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Nonlinear (nonconvex) Optimization 

Objective function and constraints are polynomial functions. 

Convex Relaxation: i) SOS Based SDP  ii) Moment Based SDP 
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Topics: 

 Brief Review of SOS and Moments Approaches (Lectures 3 and 4) 

 Review of Dual Optimization (Lecture 2) 

 Duality of SOS and Moments Approaches 

 Primal-Dual Interior Point Methods for SDPs 

 Appendix I: Conic Duality 
 Appendix II: Alternative Representations 
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 Brief Review of SOS and Moments Approaches 
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1. Sum of Squares Approach 

Polynomial Nonnegativity constraint 

We are looking for 𝛾𝛾 such that be a nonnegative polynomial 
on the set 

Linear constraint 

• Unconstrained Optimization 
• Constrained Optimization 

Reformulation in terms of Nonnegative polynomials 𝑥𝑥 
𝒙𝒙∗ 
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Polynomial Nonnegativity constraint 

We are looking for 𝛾𝛾 such that be a nonnegative polynomial 
on the set 

Linear constraint 

• Unconstrained Optimization 
• Constrained Optimization 

Reformulation in terms of Nonnegative polynomials 𝑥𝑥 
𝒙𝒙∗ 

SOS Relaxation 

                                                                        

 

 

   

   



                                                                        

   

  

Nonnegativity Condition 

Unconstrained Case: 
If polynomial 𝑝𝑝 𝑥𝑥 is SOS, then it is 𝒑𝒑 𝒙𝒙 ≥ 𝟎𝟎 for all 

SOS Condition Nonnegative polynomial 

SOS Polynomials 

Nonnegative Polynomials 

 Not every nonnegative polynomial has a SOS representation. 

MIT 16.S498: Risk Aware and Robust Nonlinear Planning  Fall 2019 7 



                                                                        

   

  

                 

                                                                                     

Nonnegativity Condition 

Unconstrained Case: 
If polynomial 𝑝𝑝 𝑥𝑥 is SOS, then it is 𝒑𝒑 𝒙𝒙 ≥ 𝟎𝟎 for all 

SOS Condition Nonnegative polynomial 

 Not every nonnegative polynomial has a SOS representation. SOS Polynomials 

Nonnegative Polynomials 

Let the   be a compact set (Archimedean). 

Constrained Case: Putinar’s Certificate (Positivstellensatze) 

If Polynomial  is positive on the set   then, 

for some 
for some 
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1. Sum of Squares Approach 
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Polynomial Nonnegativity constraint 

We are looking for 𝛾𝛾 such that be a nonnegative polynomial 
on the set 

Linear constraint 

• Unconstrained Optimization 
• Constrained Optimization 

Reformulation in terms of Nonnegative polynomials 

Sum of Squares Condition 

𝑥𝑥 
𝒙𝒙∗ 

(Lower bound) 

SOS Relaxation 



                                                                        

 

 

   

   

  

1. Sum of Squares Approach 
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Polynomial Nonnegativity constraint 

We are looking for 𝛾𝛾 such that be a nonnegative polynomial 
on the set 

Linear constraint 

• Unconstrained Optimization 
• Constrained Optimization 

Reformulation in terms of Nonnegative polynomials 

Sum of Squares Condition 

SOS SDP 

𝑥𝑥 
𝒙𝒙∗ 

(Lower bound) 

SOS Relaxation 



2. Measure and Moment Approach 

• Unconstrained Optimization 
• Constrained Optimization 

 treat 𝑥𝑥 as a random variable. 

Optimization in terms of Probability distributions (measures): 

 Linear Program: Objective function is a linear function of the decision variables 

• Look for to minimize 

• Decision variable: Probability measure associated with 𝑥𝑥 
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2. Measure and Moment Approach 

 treat 𝑥𝑥 as a random variable. 
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Optimization in terms of Probability distributions (measures): 

 Linear Program: Objective function is a linear function of the decision variables 

• Look for to minimize 

• Decision variable: Probability measure associated with 𝑥𝑥 

• Unconstrained Optimization 
• Constrained Optimization 

 :Unique global optimal solution of the original problem.  : 𝑟𝑟 global optimal solution of the original problem. 



                                                                        

 

  

      
  

   

   

   

2. Measure and Moment Approach 

 treat 𝑥𝑥 as a random variable. 
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Optimization in terms of Probability distributions (measures): 

 Linear Program: Objective function is a linear function of the decision variables 

• Look for to minimize 

• Decision variable: Probability measure associated with 𝑥𝑥 

• Unconstrained Optimization 
• Constrained Optimization 

 :Unique global optimal solution of the original problem.  : 𝑟𝑟 global optimal solution of the original problem. 

Optimization in Truncated Moment Space 
 Approximate measure with a finite moment sequence. 



                                                                        

              

           

Moment Condition 
Unconstrained Case: 
Moments of every (nonnegative) measure in satisfies : 

Moment Matrix (PSD) 

 Not every sequence  that satisfies moment condition, has a representing measure . 
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Moment Condition 
Unconstrained Case: 
Moments of every (nonnegative) measure in satisfies : 

Moment Matrix (PSD) 

 Not every sequence  that satisfies moment condition, has a representing measure . 

