncertainty ~ pr(𝜔𝜔𝑘𝑘):probability distribution 

Obstacle(𝝎𝝎𝒐𝒐𝒐𝒐𝒐𝒐)𝑝𝑝 𝑥𝑥, 𝜔𝜔𝑜𝑜𝑜𝑜𝑜𝑜 ≥ 0 

Probabilistic Obstacle 

𝜔𝜔𝑜𝑜𝑜𝑜𝑜𝑜 
2 − 𝑥𝑥1 

2 − 𝑥𝑥2 
2 ≥ 0 𝜔𝜔𝑜𝑜𝑜𝑜𝑜𝑜 

Example: probabilistic circular obstacle 

𝜔𝜔𝑜𝑜𝑜𝑜𝑜𝑜~pr(𝜔𝜔𝑜𝑜𝑜𝑜𝑜𝑜) 

𝜔𝜔𝑜𝑜𝑜𝑜𝑜𝑜~pr(𝜔𝜔𝑜𝑜𝑜𝑜𝑜𝑜) 

37 



       
   

  

  

 
 

Example: Chance Constrained Trajectory Optimization 
Find a sequence of control inputs [𝑢𝑢0, … , 𝑢𝑢𝑁𝑁−1] to derive the robot to the goal region in 
the presence of probabilistic uncertainties. 𝑥𝑥𝑁𝑁 

∗ 

Family of trajectories 
Due to uncertainty 

Obstacle(𝝎𝝎𝒐𝒐𝒐𝒐𝒐𝒐) 

• 𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝒐𝒐𝒐𝒐 =Remaining Safe 

38 
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Example: Chance Trajectory Optimization 

𝑥𝑥𝑁𝑁 
∗ 

Family of trajectories 
Due to uncertainty 

Obstacle(𝝎𝝎𝒐𝒐𝒐𝒐𝒐𝒐) 

• 𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝒐𝒐𝒐𝒐 =Remaining safe and reaching the goal 

Find a sequence of control inputs [𝑢𝑢0, … , 𝑢𝑢𝑁𝑁−1] to derive the robot to the goal region in 
the presence of probabilistic uncertainties. 

39 
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• Assets with uncertain rate of return 𝜔𝜔𝑖𝑖~𝑝𝑝𝑝𝑝𝑖𝑖(𝜔𝜔), 𝑖𝑖 = 1, … , 4 

• 𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝒐𝒐𝒐𝒐 = Achive a return higher than "𝑝𝑝∗" 
= {𝜔𝜔1𝑥𝑥1 + 𝜔𝜔2𝑥𝑥2 + 𝜔𝜔3𝑥𝑥3 + 𝜔𝜔4𝑥𝑥4 ≥ 𝑝𝑝∗} 

• 𝑥𝑥𝑖𝑖 invested money in asset 𝑖𝑖 

Chance Optimization 

𝒙𝒙𝟏𝟏 𝒙𝒙𝟐𝟐 𝒙𝒙𝟑𝟑 𝒙𝒙𝟒𝟒 

𝝎𝝎𝟏𝟏 𝝎𝝎𝟐𝟐 𝝎𝝎𝟑𝟑 𝝎𝝎𝟒𝟒 

𝝎𝝎𝟏𝟏𝒙𝒙𝟏𝟏 + 𝝎𝝎𝟐𝟐𝒙𝒙𝟐𝟐 + 𝝎𝝎𝟑𝟑𝒙𝒙𝟑𝟑 + 𝝎𝝎𝟒𝟒𝒙𝒙𝟒𝟒 

Example: Portfolio Selection Problem 

Chance Constrained Optimization 
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 3. Risk Aware Optimization Based Planning 

Mathematical Formulation 
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Chance Constrained Optimization 

Chance Optimization 

41 



  

 

  

  

          

4. Distributionally Robust Chance Constraint Optimization 

• Probability distribution with uncertain parameters 

e.g., Gaussian probability distribution with uncertain mean and deviation 
− 𝑥𝑥−𝑎𝑎1 

2
1 22𝑎𝑎2𝑒𝑒 , 𝑎𝑎1 ∈ 𝑙𝑙1, 𝑢𝑢2 , 𝑎𝑎2 ∈ [𝑙𝑙2, 𝑢𝑢2]

2𝜋𝜋 𝑎𝑎2 

Family of probability distributions 

MIT 16.S498: Risk Aware and Robust Nonlinear Planning  Fall 2019 

Chance constraints should be satisfied for the family of the probability distributions of the uncertainties 
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4. Distributionally Robust Chance Constrained Optimization 
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Mathematical Formulation 

Chance constraints should be satisfied for the family of the probability distributions of the uncertainties 

43 



                                                                        

 
 

 

 
 

 

Nonlinear Optimization 

Robust Optimization 

Chance Optimization 

Chance Constrained 
Optimization 

Distributionally Robust 
Chance Constrained 
Optimization 
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Purpose of this course: 

 State-of-the-art techniques to efficiently solve nonlinear, robust, and risk 
aware optimization problems. 

 Application in analyze and control of uncertain nonlinear dynamical 
systems. 
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Assumption 
Objective function and constraints of optimization problems, 𝑝𝑝, 𝑔𝑔𝑖𝑖 , are polynomial 
functions. 

• Polynomial in “𝑥𝑥” is a finite linear combination of powers of “𝑥𝑥” 
𝑝𝑝 𝑥𝑥1 = 1 + 0.5𝑥𝑥12 + 0.75𝑥𝑥13 𝑝𝑝 𝑥𝑥1, 𝑥𝑥2 = 0.56 + 0.5𝑥𝑥1 + 2𝑥𝑥22 + 0.75𝑥𝑥13𝑥𝑥22 

Polynomial of degree 3 Polynomial of degree 5 

MIT 16.S498: Risk Aware and Robust Nonlinear Planning  Fall 2019 

• Stone-Weierstrass Theorem: Every continuous function defined on a closed set can 
be uniformly approximated as closely as desired by a polynomial function. 

