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Probabilistic Dynamical Systems and Probabilistic Safety Constraints

Discrete-Time Model

Xi+1 = f (X, Uy, W)

L S 2

states inibuts Uncertainty ~ pr(wy):probability distribution

» For safety and control, we need to work with probability
distribution s of the uncertainty along the planning horizon.

xp~pr(xx) k=0,..,N
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Probabilistic Dynamical Systems and Probabilistic Safety Constraints

Continuous-Time Model

Ordinary Differential Equation (ODE)

x(t) = f(x(@),u®)) Xo~p1(Xo)

» Due to probabilistic initial states, state of the system at each time t are also
probabilistic.

» The initial measure is transported by the flow of the ODE.
xe~pr(x;) te[0,T]
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Probabilistic Dynamical Systems and Probabilistic Safety Constraints

Continuous-Time Model

Ordinary Differential Equation (ODE)

x(t) = f(x(@),u®)) Xo~pr (%o)

» Due to probabilistic initial states, state of the system at each time t are also
probabilistic.

» The initial measure is transported by the flow of the ODE.
xe~pr(x;) te[0,T]

» For safety and control,

* Instead of working with probability measures x;~pr(x;) over planning horizon
t €[0,T]

*  We work with 3 distributions:

1) Initial distribution 2) Terminal distribution,
3) Average Occupation Measure that captures the information of the probabilistic

trajectories

Fall 2019
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 We work with 3 distributions (measures):

1) Initial distribution
2) Terminal distributions,
3) Average Occupation Measure that captures the information of the probabilistic trajectories

» (Average )occupation measure captures the information of dynamical systems in continuous-time.

» These measures satisfy Linear Partial Differential Equation (PDE).

* |Instead of working with Nonlinear Ordinary Differential Equation (ODE) x(t) = f(x(t),u(t))

We work with Linear PDE in terms of measures.
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» We can formulate control and planning problems of continuous-time dynamical systems as
optimization problems with differential constraints.

Example: Optimal Control
inf [ 1(t.2(t). u(t))dt
S.t. .
t eU te 0,7
0) € XD, x (T) € Xr

* Using notion of (average )occupation Measure, we can reformulate such optimizations in terms of
measures (Linear Program) and their moments (Semidefinite Program).
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Topics:

» Occupation Measure and Liouville’s Equation

» Trajectory Optimization
» Optimal Control
» Region of Attraction Set

» Nonlinear Feedback Control and Backward Reachable Set
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(Average )Occupation Measure
and
Liouville’s Equation

D. Henrion, M. Ganet-Schoeller, S. Bennani. "Measures and LMI for space launcher robust control validation”, Proceedings of the IFAC Symposium on Robust
Control Design, Aalborg, Denmark, June 2012.

D. Henrion "Optimization on linear matrix inequalities for polynomial systems control”, Lecture notes used for a tutorial course given during the
International Summer School of Automatic Control held at Grenoble, France, in September 2014.
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Notations

Measure (Lecture 3: measure and moment based nonlinear optimization)

(Nonnegative) measure [/ : >, — R_|_

» In general (nonnegative) measure 1 assigns real numbers to sets.(measures the size of the set)

n(A) = fA Jz(x)dx — fA dp = fA pldz) = [Tap(dr)

Setin x domain  density function of u To emphasize that measure " Indicator function of set A
is defined in x domain

e.g., x~u(dx) Probability measure of random variable in x domain

1(A): probability that random variable is in set A

» moment of order « of a measure Yo = E [z = [ x*dp
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ODE:  x(t) = f(t,x(t)) t € [0,T] x €X

* Initial states are random variable Xg~&o(dx) (Probability measures)

* Due to random initial states, ODE has a family of trajectories.  x;~&(dx|t) (probability measure of states for given t )

* Terminal states are random variable x,.~&;(dx) (Probability measures)
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ODE:  x(t) = f(t,x(t)) t € [0,T] x €X

* Initial states are random variable Xg~&o(dx) (Probability measures)

* Due to random initial states, ODE has a family of trajectories.  x;~&(dx|t) (probability measure of states for given t )

* Terminal states are random variable x,.~&;(dx) (Probability measures)

Probability measures of states  (§o(dx), £(dx|t),ér(dx)) t € [0,T]
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ODE:  x(t) = f(t,x(t)) t € [0,T] x €X

* Initial states are random variable Xg~¢&o(dx) (Probability measures)

* Due to random initial states, ODE has a family of trajectories.  x;~¢&(dx|t) (probability measure of states for given t )

* Terminal states are random variable x,.~&;(dx) (Probability measures)

Probability measures of states (& (dx), §(dx|t),ér(dx)) t € [0, T]

» We add time to the description of probability measures

» We define measures whose marginal distributions are defined in 1) state space and 2) time domain
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ODE:  x(t) = f(t,x(t)) t € [0,T] x €X

* Initial states are random variable Xg~&o(dx) (Probability measures)

* Due to random initial states, ODE has a family of trajectories.  x;~&(dx|t) (probability measure of states for given t )

* Terminal states are random variable x,.~&,(dx) (Probability measures)

Probability measures of states  (§o(dx), E(dx|t),ér(dx)) < Measures defined in state space

» We add time to the description of probability measures

» We define measures whose marginal distributions are defined in 1) state space and 2) time domain

e.g., u(dt,dx) = u(dt) u(dx) - Measure defined in time and state spaces

Marginal measure in time
Marginal measure in states <
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ODE:  x(t) = f(t,x(t)) t €0,T] x €X

* Initial states are random variable Xg~&o(dx) (Probability measures)

* Due to random initial states, ODE has a family of trajectories. x.~&(dx|t) (probability measure of states for given t )

* Terminal states are random variable x,.~&;(dx) (Probability measures)

Probability measures of states  (§p(dx), E(dx|t),ér(dx))

» We add time to the description of probability measures

Marginal measure  Marginal measure
in time l lin states

Initial Measure uy(dt, dx) = 6(dt)&y(dx)

8o (dt)
t_IA Delta distribution of time t=0 J

N Probability measure of states
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ODE:  x(t) = f(t,x(t)) t €0,T] x €X

* Initial states are random variable Xg~&o(dx) (Probability measures)

* Due to random initial states, ODE has a family of trajectories. x;~¢&(dx|t) (probability measure of states for given t )