Let the   be a compact set (Archimidean). 

Constrained Case: 
• Sequence      has a representing measure with support contained in the set  , if and only if, it satisfies: 

Moment Matrix Localizing Matrix 
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2. Measure and Moment Approach 

 treat 𝑥𝑥 as a random variable. 
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Optimization in terms of Probability distributions (measures): 

 Linear Program: Objective function is a linear function of the decision variables 

• Look for to minimize 

• Decision variable: Probability measure associated with 𝑥𝑥 

• Unconstrained Optimization 
• Constrained Optimization 

 :Unique global optimal solution of the original problem.  : 𝑟𝑟 global optimal solution of the original problem. 

Optimization in Truncated Moment Space 
 Approximate measure with a finite moment sequence. 

Moment matrix 
Localizing matrix 

Moment SDP 



                                                                        

 

  

      
  

   

   

   
     

2. Measure and Moment Approach 

 treat 𝑥𝑥 as a random variable. 
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Optimization in terms of Probability distributions (measures): 

 Linear Program: Objective function is a linear function of the decision variables 

• Look for to minimize 

• Decision variable: Probability measure associated with 𝑥𝑥 

• Unconstrained Optimization 
• Constrained Optimization 

 :Unique global optimal solution of the original problem.  : 𝑟𝑟 global optimal solution of the original problem. 

Optimization in Truncated Moment Space 
 Approximate measure with a finite moment sequence. 

Moment matrix 
Localizing matrix 

Moment SDP 

 Optimal solution is the moment sequence of Dirac measures. 



                                                                        

 

  

      
  

   

   

   
     
 

    

2. Measure and Moment Approach 

 treat 𝑥𝑥 as a random variable. 
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Optimization in terms of Probability distributions (measures): 

 Linear Program: Objective function is a linear function of the decision variables 

• Look for to minimize 

• Decision variable: Probability measure associated with 𝑥𝑥 

• Unconstrained Optimization 
• Constrained Optimization 

 :Unique global optimal solution of the original problem.  : 𝑟𝑟 global optimal solution of the original problem. 

Optimization in Truncated Moment Space 
 Approximate measure with a finite moment sequence. 

Moment matrix 
Localizing matrix 

Moment SDP 

 Optimal solution is the moment sequence of Dirac measures. 
 Moments of Dirac measure satisfies 
 We can extract 𝑥𝑥∗ from the moments of Dirac measure. 



                                                                        

  

 

        

     

• Unconstrained Optimization 
• Constrained Optimization 

Space of SOS Polynomials 

Space Nonnegative Continuous functions 

Relaxation 

Looks for coefficients of (SOS) polynomial of degree 2d 

Approximate nonnegative functions with finite degree polynomials 

Equivalent 

Moments Space 

Measure Space 

Relaxation 

Looks for moments up to order 2d of (nonnegative)measure 

Approximate measures with finite moments 

Equivalent 
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• Unconstrained Optimization 
• Constrained Optimization 

MIT 16.S498: Risk Aware and Robust Nonlinear Planning  Fall 2019 

Moments Space Space of SOS Polynomials 

Measure Space Space Nonnegative Continuous functions 

Relaxation Relaxation 

Approximate measures with finite moments Approximate nonnegative functions with finite degree polynomials 

Dual 

Dual 

Looks for moments up to order 2d of (nonnegative)measure Looks for coefficients of (SOS) polynomial of degree 2d 

Equivalent Equivalent 

20 



                                                                        

Dual Optimization 
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Primal Optimization: 

• KKT Optimality Condition: Lagrange multiplier 

Lagrange function: 

Stationarity 

Primal Feasibility 

Dual Feasibility 

Dual Complementary 
Slackness 
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Lagrange multiplier • KKT Optimality Condition: 

Dual Optimization: Primal Optimization: 

Lagrange function: 
• For feasible 𝑥𝑥, 𝜇𝜇 

Lagrange Dual function: 

• Dual Optimization is convex. 
• Weak Duality: provides lower bound 

Stationarity 

Primal Feasibility 

Dual Feasibility 

Dual Complementary 
Slackness 
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Primal Optimization: 

Lagrange function: 
Lagrange multiplier • KKT Optimality Condition: 

Stationarity 

Primal Feasibility 

Dual Feasibility 

Dual Complementary 
Slackness 

Dual Optimization: 

Lagrange Dual function: 

• Dual Optimization is convex. 
• Weak Duality: provides lower bound 

• For feasible 𝑥𝑥, 𝜇𝜇 

• Strong Duality: 
If i) primal problem is convex, ii) strictly feasible 
(Slater’s Condition) 
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Primal Optimization: 

• 
• 

Lagrange function: 
Lagrange multiplier • KKT Optimality Condition: 

Stationarity 

Primal Feasibility 

Dual Feasibility 

Dual Complementary 
Slackness 

• 

• 

Dual Optimization: 

Lagrange Dual function: 