Polynomial: 
coefficients 

46 



  

Example 
𝑥𝑥13 𝑘𝑘 

𝑥𝑥1 𝑘𝑘 + 1 = 𝑥𝑥1 𝑘𝑘 + 0.2(𝑥𝑥1 𝑘𝑘 − − 𝑥𝑥2 𝑘𝑘 + 0.875) • Polynomial dynamical system 3 
𝑥𝑥2 𝑘𝑘 + 1 = 𝑥𝑥2 𝑘𝑘 + 0.016(𝑥𝑥1 𝑘𝑘 − 0.8𝑥𝑥2 + 0.7 ) 

• Polynomial constraint 

obstacle 

0.42𝑥𝑥15− 1.2𝑥𝑥14𝑥𝑥2− 0.48𝑥𝑥14+ 0.3𝑥𝑥13𝑥𝑥22− 0.57𝑥𝑥13𝑥𝑥2+ 0.61𝑥𝑥13− 0.66𝑥𝑥12𝑥𝑥23+ 0.17𝑥𝑥12𝑥𝑥22+ 1.9𝑥𝑥12𝑥𝑥2+ 0.066𝑥𝑥12+ 0.69𝑥𝑥1𝑥𝑥24− 
0.14𝑥𝑥1𝑥𝑥23− 0.85𝑥𝑥1𝑥𝑥22+ 0.6𝑥𝑥1𝑥𝑥2− 0.22𝑥𝑥1+ 0.011𝑥𝑥25− 0.068𝑥𝑥24− 0.07𝑥𝑥23− 0.42𝑥𝑥22− 0.084𝑥𝑥2+ 0.84 ≥ 0.8 
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 Optimization Based Planning Under Uncertainty 
 Challenges 
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1. Challenge: Nonconvexities 

 Nonlinear, robust, and risk aware optimization problems are in general 

MIT 16.S498: Risk Aware and Robust Nonlinear Planning  Fall 2019 

Multiple local minima 

Nonconvex Optimization 

nonconvex problems. 

49 



  

 

 

Nonconvex Optimization Convex Optimization 
 Unique minimum: global/local  Multiple local minima 
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 Sensitive to initial point 



  

 2. Challenge: Chance and Robust Constraints Evaluation 

Chance Constraint 

Robust Constraint 
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Chance Constraint Evaluation 

Chance Constraint: 

 Multivariate integral 
 In general, It does not have any analytical solution 

 Sampling based methods (e.g., Monte-Carlo methods) DO NOT provide any guarantee. 

Probability ≥ 1 − Δ Replace Estimation of Probability ≥ 1 − Δ 
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Robust Constraint Evaluation 

Robust Constraint 

• This results in Infinite number of constraints 𝑔𝑔 𝑥𝑥, 𝜔𝜔𝑖𝑖 ≥ 0, 𝜔𝜔𝑖𝑖 ∈ Ω 
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3. Challenge: Uncertainty Propagation 

Continuous State space model 

𝑥𝑥𝑘𝑘+1 = 𝑓𝑓(𝑥𝑥𝑘𝑘 , 𝑢𝑢𝑘𝑘 , 𝜔𝜔𝑘𝑘) 

uncertainties 𝑥𝑥0~𝑝𝑝𝑝𝑝 𝑥𝑥 , 
𝜔𝜔𝑘𝑘~𝑝𝑝𝑝𝑝(𝜔𝜔) 
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Uncertainty propagation 
Example: 

𝑥𝑥𝑘𝑘+1 = 𝑥𝑥𝑘𝑘 + 𝑣𝑣𝑘𝑘 cos 𝜃𝜃𝑘𝑘 𝒐𝒐𝒔𝒔𝒔𝒔𝒔𝒔𝑺𝑺𝒐𝒐: (𝑥𝑥, 𝑦𝑦) position 
𝑺𝑺𝒐𝒐𝒄𝒄𝒔𝒔𝒄𝒄𝒐𝒐𝒄𝒄 𝒊𝒊𝒄𝒄𝒊𝒊𝑺𝑺𝒔𝒔𝒐𝒐: (𝜃𝜃, 𝑣𝑣) yaw angle and velocity 𝑦𝑦𝑘𝑘+1 = 𝑦𝑦𝑘𝑘 + 𝑣𝑣𝑘𝑘sin(𝜃𝜃𝑘𝑘) 

Planned Control Inputs: 
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𝒐𝒐𝒔𝒔𝒔𝒔𝒔𝒔𝑺𝑺𝒐𝒐: (𝑥𝑥, 𝑦𝑦) position 
𝑥𝑥𝑘𝑘+1 = 𝑥𝑥𝑘𝑘 + (𝑣𝑣𝑘𝑘+𝜔𝜔1𝑘𝑘) cos 𝜃𝜃𝑘𝑘 + 𝜔𝜔2𝑘𝑘 + 𝜔𝜔3𝑘𝑘 𝑺𝑺𝒐𝒐𝒄𝒄𝒔𝒔𝒄𝒄𝒐𝒐𝒄𝒄 𝒊𝒊𝒄𝒄𝒊𝒊𝑺𝑺𝒔𝒔𝒐𝒐: (𝜃𝜃, 𝑣𝑣) yaw angle and velocity 