* Terminal states are random variable x,.~&;(dx) (Probability measures)

Probability measures of states  (&p(dx), £(dx|t),ér(dx))

» We add time to the description of probability measures Terminal Measure up(dt, dx) = 8,(dt)ép(dx)

6T(dtﬁ J
t P Delta distribution of timet =T

Probability measure of states

Marginal measure  Marginal measure
in time l lin states

Initial Measure uy(dt, dx) = 6(dt)&y(dx)

8o (dt)
t_J_ Delta distribution of time t=0 J I

N Probability measure of states
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ODE:  x(t) = f(t,x(t)) t €0,T] x €X

* Initial states are random variable Xg~&o(dx) (Probability measures)

* Due to random initial states, ODE has a family of trajectories. x;~&(dx|t) (probability measure of states for given t )

* Terminal states are random variable x,.~&.(dx) (Probability measures)

Probability measures of states  (&p(dx), £(dx|t),ér(dx))

» We add time to the description of probability measures

Marginal measure
in time

(Average) Occupation Measure u(dt,dx) = 1(dt)&(dx|t)
l—Y—J

t——L% — Lebesgue Measure of time on [0, T] «

probability measure of states for given t <
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Example:

> ODE  x(t) = —x(t)

* |Initial state x(0) =1

e Trajectory x(t) =e~t (solution of ODE for the given initial state)

e x(T = 0.693) = %
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Example:

> ODE  x(t) = —x(t)

* Marginal measure in states
*  Probability measureof x = 1

* Marginal measure intimet = 0

* Initial state x(0) =1 > Initial Measure uy(dt, dx) = do(dt)dll(dx)
60(dt)I 50(dx1
=0 x =0

* Trajectory x(t) =et

1
* x(T'=0.693) = 2 > Terminal Measure up(dt, dx) = §r(dt)S1(dx)
2 * Marginal measure in states
e Marginal measure intimet =T *  Probability measure of x = %
5,(dt) 60(dxj[
=T Y X =05
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Example:

> ODE  x(t) = —x(t)

* Marginal measure in states
*  Probability measureof x = 1

* Marginal measure intimet = 0

* Initial state x(0) =1 > Initial Measure uy(dt, dx) = do(dt)dll(dx)
* Marginal measure intime t € [0, T] * Conditional measure in states
. i — et = .
Trajectory  x(t) =e (Average)Occupation Measure u(dt,dx) = 1(dt)d,-t(dx)
1 Delta distributions along
¢ the trajectory x = et
t=20 t=T
* (Average) Occupation Measure captures the information of trajectory

1
* x(T =0.693) = > Terminal Measure ur(dt, dx) = 8§ (dt)81(dx)
2

* Marginal measure intimet =T * Marginal measure in states

*  Probability measure of x = %
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Example:

> ODE  x(t) = —x(t)

* Initial state x(0) = 1 * Initial Measure uo(dt, dx) = 8y(dt)d;(dx)
* Trajectory x(t) =et * (Average) Occupation Measure u(dt,dx) = 1(dt)d,-¢(dx)
1
* x(T =0.693) = *  Terminal Measure ur(dt,dx) = §7(dt)51(dx)
2

» These 3 measure captures the information of dynamical system.

Fall 2019

MIT 16.S498: Risk Aware and Robust Nonlinear Planning



Example:

> ODE  x(t) = —x(t)

* Initial state x(0) = 1 e Initial Measure pgy(dt, dx) = 6,(dt)é,(dx)
* Trajectory x(t) =et * (Average) Occupation Measure u(dt,dx) = 1(dt)d,-¢(dx)
1
* x(T =0.693) = *  Terminal Measure ur(dt,dx) = §7(dt)51(dx)
2

» These 3 measure captures the information of dynamical system.

» In the case of uncertain states, measure of states are non-delta probability distributions.

Fall 2019
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ODE:  x(t) = f(t,x(t)) t €0,T] x €X

* Initial states are random variable Xg~&o(dx) (Probability measures)

* Due to random initial states, ODE has a family of trajectories. x;~&(dx|t)

* Terminal states are random variable x,.~&;(dx) (Probability measures)

Probability measures of states  (&p(dx), £(dx|t),ér(dx))

» Measures in time and state space
Measures (,uo (dt,dx), u(dt, dx), ur(dt, dx)) l

» These measures satisfy Linear Partial Differential Equation (PDE).

Terminal Measure
ur(dt, dx) = &7(dt)$r(dx)

D

—
~

Average Occupation Measure

Initial Measure u(dt, dx) = dtg(dx|t)

Ho(dt, dx) = 6p(dt)éo(c -
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ODE:  x(t) = f(t,x(t)) t €0,T] x €X

Measures (,uo (dt,dx), u(dt, dx), ur(dt, dx))

. 9,
Propagation of measures (PDE) a—l: + div(fu) = ug — ur  Liouville’s Equation

» These measures satisfy Linear Partial Differential Equation (PDE).

» Infect, Liouville’s equation captures the information of ODE (dynamical system)
Terminal Measure

» Hence, instead of working with nonlinear ODE, we can work with linear PDE in measure.

Average Occupation Measure

Initial Measure u(dt, dx) = dts(dx|t)

uo(dt, dx) = 8,(dt)o(c
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ODE:  x(t) = f(t,x(t)) t €0,T] x €X

Measures (,uo (dt,dx), u(dt, dx), ur(dt, dx))

. 9,
Propagation of measures (PDE) a—l: + div(fu) = ug — ur  Liouville’s Equation

» These measures satisfy Linear Partial Differential Equation (PDE).

» Infect, Liouville’s equation captures the information of ODE (dynamical system)
Terminal Measure

» Hence, instead of working with nonlinear ODE, we can work with linear PDE in measure. pp(dt, dx) = 67(dt)ér(dx)
» Give the nonlinear optimizati ith diff tial traints: ’-'-‘<-*, "
ptimization wi ifferential constraints: %ﬁh&ig? i
* We replace the differential constraints with linear PDE and reformulated the ‘( . :;::::‘tég;é-:?é%}:

problem terms of measure (Linear Program in measures).