Dual Optimization is convex. 
Weak Duality: provides lower bound 

• For feasible 𝑥𝑥, 𝜇𝜇 

Strong Duality: 
If i) primal problem is convex, ii) strictly feasible 
(Slater’s Condition) 

If Feasible 𝑥𝑥∗ feasible and 𝜇𝜇∗ satisfies  
Then, 𝑥𝑥∗ is a global solution of the original nonlinear 
optimization problem. 
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• Unconstrained Optimization 
• Constrained Optimization 

Moments Space Space of SOS Polynomials 

(nonnegative) Measure Space Space Nonnegative Continuous functions 

Relaxation Relaxation 

Dual 

Convex and Strictly feasible problems
(Slater’s Condition) 

Convex and Strictly feasible problems
(Slater’s Condition) 

Dual 

Equivalent Equivalent 
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• Unconstrained Optimization 
• Constrained Optimization 

Moments Space Space of SOS Polynomials 

(nonnegative) Measure Space Space Nonnegative Continuous functions 

Relaxation Relaxation 

Dual 

Convex and Strictly feasible problems
(Slater’s Condition) 

Convex and Strictly feasible problems
(Slater’s Condition) 

Dual 

Equivalent Equivalent 

Due to Duality: 
i) if SDP relaxation in one space achieves the optimal solution of the original problem, the dual SDP should do the same, 
ii) we can use the same algorithm for the SOS and Moment relaxations to solve nonlinear optimization. 
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SOS and Moment SDP for Unconstrained Optimization 
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Unconstrained Optimization 

• Unconstrained Optimization 

(otherwise, (odd degree) 𝐏𝐏∗ = −∞) 
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Unconstrained Optimization 

• Unconstrained Optimization 

(otherwise, (odd degree) 𝐏𝐏∗ = −∞) 

(nonnegative) Measure Space Space Nonnegative Continuous functions 

Dual 

Equivalent Equivalent 
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Unconstrained Optimization 

• Unconstrained Optimization 

Moments Space Space of SOS Polynomials 

(otherwise, (odd degree) 𝐏𝐏∗ = −∞) 

Looks for moments up to order 2d of (nonnegative)measure Looks for coefficients of (SOS) polynomial of degree 2d 

(nonnegative) Measure Space Space Nonnegative Continuous functions 

Dual 

Relaxation Relaxation 

Equivalent Equivalent 

Dual 

 We just need to construct single SOS SDP with relaxation order of 2d. 

Hence, relaxation order of Moment SDP is also 2d. 

2d-degree Polynomial 
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Unconstrained Optimization 

• Unconstrained Optimization 

Moments Space Space of SOS Polynomials 

(otherwise, (odd degree) 𝐏𝐏∗ = −∞) 

Looks for moments up to order 2d of (nonnegative)measure 

(nonnegative) Measure Space Space Nonnegative Continuous functions 

Dual 

Relaxation Relaxation 

Equivalent Equivalent 

Dual 

SOS and Moment SDP relaxation 

i) Instead of searching space of nonnegative polynomials, we search space of SOS polynomials.  (SOS condition is sufficient 
condition for nonnegativity ). 

ii)  We use finite number of moments to represent measures. Also moment condition in is necessary condition. 

Looks for coefficients of (SOS) polynomial of degree 2d 
2d-degree Polynomial 
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Unconstrained Optimization 

• Unconstrained Optimization 

Moments Space Space of SOS Polynomials 

(otherwise, (odd degree) 𝐏𝐏∗ = −∞) 

Looks for moments up to order 2d of (nonnegative)measure 

(nonnegative) Measure Space Space Nonnegative Continuous functions 

Dual 

Relaxation Relaxation 

Equivalent Equivalent 

Dual 

SOS and Moment SDP relaxation 

Looks for coefficients of (SOS) polynomial of degree 2d 
2d-degree Polynomial 

Condition for : 
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Unconstrained Optimization 

• Unconstrained Optimization 

Moments Space Space of SOS Polynomials 

(otherwise, (odd degree) 𝐏𝐏∗ = −∞) 

Looks for moments up to order 2d of (nonnegative)measure 

(nonnegative) Measure Space Space Nonnegative Continuous functions 

Dual 

Relaxation Relaxation 

Equivalent Equivalent 

Dual 

SOS and Moment SDP relaxation 

Looks for coefficients of (SOS) polynomial of degree 2d 
2d-degree Polynomial 

𝑦𝑦∗is moment sequence of Dirac measures Condition for : Moment SDP: 

• Proposition 5.2, Theorem 5.3. Jean Bernard Lasserre, “Moments, Positive Polynomials and Their Applications” Imperial College Press Optimization Series, V. 1, 2009. 
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Unconstrained Optimization 

• Unconstrained Optimization 

Moments Space Space of SOS Polynomials 

(otherwise, (odd degree) 𝐏𝐏∗ = −∞) 

Looks for moments up to order 2d of (nonnegative)measure 

(nonnegative) Measure Space Space Nonnegative Continuous functions 

Dual 

Relaxation Relaxation 

Equivalent Equivalent 

Dual 

SOS and Moment SDP relaxation 

Looks for coefficients of (SOS) polynomial of degree 2d 
2d-degree Polynomial 

𝑦𝑦∗is moment sequence of Dirac measures Condition for : Moment SDP: SOS SDP: 