𝑺𝑺𝒄𝒄𝑺𝑺𝑺𝑺𝒄𝒄𝒔𝒔𝒔𝒔𝒊𝒊𝒄𝒄𝒔𝒔𝒖𝒖: (𝜔𝜔1, 𝜔𝜔2, 𝜔𝜔3, 𝜔𝜔4)𝑦𝑦𝑘𝑘+1 = 𝑦𝑦𝑘𝑘 + (𝑣𝑣𝑘𝑘+𝜔𝜔1𝑘𝑘)sin(𝜃𝜃𝑘𝑘 + 𝜔𝜔2𝑘𝑘) +𝜔𝜔4𝑘𝑘 

Control Noise Wind Disturbance 

Planned Control Inputs: 

𝑾𝑾𝒊𝒊𝒄𝒄𝑾𝑾 𝑾𝑾𝒊𝒊𝒐𝒐𝒔𝒔𝑺𝑺𝒄𝒄𝒐𝒐𝒔𝒔𝒄𝒄𝑺𝑺𝑺𝑺 
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𝑥𝑥𝑘𝑘+1 = 𝑥𝑥𝑘𝑘 + (𝑣𝑣𝑘𝑘+𝜔𝜔1𝑘𝑘) cos 𝜃𝜃𝑘𝑘 + 𝜔𝜔2𝑘𝑘 + 𝜔𝜔3𝑘𝑘 
𝑦𝑦𝑘𝑘+1 = 𝑦𝑦𝑘𝑘 + (𝑣𝑣𝑘𝑘+𝜔𝜔1𝑘𝑘)sin(𝜃𝜃𝑘𝑘 + 𝜔𝜔2𝑘𝑘) +𝜔𝜔4𝑘𝑘 

𝜔𝜔1~𝑈𝑈𝑈𝑈𝑖𝑖𝑓𝑓𝑈𝑈𝑝𝑝𝑈𝑈[−0.1,0.1] 
𝜔𝜔3, 𝜔𝜔4~𝐵𝐵𝑒𝑒𝐵𝐵𝑎𝑎[−0.1,0.1] 𝑃𝑃𝑝𝑝𝑈𝑈𝑃𝑃𝑎𝑎𝑃𝑃𝑖𝑖𝑙𝑙𝑖𝑖𝐵𝐵𝑦𝑦 𝑑𝑑𝑖𝑖𝑑𝑑𝐵𝐵𝑝𝑝𝑖𝑖𝑃𝑃𝑢𝑢𝐵𝐵𝑖𝑖𝑈𝑈𝑈𝑈𝑑𝑑: 

𝜔𝜔2~𝑈𝑈𝑈𝑈𝑖𝑖𝑓𝑓𝑈𝑈𝑝𝑝𝑈𝑈[−1,1] −0.1 0.1 

Planned Control Inputs: 
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𝑘𝑘 = 5 

𝑘𝑘 = 1 

𝑘𝑘 = 31 
𝑘𝑘 = 21 

𝑥𝑥𝑘𝑘~𝑝𝑝(𝑥𝑥𝑘𝑘 ) 

Probability distributions of states of the system 

𝑘𝑘 = 11 
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Probability distributions of states of the system 

 For safety verification, we need to obtain probability distributions of the states of the system. 

 For this, we need to propagate initial probability distribution of the states through nonlinear dynamics 
of the system. 
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Optimization Based Planning 
 Challenges: 

1) Nonconvexities 
2) Evaluation of Chance constraint and Robust Constraints 
3) Uncertainty Propagation Through Nonlinear Systems 
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Topics: 

 Introduction to Planning Under Uncertainty 

 Approaches and Challenges 

 Technical Idea and Mathematical Tools 

 Applications 
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Optimization Based Planning Under Uncertainty 
 Main Idea 
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Main Idea: Convexification 

 To efficiently solve the nonlinear, robust, and risk aware optimization problems, 
we look for convex relaxation of the optimization problems. 

Nonconvex Optimization Convex Optimization 
Multiple local optima Unique optimum: global/local 

 Convex optimization in form of Semidefinite Program(SDP). 

nonlinear, robust, and risk aware optimization problems 

Semidefinite Program 
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Example Convex Optimization 

Unique optimum: global/local 
Convex Optimization 

Linear Program: 

linear constraints 

linear function 

Example 
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Example Convex Optimization 

Unique optimum: global/local 
Convex Optimization 

Linear Program: 

linear constraints 

linear function 

Example 
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Semidefinite Program: 

Example 

linear constraints 

linear function 

linear matrix inequalities 
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Main Idea: Convexification 

 To efficiently solve the nonlinear, robust, and risk aware optimization problems, 
we look for convex relaxation of the optimization problems. 

 Convex optimization in form of Semidefinite Program(SDP). 

nonlinear, robust, and risk aware optimization problems 

Semidefinite Program 
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   Optimization Based Planning Under Uncertainty 
 Mathematical Tools 
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    nonlinear, robust, and risk aware optimization problems 

Semidefinite Program 

i) Theory of Nonnegative Polynomials 
ii) Theory of Moments 

Tools: 

Convexification: 
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   Nonnegative Polynomial Based SDP relaxation 

Nonnegative Polynomials 

𝑥𝑥 0 
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Nonnegative Polynomial Based SDP relaxation 

Nonlinear Optimization 

SOS based SDP Relaxation SDP in terms of coefficients of P 𝑥𝑥1, 𝑥𝑥2, … . , 𝑥𝑥𝑛𝑛 ≥ 0 

Main Idea: 
Instead of looking for decision parameters (𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛), we look for a nonnegative polynomial in 
terms of decision parameters, i.e. P 𝑥𝑥1, 𝑥𝑥2, … . , 𝑥𝑥𝑛𝑛 ≥ 0 
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Nonnegative Polynomial Based SDP relaxation 