‘ Average Occupation Measure
= u(dt, dx) = dté(dx|t)

Initial Measure u R
Ho(dt, dx) = §p(dt)éo(dx)

Fall 2019
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ODE:  x(t) = f(t,x(t)) t €0,T] x €X

Measures (,uo (dt,dx), u(dt, dx), ur(dt, dx))

. d
Propagation of measures (PDE) a—l: + div(fu) = po — uy  Liouville’s Equation

» These measures satisfy Linear Partial Differential Equation (PDE).

» Infect, Liouville’s equation captures the information of ODE (dynamical system)
Terminal Measure

» Hence, instead of working with nonlinear ODE, we can work with linear PDE in measure. wr(dt, dx) = 87(dt)ér(dx)
, , o L1 , , = #\\
» Give the nonlinear optimization with differential constraints: 5 ‘5‘7‘5 N
e
* We replace the differential constraints with linear PDE and reformulated the | — é':as- =

problem terms of measure (Linear Program in measures).

We work with the moments of measures (SDP in moments).

o I Average Occupation Measure

Initial Measure u(dt, dx) = dté(dx|t)

Ho(dt, dx) = 50(dt)fo(‘ )
MIT 16.S498: Risk Aware and Robust Nonlinear Planning
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In the following, we will look at (average) occupation measure and Liouville’s Equation in more details.
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Occupation Measure-deterministic case

e Consider:

ODE x(t) = f(t,x(t)) t €[0,T] x €X x(t]|x,): Solution for given initial state
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Occupation Measure-deterministic case

e Consider:

ODE x(t) = f(t,x(t)) t €[0,T] x €X x(t]|x,): Solution for given initial state

> Given an initial condition x,, the occupation measure of a trajectory x(t|x,) is defined by

occupation measure: u(Se XS, |xg) = f Is (x(t[xp))dt given sets S; c [0,T],S, c X
St l
S, c[0,T] SycX Indicator function of set S,

* Occupation measure i, measures the size of set S; X S, with respect to Is_(x(t[x())dt

MIT 16.S498: Risk Aware and Robust Nonlinear Planning Fall 2019



Occupation Measure-deterministic case

* Consider:
ODE x(t) = f(t,x(t)) t €[0,T] x €X x(t]|x,): Solution for given initial state

> Given an initial condition x,, the occupation measure of a trajectory x(t|x,) is defined by

occupation measure: u(Se XS, |xg) = f Is (x(t[xp))dt given sets S; c [0,T],S, c X
St l
S, c[0,T] SycX Indicator function of set S,

* Occupation measure i, measures the size of set S; X S, with respect to Is_(x(t[x())dt

» Geometric interpretation
Occupation measure, measures the time spent by the graph of the trajectory (t, x(t|xy)) in a given set S; X S,.
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Example:

ODE x(t) = —x(t) x(t) = xget
X(O) = Xp >0
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Example:

ODE x(t) = —x(t) x(t) = xget
x(O) = Xp >0

occupation measure:  uU( Sy X Sy |xp) = f Is, (x(t]|xo))dt
St

» The time spent by the graph of the trajectory (t, x(t|x,)) in a given subset S; X S,

a = Xy
u([0,1] x [0,a] |xo) = 1 Xo
S¢ XS _
) —10,q] | x(t) = xge™"
Where a = x,
t =1[0,1] t
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Example:

ODE x(t) = —x(t) x(t) = xget
x(O) = Xp >0

occupation measure:  uU( Sy X Sy |xp) = f Is, (x(t]|xo))dt
St

» The time spent by the graph of the trajectory (t, x(t|x,)) in a given subset S; X S,

Akx

/«t(l[O,l] x [0, a]} |%0) =0 X0
S, X S,

0.8

x(t) = xget

Where a < xye !

a< xpe A

X = [0, a] 0.25 0.5 0.75 1 1.5 1.75 2 2.25 2.5 )
t =[0,1] t

\ 2
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Example:

ODE x(t) = —x(t) x(t) = xget
x(O) = Xp >0

occupation measure:  uU( Sy X Sy |xp) = f Is, (x(t]|xo))dt
St

» The time spent by the graph of the trajectory (t, x(t|x,)) in a given subset S; X S,

u([0,1] % [0,a] |xp) = 1 — m> .. =X _ .2 0| . _._._._. _

Y a
St X Sx 08
_ _ x=1[0,al T
Where xpe™! < a < x, a > xge”! [0,a] T \

0.25 0.5 0.75 1 1.5 1.75 2 2.25 2.5

t = [0,1] t
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Example:

ODE x(t) = —x(t) x(t) = xget
x(O) = Xp >0

occupation measure:  uU( Sy X Sy |xp) = f Is, (x(t]|xo))dt
St

» The time spent by the graph of the trajectory (t, x(t|x,)) in a given subset S; X S,

X
u([0,1] x [0,a] |xo) = ] s, (x(tlxp))dt == 1—In=  asx <ae
! S

S, X S,

t

0 Xo > ae

0.25 0.5 0.75 1 1.25 1.5 175 2 225 2.5

v
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Occupation Measure-deterministic case

e Consider:

ODE x(t) = f(t,x(t)) t €[0,T] x €X x(t]|x,): Solution for given initial state

» Given an initial condition x, the occupation measure of a trajectory x(t|x,) is defined by

occupation measure: (S XS, |x9) = f Is (x(t]xp))dt given sets S; c [0,T],S, c X
Ll
S, c[0,T] S,cX Indicator function of set S,

* Occupation measure y, measures the size of set S; X S, with respect to Is_(x(t[x())dt

» Geometric interpretation: Occupation measure, measures the time spent by the graph of the trajectory (t, x(t|x,)) in a given set S; X S,.
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Occupation Measure-deterministic case

e Consider:

ODE x(t) = f(t,x(t)) t €[0,T] x €X x(t]|x,): Solution for given initial state

» Given an initial condition x, the occupation measure of a trajectory x(t|x,) is defined by

occupation measure: (S XS, |x9) = j Is (x(t]xp))dt given sets S; c [0,T],S, c X
Ll
S, c[0,T] S,cX Indicator function of set S,

* Occupation measure y, measures the size of set S; X S, with respect to Is_(x(t[x())dt

» Geometric interpretation: Occupation measure, measures the time spent by the graph of the trajectory (t, x(t|x,)) in a given set S; X S,.
» Analytic interpretation: Integration with respect to occupation measure p is equivalent to time-integration along a system trajectory, i.e.