• Proposition 5.2, Theorem 5.3. Jean Bernard Lasserre, “Moments, Positive Polynomials and Their Applications” Imperial College Press Optimization Series, V. 1, 2009. 
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Unconstrained Optimization 

Moment Relaxation (SDP) SOS Relaxation (SDP) 

Dual 

Solve single Moment SDP: Solve single SOS SDP: 
𝑦𝑦∗is moment sequence 
of Dirac measures 

• Algorithm 5.1, Jean Bernard Lasserre, “Moments, Positive Polynomials and Their Applications” Imperial College Press Optimization Series, V. 1, 2009. 
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  SOS and Moment SDP for Constrained Optimization 
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Constrained Optimization 

Moments Space Space of SOS Polynomials 

Dual 

Relaxation Relaxation 

Looks for moments up to order 2d of (nonnegative)measure Looks for coefficients of (SOS) polynomial of degree 2d 

 d: relaxation order  d: relaxation order 

In constrained problem: 
i) Based on Putinar’s condition, there exist a degree 2𝑑𝑑 for which positive polynomial takes the SOS representation on the 

given set Ω. 
ii) Moment condition is necessary and sufficient condition. 
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Constrained Optimization 

SOS Relaxation (SDP) Moment Relaxation (SDP) 

as 𝑑𝑑 → ∞ as 𝑑𝑑 → ∞ 

Dual 

𝑦𝑦∗is moment sequence 
of Dirac measures 

Finite Convergence: 
• Theorem 5.6, Chapter 7: Jean Bernard Lasserre, “Moments, Positive Polynomials and Their Applications” Imperial College Press Optimization Series, V. 1, 2009. 
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https://github.com/jasour/rarnop19/blob/master/Lecture5_Duality_SOS-Moment/Example_1_MOM.m 
Example 1: Unconstrained Optimization https://github.com/jasour/rarnop19/blob/master/Lecture5_Duality_SOS-Moment/Example_1_SOS.m 

Looks for polynomial of order 4 

Yalmip-Mosek 

Du

Looks for moments up to order 4 

al 

GloptiPOly-Mosek 

[status,obj,m,dual]= msol(P) 
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https://github.com/jasour/rarnop19/blob/master/Lecture5_Duality_SOS-Moment/Example_1_MOM.m
https://github.com/jasour/rarnop19/blob/master/Lecture5_Duality_SOS-Moment/Example_1_SOS.m


                                                                        

 

     

https://github.com/jasour/rarnop19/blob/master/Lecture5_Duality_SOS-Moment/Example_2_MOM.m 
Example 2: Unconstrained Optimization https://github.com/jasour/rarnop19/blob/master/Lecture5_Duality_SOS-Moment/Example_2_SOS.m 
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Dual 

Looks for polynomial of order 4 Looks for moments up to order 4 

Yalmip-Mosek 

[status,obj,m,dual]= msol(P) 

GloptiPOly-Mosek 

https://github.com/jasour/rarnop19/blob/master/Lecture5_Duality_SOS-Moment/Example_2_MOM.m
https://github.com/jasour/rarnop19/blob/master/Lecture5_Duality_SOS-Moment/Example_2_SOS.m


                                                                        

 

     

    

https://github.com/jasour/rarnop19/blob/master/Lecture5_Duality_SOS-Moment/Example_3_MOM.m 
Example 3: Unconstrained Optimization https://github.com/jasour/rarnop19/blob/master/Lecture5_Duality_SOS-Moment/Example_3_SOS.m 
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Dual 

Looks for moments up to order 6 

Yalmip-Mosek GloptiPOly-Mosek 

Looks for polynomial of order 6 

Status=-1: 
moment SDP could NOT be solved (unbounded SDP). 

Primal infeasible 

https://github.com/jasour/rarnop19/blob/master/Lecture5_Duality_SOS-Moment/Example_3_MOM.m
https://github.com/jasour/rarnop19/blob/master/Lecture5_Duality_SOS-Moment/Example_3_SOS.m


                                                                        

   

  

  

https://github.com/jasour/rarnop19/blob/master/Lecture5_Duality_SOS-Moment/Example_4_MOM.m Example 4: Example 3 with Constraint 
https://github.com/jasour/rarnop19/blob/master/Lecture5_Duality_SOS-Moment/Example_4_SOS.m 
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Dual 

Yalmip-Mosek 
GloptiPOly-Mosek 

𝑑𝑑 − 𝑑𝑑𝑔𝑔 = 3 − 1 = 2 

• 2𝑑𝑑 = max deg 𝑝𝑝 𝑥𝑥 , deg 𝑔𝑔 𝑥𝑥 = 6 

• Looks for moments up to order 6 

Degree 6 
• Looks for polynomial of order 6 

4 

• 2𝑑𝑑 = max deg 𝑝𝑝 𝑥𝑥 , deg 𝑔𝑔 𝑥𝑥 = 6 

https://github.com/jasour/rarnop19/blob/master/Lecture5_Duality_SOS-Moment/Example_4_MOM.m
https://github.com/jasour/rarnop19/blob/master/Lecture5_Duality_SOS-Moment/Example_4_SOS.m