Nonlinear Optimization 

SOS based SDP Relaxation SDP in terms of coefficients of P 𝑥𝑥1, 𝑥𝑥2, … . , 𝑥𝑥𝑛𝑛 ≥ 0 

Main Idea: 
Instead of looking for decision parameters (𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛), we look for a nonnegative polynomial in 

• We translate objective function and constraints of the original optimization problem in terms of 

terms of decision parameters, i.e. P 𝑥𝑥1, 𝑥𝑥2, … . , 𝑥𝑥𝑛𝑛 ≥ 0 

coefficients of nonnegative polynomial P 𝑥𝑥1, 𝑥𝑥2, … . , 𝑥𝑥𝑛𝑛 . 
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Nonnegative Polynomial Based SDP relaxation 

Nonlinear Optimization 

SOS based SDP Relaxation SDP in terms of coefficients of P 𝑥𝑥1, 𝑥𝑥2, … . , 𝑥𝑥𝑛𝑛 ≥ 0 

terms of decision parameters, i.e. P 𝑥𝑥1, 𝑥𝑥2, … . , 𝑥𝑥𝑛𝑛 ≥ 0 

Main Idea: 
Instead of looking for decision parameters (𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛), we look for a nonnegative polynomial in 

• We translate objective function and constraints of the original optimization problem in terms of 

• We use nonnegativity condition for polynomial P 𝑥𝑥1, 𝑥𝑥2, … . , 𝑥𝑥𝑛𝑛 . (i.e., sum of squares (SOS)condition) 

coefficients of nonnegative polynomial P 𝑥𝑥1, 𝑥𝑥2, … . , 𝑥𝑥𝑛𝑛 . 
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Nonnegative Polynomial Based SDP relaxation 

Nonlinear Optimization 

SOS based SDP Relaxation SDP in terms of coefficients of P 𝑥𝑥1, 𝑥𝑥2, … . , 𝑥𝑥𝑛𝑛 ≥ 0 

terms of decision parameters, i.e. P 𝑥𝑥1, 𝑥𝑥2, … . , 𝑥𝑥𝑛𝑛 ≥ 0 

Main Idea: 
Instead of looking for decision parameters (𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛), we look for a nonnegative polynomial in 

• We translate objective function and constraints of the original optimization problem in terms of 

• We use nonnegativity condition for polynomial P 𝑥𝑥1, 𝑥𝑥2, … . , 𝑥𝑥𝑛𝑛 . (i.e., sum of squares (SOS)condition) 

• This results in an SDP in terms of coefficients of P 𝑥𝑥1, 𝑥𝑥2, … . , 𝑥𝑥𝑛𝑛 . (SOS based SDP) 

coefficients of nonnegative polynomial P 𝑥𝑥1, 𝑥𝑥2, … . , 𝑥𝑥𝑛𝑛 . 
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 Moment Based SDP Relaxation 

Nonlinear Optimization 

Main Idea: 
• We treat decision variables 𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛 as random variable. 

• Instead of looking for decision parameters (𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛), we look for its probability distribution, i.e. 
pr 𝑥𝑥1, 𝑥𝑥2, … . , 𝑥𝑥𝑛𝑛 

• Later, we extract the deterministic solution 𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛 . 
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Moment Based SDP Relaxation 

Nonlinear Optimization 

Main Idea: 
• We treat decision variables 𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛 as random variable. 

• Instead of looking for decision parameters (𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛), we look for its probability distribution, i.e. 
pr 𝑥𝑥1, 𝑥𝑥2, … . , 𝑥𝑥𝑛𝑛 

• Later, we extract the deterministic solution 𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛 . 

MIT 16.S498: Risk Aware and Robust Nonlinear Planning  Fall 2019 

To obtain an SDP formulation, instead of looking for probability distribution pr 𝑥𝑥1, 𝑥𝑥2, … . , 𝑥𝑥𝑛𝑛 , we 
look for its statistics called moments. 
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 Moments of probability distributions 

moment of order 𝛼𝛼 

• 1-st moment (mean): 

• 2-nd moment: 
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 Moments of probability distributions 

moment of order 𝛼𝛼 

• 1-st moment (mean): 

• 2-nd moment: 
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  Moment Based SDP Relaxation 

Nonlinear Optimization 

Moment based SDP Relaxation SDP in terms of moments of pr 𝑥𝑥1, 𝑥𝑥2, … . , 𝑥𝑥𝑛𝑛 
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Moment Based SDP Relaxation 

Nonlinear Optimization 

Moment based SDP Relaxation SDP in terms of moments of pr 𝑥𝑥1, 𝑥𝑥2, … . , 𝑥𝑥𝑛𝑛 

moments of probability distribution pr 𝑥𝑥1, 𝑥𝑥2, … . , 𝑥𝑥𝑛𝑛 . 
• We translate objective function and constraints of the original optimization problem in terms of the 

• This results in an SDP in terms of the moment. (Moment based SDP) 
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    We will apply these techniques to the Uncertain optimization problems 
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Nonlinear Optimization SOS / Moment Based SDP Relaxation 

Robust Optimization SOS / Moment Based SDP Relaxation 

Chance Optimization 
SOS / Moment Based SDP Relaxation 

Chance Constrained 
Optimization 

SOS / Moment Based SDP Relaxation 

Distributionally Robust 
Chance Constrained 
Optimization 

SOS / Moment Based SDP Relaxation 
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1) Optimization Based Planning under Uncertainty 
i) Nonlinear Optimization 
ii) Robust Optimization 
iii) Chance Optimization/Chance Constrained Optimization 
iv) Distributionally Robust Chance Constrained Optimization 

2) Challenges 
i) Nonconvexities 
ii) Evaluation of Chance constraint and Robust Constraints 
iii) Uncertainty Propagation Through Nonlinear Systems 

3) Main Idea: 
Replace the nonconvex optimization with Convex optimization in the form of 
Semidefinite Program (SDP). 