Integral of a function v(t, x) along the trajectory:

T
J v(t, x(t|xo))dt =f jv(t,x)/{(dx, dt|xo) ~ Occupation measure
0 0 Jx ‘ >
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36




Occupation Measure-deterministic case

e Consider:

ODE x(t) = f(t,x(t)) t €[0,T] x €X x(t]|x,): Solution for given initial state

» Given an initial condition x, the occupation measure of a trajectory x(t|x,) is defined by

occupation measure: (S XS, |x9) = j Is (x(t]xp))dt given sets S; c [0,T],S, c X
Ll
S, c[0,T] S,cX Indicator function of set S,

* Occupation measure y, measures the size of set S; X S, with respect to Is_(x(t[x())dt

» Geometric interpretation: Occupation measure, measures the time spent by the graph of the trajectory (t, x(t|x,)) in a given set S; X S,.

» Analytic interpretation: Integration with respect to occupation measure p is equivalent to time-integration along a system trajectory, i.e.

Information of the trajectory is captured by occupation measure

T T
Lv(t,x(ﬂxo))dt:L jxv(t,,u(dx,dﬂxo)

MIT 16.S498: Risk Aware and Robust Nonlinear Planning Fall 2019




Occupation Measure-deterministic case

ODE x(t) = f(t,x(t)) t €[0,T] x €X x(t]|x): Solution for given initial state

» Analytic interpretation: Integration with respect to occupation measure p is equivalent to time-integration along a system trajectory,
i.e.

T T
Integral of a function v(t, x) along the trajectory: J v(t, x(t|xy))dt = J f v(t, x)u(dx, dt|xy)
0 o Jx

* Now, we want to describe the time evolution of the function v(t, x) along the trajectory of dynamical system.

 We will use the time-evolution to describe the time-evolution of the moments of measures.
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Occupation Measure-deterministic case

ODE x(t) = f(t,x(t)) t €[0,T] x €X x(t]|x): Solution for given initial state

» Analytic interpretation: Integration with respect to occupation measure p is equivalent to time-integration along a system trajectory,
i.e.

T T
Integral of a function v(t, x) along the trajectory: J v(t, x(t|xy))dt = J f v(t, x)u(dx, dt|xy)
0 0 X

' ' T T
x(t) = f(x(t),t) ~ SolutionattimeT = y(T) =y, + f xdt = xo + j f(x(t),t) dt
0 0
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Occupation Measure-deterministic case

ODE x(t) = f(t,x(t)) t €[0,T] x €X x(t]|x): Solution for given initial state

» Analytic interpretation: Integration with respect to occupation measure p is equivalent to time-integration along a system trajectory,
i.e.

T T
Integral of a function v(t, x) along the trajectory: J v(t, x(t|xy))dt = J f v(t, x)u(dx, dt|xy)
0 0 X

' ' T T
x(t) = f(x(t),t) ~ SolutionattimeT = y(T) =y, + f xdt = xo + j f(x(t),t) dt
0 0

Given the function v(t, x):

T

v(T,x(T|xy)) = v(0,xy) +j v(t, x(t]|xg))dt
0
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Occupation Measure-deterministic case

ODE x(t) = f(t,x(t)) t €[0,T] x €X x(t]|x): Solution for given initial state

» Analytic interpretation: Integration with respect to occupation measure p is equivalent to time-integration along a system trajectory,
i.e.

T T
Integral of a function v(t, x) along the trajectory: J v(t, x(t|xy))dt = J f v(t, x)u(dx, dt|xy)
0 0 X

' ' T T
x(t) = f(x(t),t) ~ SolutionattimeT = y(T) =y, + f xdt = xo + j f(x(t),t) dt
0 0

Given the function v(t, x):

T
(T, x(T|x)) = v(0,x,) + j o (6, x(t]x0))dt = v(0,x0) + J| (% +In, fi) dt

0
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Occupation Measure-deterministic case

ODE x(t) = f(t,x(t)) t €[0,T] x €X x(t]|x): Solution for given initial state

» Analytic interpretation: Integration with respect to occupation measure p is equivalent to time-integration along a system trajectory,
i.e.

T T
Integral of a function v(t, x) along the trajectory: J v(t, x(t|xy))dt = J f v(t, x)u(dx, dt|xy)
0 0 X

' ' T T
x(t) = f(x(t),t) ~ SolutionattimeT = y(T) =y, + f xdt = xo + j f(x(t),t) dt
0 0

Given the function v(t, x):

Linear Operator:

n
v ov
bo=5c% 2%/

T
v(T, x(T|xy)) = v(0,x,) + j o (6, x(t]x0))dt = v(0,x0) + J| (% +3In, fi) dt

0

=1
ov

_ T
% + (Vv)' f

MIT 16.S498: Risk Aware and Robust Nonlinear Planning Fall 2019



Occupation Measure-deterministic case

ODE x(t) = f(t,x(t)) t €[0,T] x €X x(t]|x): Solution for given initial state

» Analytic interpretation: Integration with respect to occupation measure p is equivalent to time-integration along a system trajectory,
i.e.

T T
Integral of a function v(t, x) along the trajectory: J v(t, x(t|xy))dt = J f v(t, x)u(dx, dt|xy)
0 0 X

' ' T T
x(t) = f(x(t),t) ~ SolutionattimeT = y(T) =y, + f xdt = xo + j f(x(t),t) dt
0 0

Given the function v(t, x):

Linear Operator:

v o v
o=+ 2ax
=v(0, xo) + fOT Lv(t, x(t|xy))dt _ov

=5+ (W)'f

T
v(T, x(T|xy)) = v(0,x,) + j o (6, x(t]x0))dt = v(0,x0) + J| (% +3In, fi) dt

0

=1
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Occupation Measure-deterministic case

ODE x(t) = f(t,x(t)) t €[0,T] x €X x(t]|x): Solution for given initial state

» Analytic interpretation: Integration with respect to occupation measure p is equivalent to time-integration along a system trajectory,
i.e. oo :

VT T
Integral of a function v(t, x) along the trajectory: f v(t, x(t|xo))dt = ] j v(t, x)u(dx, dt|xy)
/0 0 “x

' ' T T
x(t) = f(x(t),t) ~ SolutionattimeT = y(T) =y, + f xdt = xo + j f(x(t),t) dt
0 0

Given the function v(t, x):

Linear Operator:

v~ O
. LU = E + a_xlfl
=v(0, x,) +fOTLv(t,x(t|x0))dt = (0, x,) +j ]Lv(t, x)p(dx, dt|xg) dv T
o Jx \ v ; = T + (Vv)'f
Occupation measure

T
v(T, x(T|xy)) = v(0,x,) + j o (6, x(t]x0))dt = v(0,x0) + J| (% +3In, fi) dt

0

=1
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Occupation Measure-deterministic case

ODE x(t) = f(t,x(t)) t €[0,T] x €X x(t]|x): Solution for given initial state

» Analytic interpretation: Integration with respect to occupation measure p is equivalent to time-integration along a system trajectory,
i.e.