                                                                        

   

           
 

   

  

https://github.com/jasour/rarnop19/blob/master/Lecture5_Duality_SOS-Moment/Example_5_MOM.m Example 5: Example 3 with moment constraints 
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GloptiPOly-Mosek 

Statues=-1 

Statues=0 
GloptiPOly-Mosek 

GloptiPOly-Mosek 

Proposition 3.5: Jean Bernard Lasserre, “Moments, Positive Polynomials and Their Applications” Imperial College Press Optimization Series, V. 1, 2009. 
(linear condition ) 

has a representing measure with support contained in 

Moments of measure supported in −1,1 2 

https://github.com/jasour/rarnop19/blob/master/Lecture5_Duality_SOS-Moment/Example_5_MOM.m


                                                                        

 

      

 

https://github.com/jasour/rarnop19/blob/master/Lecture5_Duality_SOS-Moment/Example_6_MOM.m 
Example 6: Constrained Optimization https://github.com/jasour/rarnop19/blob/master/Lecture5_Duality_SOS-Moment/Example_6_SOS.m 
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Dual 

Yalmip-Mosek 

GloptiPOly-Mosek 

𝑑𝑑 − 𝑑𝑑𝑔𝑔1 
= 1 − 1 = 1 

• 2𝑑𝑑 = max deg 𝑝𝑝 𝑥𝑥 , deg 𝑔𝑔 𝑥𝑥 = 2 • Looks for moments up to order 2 

Degree 2 

• Looks for polynomial of order 2 

0 

• 2𝑑𝑑 = max deg 𝑝𝑝 𝑥𝑥 , deg 𝑔𝑔 𝑥𝑥 = 2 

𝑑𝑑 − 𝑑𝑑𝑔𝑔2 
= 1 − 1 = 0 𝑑𝑑 − 𝑑𝑑𝑔𝑔3 

= 1 − 1 = 0 

Statues=0 
• 2𝑑𝑑 = 4 

GloptiPOly-Mosek 

0 0 

Yalmip-Mosek 

• 2𝑑𝑑 = 4 

Nonnegative  scalar 

https://github.com/jasour/rarnop19/blob/master/Lecture5_Duality_SOS-Moment/Example_6_MOM.m
https://github.com/jasour/rarnop19/blob/master/Lecture5_Duality_SOS-Moment/Example_6_SOS.m


                                                                        

  

 
   

    
      

   

How to use SOS and Moment Relaxations? 

 Formulate the original problem as an (nonlinear,nonconvex) optimization problem. 
Then, use SOS or Moment relaxations to obtain SDP problem (convex). 

 Obtain SOS or Measure conditions from the original problem. 
Example: Stability of nonlinear systems 

energy function: 𝑉𝑉 𝑥𝑥 ≥ 0, −�̇�𝑉 𝑥𝑥 ≥ 0 𝑉𝑉 𝑥𝑥 ∈ 𝑆𝑆𝑆𝑆𝑆𝑆, −�̇�𝑉 𝑥𝑥 ∈ 𝑆𝑆𝑆𝑆𝑆𝑆 
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How to use SOS and Moment Relaxations? 

 Formulate the original problem as an (nonlinear,nonconvex) optimization problem. 
Then, use SOS or Moment relaxations to obtain SDP problem (convex). 

 Obtain SOS or Measure conditions from the original problem. 
Example: Stability of nonlinear systems 

energy function: 𝑉𝑉 𝑥𝑥 ≥ 0, −�̇�𝑉 𝑥𝑥 ≥ 0 𝑉𝑉 𝑥𝑥 ∈ 𝑆𝑆𝑆𝑆𝑆𝑆, −�̇�𝑉 𝑥𝑥 ∈ 𝑆𝑆𝑆𝑆𝑆𝑆 

SOS or Moment Relaxation ? 
Moment relaxation: 

1) to find 𝑥𝑥∗ 

2) Uncertain problems with probabilistic uncertainties 

SOS relaxation: 
1) Problems involving function or set approximation, e.g., Lyapunov function, Region of attraction set. 
2) Uncertain problems with uncertainty set. 
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 Duality of SOS and Moment Approaches 
(Proofs) 
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Constrained Optimization 

• Unconstrained Optimization 
• Constrained Optimization 

Moments Space Space of SOS Polynomials 

(nonnegative) Measure Space Space Nonnegative Continuous functions 

Relaxation Relaxation 

Dual 

Convex and Strictly feasible problems
(Slater’s Condition) 

Convex and Strictly feasible problems
(Slater’s Condition) 

Dual 

Equivalent Equivalent 

LP 

SDP 
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Duality 

Duality of Linear Programs: 
Primal LP Dual LP 
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Duality 

Duality of Linear Programs: 
Primal LP Dual LP 

Euclidean space: 
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Duality 
Duality of Linear Programs: 