4) We solve Moment/SOS based SDP 
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Topics: 

 Introduction to Planning Under Uncertainty 

 Approaches and Challenges 

 Technical Idea and Mathematical Tools 

 Applications 
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 Optimization Based Planning Under Uncertainty 
 Applications 
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Optimization Based Planning Under Uncertainty 

1. Safety Verification for Probabilistic Systems 
2. Risk Aware Control and Planning 
3. Dynamical system with Gaussian Uncertainties 
4. Occupation Measure Based Control and Analyze 
5. Sum-of-Squares Based Robust Control and Analyze of Uncertain 

Systems 

MIT 16.S498: Risk Aware and Robust Nonlinear Planning  Fall 2019 85 



  

1. Safety Verification 
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1.1 Risk Estimation 
• Nonconvex obstacle with probabilistic uncertainties • Probabilistic location of the robot 

(uncertain size, location, geometry) 

Uncertain 
Obstacle 

 Risk: probability of collision with obstacle 

© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more 
information, see https://ocw.mit.edu/help/faq-fair-use/ 

Find: Lower/Upper bounds of the risk • Particular case of “chance optimization” 

• SOS/Moment based SDP formulation 
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1.2 Risk Estimation and Uncertainty Propagation 

• Initial Probabilistic location of the robot • Nonconvex obstacle with probabilistic uncertainties 
(uncertain size, location, geometry) 

Uncertain 
Obstacle 

 Risk: probability of collision with obstacle 

• Candidate plan 
e.g., nominal path and control input (𝑥𝑥𝑘𝑘 

∗ , 𝑢𝑢𝑘𝑘 
∗ ) 𝑘𝑘 = [0, … 𝑁𝑁 − 1] 

nominal path 
© source unknown. All rights reserved. This content is 
excluded from our Creative Commons license. For more 
information, see https://ocw.mit.edu/help/faq-fair-use/ 

MIT 16.S498: Risk Aware and Robust Nonlinear Planning  Fall 2019 

Find: Lower/Upper bounds of the risk at time 𝑘𝑘 = [0, … 𝑁𝑁 − 1] for given (𝑥𝑥𝑘𝑘 
∗ , 𝑢𝑢𝑘𝑘 

∗ ) 

• We need to find 

• Solve Risk estimation problem at each time 𝑘𝑘 

. We find moment sequence of                using the uncertain nonlinear dynamics 
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1.3 Uncertainty Set Construction 

• Initial Probabilistic location of the robot • Nonconvex obstacle with probabilistic uncertainties 
• Candidate plan 
e.g., nominal path and control input (𝑥𝑥𝑘𝑘∗ , 𝑢𝑢𝑘𝑘∗ ) 𝑘𝑘 = [0, … 𝑁𝑁 − 1] 

(uncertain size, location, geometry) 

Uncertain 
Obstacle 

© source unknown. All rights reserved. This content is 
excluded from our Creative Commons license. For more 
information, see https://ocw.mit.edu/help/faq-fair-use/ 

 Risk: probability of collision with obstacle 

MIT 16.S498: Risk Aware and Robust Nonlinear Planning  Fall 2019 

• Instead of looking for , we find the state uncertainty set 

• Application: 
“Robust safety validation” 
“Reachable set Construction” for uncertain nonlinear systems 

Uncertainty set at time 𝑘𝑘 
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2. Risk Aware Control and Planning 
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    2.1 Risk Bounded Trajectory Planning in Nonconvex Uncertain Environments 

Goal: Risk Bounded Trajectory Planning in presence of perception uncertainties 

Perception Uncertainties: 
Probabilistic uncertainties in location, size, and geometry of obstacles 

Risk: Probability of collision of robot with obstacles in presence of probabilistic uncertainties. 

Uncertain 
Obstacle 

© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/ 

Risk≤ 0.1 

Risk> 𝟎𝟎. 𝟗𝟗 
𝟎𝟎. 𝟕𝟕 

𝟎𝟎. 𝟓𝟓 

𝟎𝟎. 𝟑𝟑 

𝟎𝟎. 𝟏𝟏 

𝟎𝟎. 𝟗𝟗 

Risk≤ 0.3 

Risk≤ 0.7 

Risk≤ 0.9 

Risk≤ 0.5 

Ordinary Map 
Free Region 

Obstacle 

MIT 16.S498: Risk Aware and Robust Nonlinear Planning  Fall 2019 
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Risk Contours Map 
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Obstacle

2.1 Risk Bounded Trajectory Planning in Nonconvex Uncertain Environments 

 We construct a new map called “risk contours map (RCM)” that represents risk information of uncertain 
environment. 

 We replace “risk bounded trajectory planning” with deterministic trajectory planning /path planning 
problem with respect to RCM. 

MIT 16.S498: Risk Aware and Robust Nonlinear Planning  Fall 2019 
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Risk Contours Map 

𝒙𝒙𝟎𝟎 

𝒙𝒙𝑵𝑵 
∗ 
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2.2 Risk Aware Nonlinear Controller Design for Probabilistic Nonlinear Systems 

∗• We design closed-loop controller to: 
i) drive the robot to the goal region 
ii) avoid the obstacles 
in the presence of system and environment uncertainties. 