T T
Integral of a function v(t, x) along the trajectory: f v(t, x(t|xy))dt = ] j v(t, x)u(dx, dt|xy)
0 0 Yy

x(T)=x0+f

0

T T
xdt = xy+ f f(x(t),t)dt
0

Given the function v(t, x):

T
v(T,x(T|xo)) = v(0, xp) +j j[,v(t, x?u(dx, dt|x0))
o Jx ¥

Occupation measure

=W yn 9V 0V T
Where Lv = at+zl=1axifl = at+(Vv) f

MIT 16.S498: Risk Aware and Robust Nonlinear Planning Fall 2019



Occupation Measure-Probabilistic Case
ODE  x(t) = f(t,x(t)) t € [0,T] x €X

« Initial Probability Measure: X is random variable xy~¢&q(dx)

* Due to random initial states, ODE has a family of trajectories.
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Occupation Measure-Probabilistic Case
ODE  x(t) = f(t,x(t)) t € [0,T] x €X

« Initial Probability Measure: X is random variable xy~¢&q(dx)

* Due to random initial states, ODE has a family of trajectories.
Initial Probability measures: &,(dx)

Terminal Probability measures: &7(S,) = le(x(TIxO))fo(dx)

l

Probability that states attimet =T areinsetS, € X

ér(S,) = | (probability distribution) dx = lsx(x(TIxO))(probabiIity distribution) dx
L Sy
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Occupation Measure-Probabilistic Case

ODE  x(t) = f(t,x(t)) t € [0,T] x €X

« Initial Probability Measure: X is random variable xy~¢&q(dx)

* Due to random initial states, ODE has a family of trajectories.

Initial Probability measures: &,(dx)

Terminal Probability measures: &7(S,) = le(x(TIxO))fo(dx)

Probability measures at time t: §(Sxlt) = JISx(x(ﬂxo))fo(dx)

Probability that states at time t are in set S5, € X
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Occupation Measure-Probabilistic Case

ODE  %(t) = f(t, x(t))

t €[0,T] x€EX

* Initial Probability Measure: X is random variable x,~¢(dx)

* Due to random initial states, ODE has a family of trajectories.

Initial Probability measures

+ So(dx)

Terminal Probability measures: &7(S,) = flsx(x(TIxO))ch(dx)

Probability measures at time t: §(Sx|t) = ]st(x(ﬂxo))fo(dx) (Probability that states at time t are inset S, € X )

Average Occupation Measure:

Given an initial probability measure of states &, the average occupation measure of the flow of trajectories is defined by

(S x 520 = [ (S x Sulxa)fa(d)

Occupation measure
(spent time for single x(t|x,) )

given sets S; € [0,T],S, € X

Fall 2019
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Occupation Measure-Probabilistic Case
ODE  x(t) = f(t,x(t)) t € [0,T] x €X

* Initial Probability Measure: X is random variable x,~¢(dx)

* Due to random initial states, ODE has a family of trajectories.

Initial Probability measures: &,(dx)

Terminal Probability measures: &7(S,) = flsx(x(TIxO))ch(dx)

______________________________________________________________

Average Occupation Measure:
Given an initial probability measure of states &,, the average occupation measure of the flow of trajectories is defined by

(5% 5,0 = | n(Sex Suleo)gat@o) = [ | 1, (etel)deo(a) = | £GSidna

Occupatiow probability measure of states at time ¢t
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Occupation Measure-Probabilistic Case
ODE  x(t) = f(t,x(t)) t € [0,T] x €X

« Initial Probability Measure: X is random variable xy~¢&q(dx)

* Due to random initial states, ODE has a family of trajectories.

Initial Probability measures: &,(dx)

Terminal Probability measures: &7(S,) = flsx(x(TIxO))ch(dx)

Probability measures at time t: §(Sx|t) = Jlsx(x(tlxo))fo(dx)

Average Occupation Measure:
Given an initial probability measure of states &, the average occupation measure of the flow of trajectories is defined by

(5% 5,0 = | n(Sex Sile)ga(an) = [ | 1g, (etel)deso(a) = | £GSidora

S, < [0,T] probability measure of states at time t

Average Occupation Measure—»u(dt, dx) = dtf (dx|t) —— probability measure of states for a given t
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Occupation Measure-Probabilistic Case
ODE  x(t) = f(t,x(t)) t € [0,T] x €X

« Initial Probability Measure: X is random variable xy~¢&q(dx)

 Initial Probability measures of states: $o(dx) * Initial Measure Ho(dt, dx) = do(dt)So(dx)
* Terminal Probability measure of states:  $7(dx) * Terminal Measure ur(dt, dx) = ér(dt)ér(dx)

*  Probability measure of states for given t: £(dx|t)

* Average Occupation Measure: u(dt,dx) = dté(dx|t)
t €[0,T]

e s A
T

ur(dt, dx) = 67 (dt)ér(dx)

Average Occupation Measure
u(dt, dx) = dté(dx|t)

Initial Measure ”
o(dt, dx) = 8o(dt)éo
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* Now, we want to describe the time evolution of the function v(t, x) in terms of Average occupation measure.
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* Now, we want to describe the time evolution of the function v(t, x) in terms of Average occupation measure.

T
Given Xy v(T,x(T|xq)) = v(0, xq) +j Lv(x(t|x)) u(dx, dt|xg)
0 JX - Occupation measure
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* Now, we want to describe the time evolution of the function v(t, x) in terms of Average occupation measure.