Primal LP Dual LP 

Primal Conic Program Dual Conic Program 

Extend to different spaces 

Euclidean space: 

e.g., 
• 𝑥𝑥 ∈ Euclidean space 
• 𝑥𝑥 ∈ Space of symmetric matrices 
• 𝑥𝑥 ∈ Space of continuous functions 
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Duality 
Duality of Linear Programs: 

Primal LP Dual LP 

Primal Conic Program Dual Conic Program 

Extend to different spaces 

• 𝑥𝑥 ∈ Space of symmetric matrices 
• 𝑥𝑥 ∈ Space of continuous functions 

• 𝑥𝑥 ∈ Euclidean space 

Euclidean space: 

e.g., 

Duality of LP in measure space 
Duality of Linear Programs Duality of Conic Programs 

Duality of SOS and Moment SDP 
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Duality of Linear Programs 
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Standard Linear Program 
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Standard Linear Program Lagrange multipliers 

Lagrange function: 

KKT Condition: 
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Standard Linear Program 
Lagrange multipliers 

Lagrange function: 

Dual Lagrange function 
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Standard Linear Program 
Lagrange multipliers 

Lagrange function: 

Dual Lagrange function 

• We want to minimize Lagrange function with respect to 𝑥𝑥. 

• : Lagrange function is a line in terms of 𝑥𝑥. 

𝑥𝑥 𝑥𝑥 𝑥𝑥 

• We are looking for the best minimum point (best lower bound of the objective function of the primal). 
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Standard Linear Program 
Lagrange multipliers 

Lagrange function: 

Dual Lagrange function 

Dual LP: 

MIT 16.S498: Risk Aware and Robust Nonlinear Planning  Fall 2019 60 



                                                                        

Primal LP Dual LP 

1 2 

MIT 16.S498: Risk Aware and Robust Nonlinear Planning  Fall 2019 61 



                                                                        

 

Primal LP Dual LP 

1 2 

Primal Space : Dual Space: 
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Primal LP Dual LP 

21 

Weak Duality: 

Primal Space : Dual Space: 
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Primal LP Dual LP 

21 

Weak Duality: 

2 1 

Primal Space : Dual Space: 
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Primal LP Dual LP 

21 

Weak Duality: 

2 1 

Primal Space : Dual Space: 

Linear functional in Euclidean space : 𝑥𝑥 → ℝ 

Characterizes 
the dual cone 

(Dual space : space of all linear functionals of the vector space) 
For more information see Appendix I 
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Primal LP Dual LP 

1 2 

Primal Space : Dual Space: 
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Primal LP Dual LP 

1 2 

Primal Space : Dual Space: 
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Primal LP Dual LP 

21 

Weak Duality: 

Primal Space : Dual Space: 

Characterizes the dual cone 

2 1 

Characterizes the Dual Linear Map 
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Primal LP Dual LP 

21 

Primal Space : Dual Space: 

Linear Map and Dual Map satisfies 
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Primal LP Dual LP 
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21 

Dual 

Primal Space : Dual Space: 

Linear Map and Dual Map satisfies 



                                                                        

Dual 

Primal Conic Program Dual Conic Program 
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Primal Conic Program Dual Conic Program 

Dual 

Dual 
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Primal Conic Program Dual Conic Program 

Dual 

Dual 

We can reformulate different class of Use the duality of conic program, 
Optimization Problems as a conic program. to obtain dual optimization. 
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Primal Conic Program Dual Conic Program 

Dual 

Dual 

 SDP solvers like SeDuMi, MOSEK,… are conic program solvers. 
• MOEK: https://docs.mosek.com/slides/2017/aau/conic-opt.pdf 
• SeDuMi: http://sedumi.ie.lehigh.edu/sedumi/files/sedumi-downloads/SeDuMi_Guide_11.pdf 

H. D. Mittelmann, “The State-of-the-Art in Conic Optimization Software”, http://www.optimization-online.org/DB_FILE/2010/08/2694.pdf 
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Primal Convex Conic Dual Convex Conic 

Primal SDP Dual SDP 

 See Appendix I 
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Primal Convex Conic Dual Convex Conic 

LP in measure Dual 

 See Appendix I 
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Constrained Optimization 

• Unconstrained Optimization 
• Constrained Optimization 

(nonnegative) Measure Space Space Nonnegative Continuous functions 

Equivalent Equivalent 

Dual 

Convex and Strictly feasible problems
(Slater’s Condition) 
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  Duality of SOS and Moment SDPs 
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Dual SDP 

Semidefinite Conde and Semidefinite Program: 

Primal SDP 
Dual 
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Dual SDP 

Semidefinite Conde and Semidefinite Program: 

Primal SDP 
Dual 

SOS SDP moment SDP 
Unconstrained Optimization 

Dual 
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Dual SDP 

Semidefinite Conde and Semidefinite Program: 

Primal SDP 
Dual 

SOS SDP 

SOS SDP 

moment SDP 

moment SDP 

Unconstrained Optimization 

Constrained Optimization 

Dual 

Dual 



                                                                        