• closed-loop controller in the form of “Polynomial 
State Feedback”, i.e., 

• Model Predictive Control (MPC) formulation: We look 
for “open loop controller” 𝑢𝑢 = [𝑢𝑢𝑘𝑘 , … 𝑢𝑢𝑘𝑘+𝑁𝑁] 

 Chance/Chance Constrained optimization formulation 𝑥𝑥0 
∗ 

𝑥𝑥𝑁𝑁 

Family of trajectories 
Due to uncertainty 

Uncertain 
Obstacle 

93 
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2.3 Flow-Tube Based Control Of Probabilistic Nonlinear Systems 
∗ We design a closed-loop controller (Polynomial State Feedback), to follow the given nominal trajectory (𝑥𝑥𝑘𝑘 , 𝑢𝑢𝑘𝑘∗ ) 𝑘𝑘 = 

[0, … 𝑁𝑁 − 1] in presence of uncertainties. 

GoalGoal 

Planned Trajectory from initial pose 
to the goal pose. 

Actual trajectory due to disturbances. 

Flow-Tube around the planned trajectory 

 To cope with uncertainties, we design a closed-loop controller (Polynomial State Feedback) to, 
i) follow the given nominal trajectory 
ii) for safety purposes remain in the tube around the nominal trajectory, despite all uncertainties 

9494 
MIT 16.S498: Risk Aware and Robust Nonlinear Planning Fall 201994 



 

                                                                        

  
  

 
  

2.3 Flow-Tube Based Control Of Probabilistic Nonlinear Systems 
Obstacle Free Tube 

Library of tubes for real-time motion planning

S. Singh, M. Chen, S. L. Herbert, 
C. J. Tomlin, M Pavone, 2018 

SpaceX 

95 
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A. Majumdar, R. Tedrake 2017 
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2.4 Chance Constrained Backward Reachable Sets For Probabilistic Nonlinear Systems 

Backward Reachable Set 

Target set 𝑋𝑋𝑇𝑇 

Initial set 𝑋𝑋0 

𝑢𝑢𝑘𝑘 ∈ 𝑈𝑈 
Initial set 𝑋𝑋0 

𝑥𝑥(𝑇𝑇) 

𝑥𝑥(0) 𝑥𝑥(𝑇𝑇) 

𝑢𝑢𝑘𝑘 ∈ 𝑈𝑈 
𝑥𝑥(0) 

Soft Landing Problem 

Landing Target 

• Backward Reachable Set: a set of initial states 𝑋𝑋0 for which target set  𝑋𝑋𝑇𝑇 is reachable in 𝑇𝑇 time 
steps under input constraints. 

• Chance Constrained Backward Reachable Set: a set of initial states 𝑋𝑋0 for which Probability of 
reaching the target set 𝑋𝑋𝑇𝑇 in 𝑇𝑇 time steps under input constraints is greater than 1 − Δ . 

 Chance Constrained Optimization Formulation 
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3. Risk Aware Control and Safety Verification in Presence 
of Gaussian Uncertainties 
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3. Risk Aware Control and Safety Verification in Presence of Gaussian Uncertainties : 

• Dynamical Systems with Gaussian Uncertainties: 

𝑥𝑥𝑘𝑘+1 = 𝐴𝐴𝑥𝑥𝑘𝑘 + 𝐵𝐵𝑢𝑢𝑘𝑘 + 𝜔𝜔𝑘𝑘 𝑥𝑥𝑘𝑘+1 = 𝑓𝑓(𝑥𝑥𝑘𝑘 , 𝑢𝑢𝑘𝑘 , 𝜔𝜔𝑘𝑘) 

𝜔𝜔𝑘𝑘~𝑁𝑁(0, Σ𝑘𝑘) 𝜔𝜔𝑘𝑘~𝑁𝑁(0, Σ𝑘𝑘) 

• Stochastic Differential Equations (SDE) 

𝑑𝑑𝑥𝑥 𝐵𝐵 = 𝑓𝑓 𝑥𝑥 𝑑𝑑𝐵𝐵 + 𝑔𝑔 𝑥𝑥 𝑑𝑑𝜔𝜔(𝐵𝐵) 𝜔𝜔: Brownian motion 

 We will use Gaussian distributions to represent probability distributions of states of the system. 
 We use mean and covariance of uncertainties. 
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3. Risk Aware Control and Safety Verification in Presence of Gaussian Uncertainties : 

• Dynamical Systems with Gaussian Uncertainties: 

𝑥𝑥𝑘𝑘+1 = 𝐴𝐴𝑥𝑥𝑘𝑘 + 𝐵𝐵𝑢𝑢𝑘𝑘 + 𝜔𝜔𝑘𝑘 𝑥𝑥𝑘𝑘+1 = 𝑓𝑓(𝑥𝑥𝑘𝑘 , 𝑢𝑢𝑘𝑘 , 𝜔𝜔𝑘𝑘) 

𝜔𝜔𝑘𝑘~𝑁𝑁(0, Σ𝑘𝑘) 𝜔𝜔𝑘𝑘~𝑁𝑁(0, Σ𝑘𝑘) 

• Stochastic Differential Equations (SDE) 

𝑑𝑑𝑥𝑥 𝐵𝐵 = 𝑓𝑓 𝑥𝑥 𝑑𝑑𝐵𝐵 + 𝑔𝑔 𝑥𝑥 𝑑𝑑𝜔𝜔(𝐵𝐵) 𝜔𝜔: Brownian motion 

 We will use Gaussian distributions to represent probability distributions of states of the system. 
 We use mean and covariance of uncertainties. 

• Distributionally Robust Chance Constrained Control 
Given mean 𝑈𝑈∗and covariance 𝛴𝛴∗ of uncertainties, we plan for worst-case probability distribution. 

• 𝑃𝑃𝑝𝑝 𝑈𝑈∗ , Σ∗ =Family of probability distributions with mean 𝑈𝑈∗and covariance Σ∗ . 
• worst-case scenario: Probability distribution Pr ∈ 𝑃𝑃𝑝𝑝 𝑈𝑈∗ , Σ∗ that causes highest risk in the system. 