T

Given Xy v(T,x(T|xq)) = v(0,xq) +j Lv(x(t|x)) u(dx, dt|xg)
0 JX - Occupation measure
Integrating with respect to &,
T
xX0~$0o jv(T, x)ér(dx) = fv(O, x)dé&y(dx) +_[ ij(t, xX)u(xd, dt)
0 JXx .
Terminal Probability of state  Initial Probability of state Average OCcupatlon measure
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* Now, we want to describe the time evolution of the function v(t, x) in terms of Average occupation measure.

T
Given Xg v(T,x(T|xo)) = v(0, xp) +j Lv(x(t|x0))l,u(dx, dt|xg)
0 “X ' Occupation measure
Integrating with respect to &,
T
X0~$o ]v(T, x)ér(dx) = fv(O,x)dfo(dx) +f JLv(t, x)u(dx, dt)
0 JXx .
Terminal Probability of state  Initial Probability of state Average OCcupatlon measure

Initial Measure uy(dt, dx) = §y(dt)éy(dx)  Terminal Measure ur(dt, dx) = §7(dt)ér(dx)

T
X0~$0 Jv(t, x)c?uT = fv(t, x)dug +f JLv(t, x)du(x,t)
0o Jx

Average Occupation measure

Information of time is captured by

Fall 2019
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* Now, we want to describe the time evolution of the function v(t, x) in terms of Average occupation measure.

T

Given Xy v(T,x(T|xq)) = v(0, xq) +j Lv(x(t|x)) u(dx, dt|xg)
0 JX - Occupation measure
Integrating with respect to &,
T
X0~$o ]v(T, x)ér(dx) = fv(O, x)d&y(dx) +f JLv(t, x)u(dx, dt)
0 Jx .
Terminal Probability of state  Initial Probability of state Average OCcupatlon measure

Initial Measure uy(dt, dx) = §y(dt)éy(dx)  Terminal Measure ur(dt, dx) = §7(dt)ér(dx)

T
X0~$o jv(t, X)ur(dx, dt) = jv(t, X))o (dx, dt) +j ij(t, x)du(x,t)
0o Jx

* This describes the relation of 1) initial measure py(dx, dt), 2) Terminal measure u(dx, dt) 3) average occupation measure u(dx, dt)

*  We will use this equation to describe the relation of the moments (for polynomial v(t, x))
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To obtain the Liouville’s Equation:

X0~$0 Jv(t x)ur(dx, dt) = Jv(t x) o (dx, dt) +j f[,v(t x)du(x,t)
T

Information of time is captured byT Average Occupation measure

Compact form

In terms of L[ <vur>=<v,uy> +< Lv,u>
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To obtain the Liouville’s Equation:

X0~$0 jv(t x)ur(dx, dt) = Jv(t x) o (dx, dt) +j f[,v(t x)du(x,t)
T

Information of time is captured byT Average Occupation measure

Compact form

In terms of L[ <vur>=<v,uy> +< Lv,u>

We can represent in terms of adjoint operator

dv v

Linear Operator: Lv = i + axlf

=

(Lecture 5 duality)

n
Adjoint linear operator < v(t,x),L'u > =< Lv(t, x),u > > Ly = _Z_/’L — a(afi“) = _g_ﬂ — div(fu)
t ( Xi t

=1

In terms of [ <v,L'u>=<vur> — <v,uy >
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To obtain the Liouville’s Equation:

X0~$0 Jv(t x)ur(dx, dt) = Jv(t xX) o (dx, dt) +j f[,v(t x)du(x,t)
T
Information of time is captured byT Average Occupation measure

Compact form

In terms of L[ <vur>=<v,uy> +< Lv,u>

We can represent in terms of adjoint operator

dv v

Linear Operator: Lv = i + axlf

=

(Lecture 5 duality)

n
Adjoint linear operator < v(t,x),L'u > =< Lv(t, x),u > > Ly = _g_ﬂ — z a(afiu) = _g_ﬂ — div(fu)
t Xi t

i=1

In terms of [ <v,L'u>=<vur> — <v,uy >

This is required to hold for all functions v, we obtain a linear PDE on measure as [*u = ur — 1,
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To obtain the Liouville’s Equation:

X0~$0 Jv(t x)ur(dx, dt) = Jv(t x) o (dx, dt) +j f[,v(t x)du(x,t)
T

Information of time is captured byT Average Occupation measure

Compact form

In terms of L[ <vur>=<v,uy> +< Lv,u>

We can represent in terms of adjoint operator

dv v

Linear Operator: Lv = i + axlf

=

(Lecture 5 duality)

n
Adjoint linear operator < v(t,x),L'u > =< Lv(t, x),u > > Ly = _g_ﬂ — z a(afiu) = _g_ﬂ — div(fu)
t Xi t

i=1

In terms of [ <v,L'u>=<vur> — <v,uy >

This is required to hold for all functions v, we obtain a linear PDE on measure as [*u = ur — 1,

au
Fri div(fu) = po — pr Liouville’s Equation
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Nonlinear ODE: x(t) = f(t,x(t)) te[0,T] xEX

* Initial Probability measure of states: &o(dx)

Linear PDE: 3
(Liouville’s Equation) G_Ltl + div(fu) = pg — Uy Measures is time and state space (,uo (dt, dx), u(dt, dx), ur(dt, dx))
. . T
To describe the moments we will use: fv(t' xX)ur(dt, dx) = fv(t' x) o (dt, dx) + f j[,v(t, x)u(dt, dx)
0 Jx

(Integral form of Liouville’s Equation)

Terminal Measure
ur(dt,dx) = 6r(dt)ér(dx)

Average Occupation Measure
u(dt, dx) = dté(dx|t)
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Nonlinear ODE: x(t) = f(t,x(t)) te[0,T] xEX

* Initial Probability measure of states: &o(dx)

Linear PDE: 3
U .
(Liouville’s Equation) % + div(fu) = pg — Uy Measures is time and state space (,uo (dt, dx), u(dt, dx), ur(dt, dx))
N . T
To describe the moments we will use: fv(t’ xX)ur(dt, dx) = _[v(t' x) o (dt, dx) + j ij(t, x)u(dt, dx)
0 Jx

(Integral form of Liouville’s Equation)

* The mass of ug is one (probability measure). This implies that mass of u is one and mass of u is equal to T.

ur(dt, dx) = 67 (dt)ér(dx)

< Average Occupation Measure

Initial Measure < u(dt, dx) = dt&(dx|t)

to(dt, dx) = 8o(dt)éo( =
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Moments Time-Evolution:

We assume that all the functions are polynomials

n
v(t, x):polynomial t, x):polynomial dv ov
(t, x):poly J(t,x)poly o > at and Wv)Tf:ZE)_x,;fi : polynomials
i=

.
x(t) = f(t,x(0)

* Moments of uy(dx,dt): Yy, = Jt“lxazuo(dx, dt)
 Moments u(dx, dt): Yy, = ft“lxazu(dx, dt)

 Moments ur(dx, dt): Y3 = jt“lx“z,uT(dx, dt)
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Moments Time-Evolution:

We assume that all the functions are polynomials

v(t, x):polynomial

n
t x):pol ial ov v
fi x):polynomial | 5, and (V)T = zﬁfi : polynomials
(8) = £ (6, x()) i=1

* Moments of puy(dx,dt): y1 = Jt“lxo‘zuo(dx, dt)
 Moments u(dx, dt): Yy, = ft“lxazu(dx, dt)
* Moments ur(dx, dt):

Y3 = jtalxazﬂT(dx» dt)

* We choose functions v(t, x) which are monomials of the form t“1x%2 , (ay, a3);,j = 1,..m

T
jv(t, x)ur(dt, dx) = jv(t, x) o (dt, dx) + j va(t, x)u(dt, dx)
0 Jx

MIT 16.S498: Risk Aware and Robust Nonlinear Planning

Fall 2019



Moments Time-Evolution:

We assume that all the functions are polynomials

n
v(t, x):polynomial t, x):polynomial dv ov
(£, x):poly J(t,x):poly o > at and Wv)Tf:ZE)_x,;fi : polynomials
i=

.
x(t) = f(t,x(0)

* Moments of uy(dx,dt): Yy, = Jt“lxazuo(dx, dt)

* Moments u(dx, dt): Yo = ft“lxazu(dx, dt)

* Moments uy(dx, dt): Y3 = jtalxazﬂT(dx» dt)

* We choose functions v(t, x) which are monomials of the form t“1x%2 , (ay, a3);,j = 1,..m
jvj (t, x)ur(dt, dx) = jvj(t, x)Uo(dt, dx) + j[,vj(t, x)u(dt, dx) j=1,.m
lMoments of Y,uT(dx, dt) | :\/Ioments of ;O(dx, dt) - Moments ole(dx, dt) |
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Moments Time-Evolution:

We assume that all the functions are polynomials

v(t, x):polynomial

n
t x):pol ial ov v
fi x):polynomial | 5, and (V)T = zﬁfi : polynomials
(8) = £ (6, x()) i=1

* Moments of uy(dx,dt): Yy, = Jt“lxo‘zuo(dx, dt)

 Moments u(dx, dt): Yy, = ft“lxazu(dx, dt)

* Moments ur(dx, dt): Y3 = jt“lx“z,uT(dx, dt)

* We choose functions v(t, x) which are monomials of the form t“1x%2 , (ay, a3);,j = 1,..m

jvj (t, x)ur(dt, dx) = jvj(t, x)Uo(dt, dx) + j[,vj(t, x)u(dt, dx)

j=1,..m
\ )
f
3
Linear sum of the moments: Z AijaYia = bj i=1,..,3 j=1..m
i=1 «a
MIT 16.S498: Risk Aware and Robust Nonlinear Planning
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Nonlinear ODE: x(t) = f(t,x(t)) te[0,T] xEX

* Initial Probability measure of states: &o(dx)

» Information of the nonlinear ODE in measure:

0
Linear PDE: a—‘: + div(fu) = pg — Ur Measures is time and state space (,uo(dt, dx), u(dt, dx), ur(dt, dx))

» Information of the nonlinear ODE in moments:

3
zzaijayia = b; i=1,..,3 j=1,..m
=1 «a

Obtained by f v (t, X)ur(dt, dx) = f v;(t, x)po (dt, dx) + f Lvj(t, x)pldt, dx), v (t,x) =t x2 (aq,a2)5,  J

1,....m

MIT 16.S498: Risk Aware and Robust Nonlinear Planning Fall 2019



Dealing with uncertainty

 We can incorporate real parametric uncertainty in the dynamics.

e Each uncertain parameter must be introduced as an additional state of the system.

(1) = f(&,x(t), w) Newstates: [X ol 406y = £t x(6), w)
w()=0
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Dealing with uncertainty

 We can incorporate real parametric uncertainty in the dynamics.

e Each uncertain parameter must be introduced as an additional state of the system.

(1) = f(&,x(), w) Newstates: [X ol 406y = £t x(6), w)
w()=0
* Unknow parameter

* w~Probability distribution

* |tis fixedin time.
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» Occupation Measure and Liouville’s Equation

» Trajectory Optimization
» Optimal Control
» Region of Attraction Set

> Nonlinear Feedback Control and Backward Reachable Set

1) Reformulate the problem as nonlinear optimization with differential constraints

2) Replace the differential constraints with linear PDE and reformulated the problem
terms of measure (Linear Program in measures).

3) Use the moment representation of the measure (SDP in moments).
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Topics:

» Occupation Measure and Liouville’s Equation

» Optimal Control
» Region of Attraction Set

» Nonlinear Feedback Control and Backward Reachable Set
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Trajectory Optimization

D. Henrion, M. Ganet-Schoeller, S. Bennani. "Measures and LMI for space launcher robust control validation”, Proceedings of the IFAC Symposium on Robust
Control Design, Aalborg, Denmark, June 2012.

D. Henrion "Optimization on linear matrix inequalities for polynomial systems control”, Lecture notes used for a tutorial course given during the
International Summer School of Automatic Control held at Grenoble, France, in September 2014.
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Consider the following dynamic optimization problem with polynomial differential constraints

mf fo a(t))dt
5.t (f) f(t, z(t)), z(t) e X, te€ [0, T]
x(0) € Xo, 2(T) € Xp

State trajectory x(t) constrained in a compact basic semialgebraic set

X={zecR® : p(zx)>0 kE=1,... %x}

Initial and terminal states are constrained in compact basic semialgebraic sets

Xo={z€R" : por(x) >0, k=1,....,.n0} C X

Xr={zeR" : prp(z) >0, k=1,...,np} C X
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Consider the following dynamic optimization problem with polynomial differential constraints

mf fo a(t))dt
5.t (f) f(t, z(t)), (L) e X, te|0,T]
x(0) € Xo, 2(T) € Xp

Xo={zeR" : po(2) >0, k=1,..., not C X
XT—{ZI e R" D DTk J)ZO Ale,....TI.T}CX

* The final time T is either given, or free, in which case it becomes a decision variable, jointly with x(t).