 

    

Unconstrained Optimization 
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SOS Optimization Moment SDP 

Standard SDP Standard SDP 

Duality 

Duality 

Rewrite SOS Representation (Appendix II) 
Rewrite Moment Matrix (Appendix II) 



                                                                        

 

    

  

Unconstrained Optimization 
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SOS Optimization Moment SDP 

Standard SDP Standard SDP 

Duality 

Duality 

Rewrite SOS Representation (Appendix II) 
Rewrite Moment Matrix (Appendix II) 

Constant matrix Constant matrix Coefficients 



                                                                        

 

     

Constrained Optimization 
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SOS Optimization Moment SDP 

Standard SDP Standard SDP 

Duality 

Duality 

Rewrite SOS Representation (Appendix II) Rewrite Moment and Localizing Matrix (Appendix II) 



                                                                        

 

 

     

 

Constrained Optimization 
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SOS Optimization Moment SDP 

Standard SDP Standard SDP 

Duality 

Duality 

Constant matrix 

Rewrite SOS Representation (Appendix II) Rewrite Moment and Localizing Matrix (Appendix II) 

Constant matrix Coefficients 



SOS Optimization 
Unconstrained Optimization 

Moment SDP 
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 Unconstrained Optimization 
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SOS Optimization Moment SDP 



                                                                        

 Unconstrained Optimization 
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SOS Optimization Moment SDP 



                                                                        

 Unconstrained Optimization 
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SOS Optimization Moment SDP 



                                                                        

 Unconstrained Optimization 
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SOS Optimization Moment SDP 

SOS SDP 



                                                                        

 Unconstrained Optimization 
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SOS Optimization Moment SDP 

SOS SDP 



Unconstrained Optimization 
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Moment SDP 

Moment SDP 
                                                                        

 
SOS Optimization 

SOS SDP 
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Unconstrained Optimization 

Moment SDP 

Dual SDP Primal SDP 

Dual 

SOS  SDP 

• Jean Bernard Lasserre, “Moments, Positive Polynomials and Their Applications” Imperial College Press Optimization Series, V. 1, 2009. 
• Jean Bernard Lasserre, “Global Optimization with Polynomials and the Problem of Moments”, SIAM J. Optim., 11(3), 796–817, 2001. 

Dual 
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Unconstrained Optimization 

Moment SDP 

Dual SDP Primal SDP 

Dual 

SOS  SDP 

Dual 

• Jean Bernard Lasserre, “Moments, Positive Polynomials and Their Applications” Imperial College Press Optimization Series, V. 1, 2009. 
• Jean Bernard Lasserre, “Global Optimization with Polynomials and the Problem of Moments”, SIAM J. Optim., 11(3), 796–817, 2001. 

                                                                        

 

           
       



                                                                        

 Constrained Optimization 
SOS SDP 
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 Constrained Optimization 
SOS SDP 
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 Constrained Optimization 
SOS SDP 
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 Constrained Optimization 
SOS SDP 
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 Constrained Optimization 
SOS SDP 

SOS SDP 
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 Constrained Optimization 

Moment SDP 
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 Constrained Optimization 

Moment SDP 
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 Constrained Optimization 

Moment SDP 

Moment SDP 
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Constrained Optimization 
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Moment SDP 
SOS  SDP 

Dual SDP Primal SDP 

Dual 

• Jean Bernard Lasserre, “Moments, Positive Polynomials and Their Applications” Imperial College Press Optimization Series, V. 1, 2009. 
• Jean Bernard Lasserre, “Global Optimization with Polynomials and the Problem of Moments”, SIAM J. Optim., 11(3), 796–817, 2001. 



                                                                        

   

           
       

Moment SDP 
SOS  SDP 

Dual SDP Primal SDP 

Dual 

Dual 

• Jean Bernard Lasserre, “Moments, Positive Polynomials and Their Applications” Imperial College Press Optimization Series, V. 1, 2009. 
• Jean Bernard Lasserre, “Global Optimization with Polynomials and the Problem of Moments”, SIAM J. Optim., 11(3), 796–817, 2001. 

Constrained Optimization 

MIT 16.S498: Risk Aware and Robust Nonlinear Planning  Fall 2019 104 



• Unconstrained Optimization 
• Constrained Optimization 

Moments Space Space of SOS Polynomials 

(nonnegative) Measure Space Space Nonnegative Continuous functions 
Equivalent Equivalent 

Dual 

Convex and Strictly feasible problems
(Slater’s Condition) 

(Slater’s Condition)
Convex and Strictly feasible problems 

Dual 

                                                                        

  

  

 

 

           
       

• Jean Bernard Lasserre, “Moments, Positive Polynomials and Their Applications” Imperial College Press Optimization Series, V. 1, 2009. 
• Jean Bernard Lasserre, “Global Optimization with Polynomials and the Problem of Moments”, SIAM J. Optim., 11(3), 796–817, 2001. 
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  Primal-Dual Interior Point Method 
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Primal SDP Dual SDP 
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Primal SDP Dual SDP 

From the Duality a triple solves the primal-dual SDP if and only if: 
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Primal SDP Dual SDP 

From the Duality a triple solves the primal-dual SDP if and only if: 

 Primal-dual interior point methods solves the system of nonlinear systems. 