• We make sure that worst-case risk is bounded by 1 − Δ. 
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 4. Occupation Measure and Liouville Equation 
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4. Occupation Measure and Liouville Equation 

• We will consider nonlinear ordinary differential equation (ODE) with uncertain initial condition 

�̇�𝑥 𝐵𝐵 = 𝑓𝑓(𝑥𝑥 𝐵𝐵 , 𝐵𝐵) 𝑥𝑥 0 ~𝑝𝑝𝑝𝑝(𝑥𝑥0) 

 Liouville’s Equation: Linear Partial Differential Equation (PDE) that describes propagation of initial 
uncertainty through nonlinear ODE. 

• 

𝑝𝑝𝑝𝑝(𝑥𝑥0) 

𝑝𝑝𝑝𝑝(𝑥𝑥𝑇𝑇) 

𝑝𝑝𝑝𝑝(𝑥𝑥, 𝐵𝐵) 

Occupation Measure: distribution defined on all trajectories of the system 

Occupation Measure 

Distributions 𝑝𝑝𝑝𝑝(𝑥𝑥0), 𝑝𝑝𝑝𝑝(𝑥𝑥𝑇𝑇 ), 𝑝𝑝𝑝𝑝(𝑥𝑥, 𝐵𝐵) are connected through Liouville’s equation 
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see https://ocw.mit.edu/help/faq-fair-use/ 

4. Occupation Measure and Liouville Equation 

 We leverage Liouville’s Equation, Occupation Measures, and Moment Theory to analyze and 
control of nonlinear dynamical systems. 

• Safety Verification 

• Region of Attraction (ROA) Set Computation 
i.e., the set of all initial conditions that can be steered to the target set in an admissible way 

© IEEE. All rights reserved. This content is excluded from our Creative Commons license. For more information, 

• Optimal Control 

ROA set around the origin point for Acrobot 
D. Henrion, M. Korda , 2013 
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  5. Sum-of-Squares Based Robust Control and Analyze of 
Uncertain Systems 
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5. Sum-of-Squares Based Robust Control and Analyze of Uncertain Systems 

Lyapunov stability certificate 

SOS SDP formulation 

Applications: 

Relies on classical definition of stability of nonlinear systems 

5.1 Lyapunov Based Stability and Region of Attraction Set, 
5.2 Barrier Function Based Safety Verification, 
5.3 Robust Control 
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Summary of Applications 

1. Probabilistic Safety Verification 

2. Risk Aware Control and Planning 

3. Risk Aware Control and Safety Verification in Presence of Gaussian Uncertainties 

4. Occupation Measure Based Control and Analyze of Nonlinear Systems 

5. Sum-of-Squares Based Robust Control and Analyze of Uncertain Systems 
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Challenges of SDP Based Planning 
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 We can formulate many problems in different domains as a special cases of 
provided optimization frameworks. 

 Convex formulations enable us to solve the optimization problems efficiently. 

What is the Cost of Convexification ? 
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Nonlinear Optimization 

 Number of decision variables: 𝑈𝑈 , (𝑥𝑥1, … , 𝑥𝑥𝑛𝑛) 

• In the SOS based SDP we look for a polynomial 𝑃𝑃 𝑥𝑥 ≥ 0 of order 𝑑𝑑. 

 Number of decision variables: Coefficients of polynomial 

• In the Moment based SDP, we look for a moments of probability distribution p𝑝𝑝 𝑥𝑥 

 Number of decision variables: Moments up to order 𝑑𝑑 

up to order 𝑑𝑑. 

 Convexification increases the space of decision variables 
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 In the absence of problem structure, sum of squares problems are currently limited, 
roughly speaking, to a several thousands variables (variables in SDP). 

How to address large scale problems? 

DSOS and SDSOS Optimization: More Tractable Alternatives to Sum of Squares and Semidefinite Optimization, A.A. Ahmadi, A. Majumdar, SIAM J. Appl. Algebra Geom. 2017 
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1) Modified SOS optimization that results in 
i) smaller SDP’s or ii) other types of convex constraints like LP. 
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1) Modified SOS optimization that results in 
i) smaller SDP’s or ii) other types of convex constraints like LP. 

2) Taking advantage of structure of the problem like sparsity 

This results in following techniques: 
1) Spars Sum-of-Squares Optimization (SSOS) 
2) Bounded Degree Sum-of-Squares Optimization (BSOS, SBSOS) 
3) (Scaled) Diagonally Dominant Sum-of-Squares Optimization (DSOS, SDSOS) 
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Atlas Robot with 30 states and 14 inputs.
Application 

© Boston Dynamics. All rights reserved. This content is excluded 
from our Creative Commons license. For more information, see 

1) Modified SOS optimization that results in 
i) smaller SDP’s or ii) other types of convex constraints like LP. 

2) Taking advantage if structure of the problem like sparsity 

This results in following techniques: 
1) Spars Sum-of-Squares Optimization (SSOS) 
2) Bounded Degree Sum-of-Squares Optimization (BSOS, SBSOS) 
3) (Scaled) Diagonally Dominant Sum-of-Squares Optimization (DSOS, SDSOS) 

Example: 
DSOS and SDSOS Optimization: More Tractable Alternatives to Sum of Squares and Semidefinite Optimization, A.A. Ahmadi, A. Majumdar, SIAM J. Appl. Algebra Geom. 2017 

DSOS runtime: 9.67 (s) SOS based SDP problem that takes 1526.5 (s) 
SDSOS runtime:25.9 (s) 

Y. Zheng, G. Fantuzzi, A. Papachristodoulou, “Sparse sum-of-squares (SOS) optimization: A bridge between DSOS/SDSOS and SOS optimization for sparse polynomials”, 2018 

SSOS runtime:0.76 (s) 
SOS based SDP problem that takes 262.08 (s) DSOS runtime: 2.89 (s) 

https://ocw.mit.edu/help/faq-fair-use/SDSOS runtime:5 (s) 

MIT 16.S498: Risk Aware and Robust Nonlinear Planning  Fall 2019 

Main Benefit: They can scale to problems where SOS programming ceases to run due to memory/computation constraints. 
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   3) Reformulating original optimization problem to reduce the size of the problem 
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3) Reformulating original optimization problem to reduce the size of the problem 

Example: 

 Instead of solving a large chance optimization, we solve sequence of smaller chance optimization. 
Example: flow-tube based control 
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3) Reformulating original optimization problem to reduce the size of the problem 

Example: 

 Instead of solving a large chance optimization, we solve sequence of smaller chance optimization. 
Example: flow-tube based control 

 Reducing the size of uncertain parameters: 
Example: replacing risk estimation problem involving 𝑈𝑈 uncertain parameters (multivariate SOS) with univariate 
risk estimation problem (univariate SOS) 
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3) Reformulating original optimization problem to reduce the size of the problem 

Example: 

 Instead of solving a large chance optimization, we solve sequence of smaller chance optimization. 
Example: flow-tube based control 

 Reducing the size of uncertain parameters: 
Example: replacing risk estimation problem involving 𝑈𝑈 uncertain parameters (multivariate SOS) with univariate 
risk estimation problem (univariate SOS) 

 Planning in subspace: 
Example: instead of constructing reachable set in 𝑈𝑈-dimensional state space, i.e., (𝑥𝑥1, … , 𝑥𝑥𝑛𝑛 ) construct 
reachable set in the subspaces of 𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑖𝑖+1 , 𝑖𝑖 = 1, … , 𝑈𝑈 − 1 
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3) Reformulating original optimization problem to reduce the size of the problem 

Example: 

 Instead of solving a large chance optimization, we solve sequence of smaller chance optimization. 
Example: flow-tube based control 

 Reducing the size of uncertain parameters: 
Example: replacing risk estimation problem involving 𝑈𝑈 uncertain parameters (multivariate SOS) with univariate 
risk estimation problem (univariate SOS) 

 Planning in subspace: 
Example: instead of constructing reachable set in 𝑈𝑈-dimensional state space, i.e., (𝑥𝑥1, … , 𝑥𝑥𝑛𝑛 ) construct 
reachable set in the subspaces of 

4) Efficient Algorithms for Large Scale SDP’s (Guest Lecture) 

𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑖𝑖+1 , 𝑖𝑖 = 1, … , 𝑈𝑈 − 1 
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Topics: 

 Introduction to Planning Under Uncertainty 

 Approaches and Challenges 

 Technical Idea and Mathematical Tools 

 Applications 
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Week Lecture Topic 
1 Introduction and Overview of the Course 

Overview of Nonlinear and Convex Optimization: i) Optimality Conditions, ii) Newton’s Method, iii) Interior Point Method, iv) 
Dual Optimization, v) Convex Optimization, vi) Linear Program, vii) Semidefinite Program 

2 

3 Nonlinear Optimization Using the Theory of Nonnegative Polynomials, Sum-of-Squares Formulation (SOS) 
4 Nonlinear Optimization Using the Theory of Measure and Moments 

Duality: i) Duality of Moments and Polynomials , ii) Duality of Measures and Continuous Functions 
Modified Sum-of-Squares Optimization: i) Spars Sum-of-Squares Optimization (SSOS),  ii) Bounded Degree Sum-of-Squares 
Optimization (BSOS), iii) (Scaled)Diagonally Dominant Sum-of-Squares Optimization (SDSOS, DSOS) 

5 
6 

7 Chance Optimization and Chance Constrained Optimization: i) Measure and Moments Formulation , ii) Sum-of-Squares 
Formulation 

8 i) Robust Optimization Using Sum-of-Squares Optimization 
ii) Distributionally Robust Chance-Constrained Optimization 
Algorithms for Large Scale Semidefinite Programs (Guest Lecture) 
Safety Verification of Probabilistic Systems: i) Risk Estimation, ii) Probabilistic Uncertainty Propagation, iii) Uncertainty Set 
Construction, iv) Forward Reachable Sets 
Risk Aware Planning and Control: i) Risk Bounded Trajectory Planning, ii) Risk Aware Nonlinear Control, iii) Flow-Tube Based 
Control, iv) Backward Reachable Sets 
Dynamical Systems with Gaussian Uncertainties: i) Chance Constrained Control, ii) Safety Verification, iii) Distributionally Robust 
Chance Constraints 
Occupation Measure Based Analyze and Control: i) Safety Verification, ii) Region of Attraction Set, iii) Optimal Control 
Sum-of-Squares Optimization for Uncertain Nonlinear Systems: i) Lyapunov Based Stability and Region of Attraction Set, ii) 
Barrier Function Based Safety Verification, iii) Robust Control 

9 
10 

11 

12 

13 
14 

15 Final Project Presentation 119 



  

    

     

     

Prerequisites: Linear Algebra (e.g., 18.06), Convex Optimization (e.g., 6.215, 6.251, 6.255), Probability Theory (e.g., 6.431), 
Dynamical Systems (e.g., 6.241) or permission of the instructor. 

Assignments and Grading: 50% Problem Sets, 50% Research Project 

Problem sets will be posted in the course website and will be due one week later. 

Bibliography: Variety of book and recent papers will be introduced for each 
lecture. 
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Research Project 

Apply the provided techniques to your research problems. 

Implementation of other techniques that address uncertain nonlinear 
problems. 

Research Projects, i.e. improving and extending the state-of-the-art 
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