 From Lecture 2, interior point method i) turns constrained optimization with inequality constraints into constraint 
optimization with only equality constraints, ii) Applies Newton’s method to solve optimality conditions. 
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Primal SDP Dual SDP 

From the Duality a triple solves the primal-dual SDP if and only if: 

 Primal-dual interior point methods solves the system of nonlinear systems. 

 From Lecture 2, interior point method i) turns constrained optimization with inequality constraints into constraint 
optimization with only equality constraints, ii) Applies Newton’s method to solve optimality conditions. 

System of nonlinear equations 

Optimality condition 
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Primal SDP Dual SDP 

• Hence, Primal-dual SDP solvers (e.g., SeDuMi, MOSEK,….), have access to the dual and primal variables. 

• By solving moment SDP, we can also obtain SOS polynomial. (see examples 1 and 2) 
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Appendix I: Conic Duality 
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Primal and Dual Spaces 

• Primal spaces : vector space 
e.g., Euclidean space, space of symmetric matrices, space of continuous functions 

• Dual spaces : vector space of real-valued linear functionals. 

: “Duality Pairing” between an element of vector space and an element of dual space 

Examples: 

Euclidean spaces (self-dual): 

Space of symmetric matrices (self-dual): 

Space of continuous functions and spaces of measures: 

• Chapter IV.3: Alexander Barvinok “A Course in Convexity”, American Mathematical Society, Graduate Studies in Mathematics, Volume 54 
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Primal Conic Program Dual Conic Program 

• Proper cone:1 • Dual cone: 

• Linear map • Dual Linear map 
satisfies satisfies 

∗ ∗V1 V1 V2 V2 

• Chapter IV.3: Alexander Barvinok “A Course in Convexity”, American Mathematical Society, Graduate Studies in Mathematics, Volume 54 
1: proper cone: convex, closed, nonempty interior, pointed. 
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Primal Conic Program Dual Conic Program 

• Proper cone:1 • Dual cone: 

• Linear map • Dual Linear map 
satisfies satisfies 

∗ ∗V1 V1 V2 V2 

To obtain the dual optimization: 
i) define the primal cone and associated dual cone, ii) identify linear map and find dual map  iii) Use dual conic program to 

construct the dual optimization 
1: proper cone: convex, closed, nonempty interior, pointed. 
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Primal Conic Program Dual Conic Program 

• Proper cone: • Dual cone: 

• Linear map • Dual Linear map 
∗∗V1 V1 V2 V2 

Dual LP Primal LP 
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Primal Conic Program Dual Conic Program 

Primal SDP Dual SDP 
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Primal Conic Program Dual Conic Program 
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LP in Measure Dual 



                                                                        

Appendix II: Alternative Representations 
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Moment Matrix 

Moment Matrix  associated with a sequence of moments up to order 2𝑑𝑑: 

Moment Matrix of order 𝑑𝑑: 

• 𝐵𝐵𝑑𝑑 (𝑥𝑥): vector of monomial up to order 𝑑𝑑 Constant matrix 
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Moment Matrix 
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Localizing Matrix 
Localizing matrix associated with a sequence of moments  and polynomial 

Localizing Matrix 

• 𝐵𝐵𝑑𝑑 (𝑥𝑥): vector of monomial up to order 𝑑𝑑 Constant matrix 
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 Localizing Matrix 
22 − 𝑥𝑥2Sequence of moments up to order 4 and 𝑔𝑔 𝑥𝑥 = 𝑎𝑎 − 𝑥𝑥1 
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 Localizing Matrix 
22 − 𝑥𝑥2Sequence of moments up to order 4 and 𝑔𝑔 𝑥𝑥 = 𝑎𝑎 − 𝑥𝑥1 
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SOS Polynomials 

𝑝𝑝𝛼𝛼: Coefficient 
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Example: 

SOS Polynomials 

MIT 16.S498: Risk Aware and Robust Nonlinear Planning  Fall 2019 126 



                                                                        

SOS Polynomials 

Example: 

𝐁𝐁00 𝐁𝐁10 𝐁𝐁20 𝐁𝐁01 𝐁𝐁02 𝐁𝐁03 𝐁𝐁04 𝐁𝐁11 𝐁𝐁12 
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SOS Polynomials 

Example: 

𝐁𝐁00 𝐁𝐁10 𝐁𝐁20 𝐁𝐁01 𝐁𝐁02 𝐁𝐁03 𝐁𝐁04 𝐁𝐁11 𝐁𝐁12 
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SOS Polynomials 

Coefficient of polynomial 𝑔𝑔 𝑥𝑥 𝜎𝜎(𝑥𝑥) 
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SOS Polynomials 

Example: 

𝐁𝐁10 𝐁𝐁12 𝐁𝐁12 𝐁𝐁13 𝐁𝐁14 𝐁𝐁21 𝐁𝐁21 𝐁𝐁22 𝐁𝐁30 
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