Fall 2019
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Consider the following dynamic optimization problem with polynomial differential constraints

mf fo a(t))dt
5.t (f) f(t, z(t)), z(t) e X, te€ [0, T]
x(0) € Xo, 2(T) € Xp

Xo={zeR" : po(2) >0, k=1,..., not C X
Xr={z€eR" : prp(2) >0, k=1,... ,nr} C X

* The final time T is either given, or free, in which case it becomes a decision variable, jointly with x(t).

We look for trajectory x(t) starting in X, ending in X1, and staying in X that minimizes the given cost.

Fall 2019
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Nonlinear Dynamic Optimization:

mf fo x(t))dt

st (1‘) = f(t,a:(t)), r(t)e X, te[0,T]
x(0) € Xy, (1) € Xrp

X={zeR )20 k=1,... tix}

Xo={zecR" : plz) 20, k=1,..., not C X

Xr={zeR": pri(2) >0, k=1,...,np} C X

* We encode the state trajectory x(t) in an occupation measure y and we come up with an infinite-dimensional LP problem:

o 0
x(t) = f(t,x(t)) > a—‘t‘ + div(fu) = g — Ur

MIT 16.S498: Risk Aware and Robust Nonlinear Planning Fall 2019




Nonlinear Dynamic Optimization:

mf fo x(t))dt

st (D) _f(t,af(t)), v(t) € X, t€[0,7)
x(0) € Xy, (1) € Xrp

X={scR" : p(z) >0, E=1,...,%x}

Xo={zecR" : plz) 20, k=1,..., not C X

Xr={zeR": pri(2) >0, k=1,...,np} C X

* We encode the state trajectory x(t) in an occupation measure y and we come up with an infinite-dimensional LP problem:

o 0
x(t) = f(t,x(t)) > a—‘t‘ + div(fu) = g — Ur

Objective function

T T T
minf 1(t, x(t))dt > min EU l(t,x(t))dt] =jj [(t,x(t))dt &(dx|t)
° Lecture 3: ° 0 u(dt, dx) = dté(dx|t)
moment based T Average occupation measure
nonlinear optimization = ffo L(t, x(t)) p(dx, dt)

=<Lu>
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Nonlinear Dynamic Optimization:
Y P mf fo x(t))dt

st (1‘) = f(t,a:(t)), x(t) e X, t€[0,T]
x(0) € Xy, (1) € Xrp

Infinite-dimensional LP problem: )
inf ([, p)
8“ +div f
0 — HT
Initial measure: o € A, ({0} x Xo) <1 | ) _ 1H 3 l(
Terminal measure: up € A4, ({T} x Xr) Moy =
Average Occupation Measure: ¢ € #.([0.T] x X)

oo
o

* U, ur and T can be free, or given.

Fall 2019
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Nonlinear Dynamic Optimization:
Y P mf fo x(t))dt

s t™ (1‘) = f(t,a:(z‘.)), 2(t) € X, t €0,
By 20, E=1,... 0%} &?(0) = XU~. 'T'(T) c XT

— {ff = Rn F >
={EER"™ : hgplE) >0, k=1,..., not C X
XT—{.:z eER” : prp(2) >0, k=1,...,np} C X
Infinite-dimensional LP problem: inf <[ Pi>
. 8
Initial measure: o € ({0} x Xo) s.T. ’u +div fu = po — pr
Terminal measure: up € 4, ({T} x Xp) (l: ;i-[)) =]

Average Occupation Measure: # € #,([0.7] x X)

* If terminal time T is free and function [ in objective function and the dynamics f do not depend explicitly on time t,

Then it can be shown without loss of generality that in measure-LP measures do not depend explicitly on time either.

The terminal time is equal to the mass of the occupation measure T = u(X)

Infinite-dimensional LP problem: inf (l: ,u->
s.t. div fu = po— pr
(1, o, i) € Mo (X) X o (Xo) % M+(Xy) (L, pto) = 1

Fall 2019
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Example:
» ODE x(t) = —x(t)

We want to find trajectories minimizing the state energy fDT 22(t)dt.

A r(t)e X, te[0,T]
x(0) € Xy, (1) € Xrp
Xo={zxeR: po(ﬁr):—%—(.—é)dz()},
Xp={zeR : pp(z) = !

X:={zeR: p(z) :=4—2" >0}
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Example:
» ODE x(t) = —x(t)

We want to find trajectories minimizing the state energy fDT 22(t)dt.

A r(t)e X, te[0,T]
x(0) € Xy, (1) € Xrp
Xo={zxeR: po(ﬁr):—%—(.—é)HEOL
Xp={zeR : pp(z) = !

X:={zeR: p(z) :=4—2" >0}

Variables of LP in measures:

* Initial Measure pio(dt, dx) = 8o(dt)&éy(dx) supportedon o € A ({0} x Xo)

 Terminal Measure ur(dt,dx) = 67(dt)ér(dx) supportedon gy € A ({1} x Xr)

e Average occupation measure u(dt,dx) = dtdé(dx|t) supportedon j € A ([0,T] x X)
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Example:

We want to find trajectories minimizing the state energy fDT 22(t)dt.

T
inf 0 ;9( ) dt

g, | T=—= x(t)e X, t€[0,T]
2(0) € Xo, 2(T) € X7
Infinite-dimensional LP problem: L (2
inf (I, p) inf (2%, p)
5 85 t op C)(IH . .
(1) s.b. = +div fu= po— pr > Bl g —v g, = Ha— T
(L#U) =1 (1/JU> =1

w.r.t. terminal time T and nonnegative measures , [y, Uy supported on [0, T] X X, {0} X Xy, {T} X Xr.

Free final Time T:

2 inf
( ) Gk

WU, Ug, Ut supported on X, X , Xr.

Fall 2019
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Example:

e This problem can be solved analytically, with optimal trajectory

x(t) = et leaving Xy at x(0) = 1 and reaching Xy at x(T) = %for T =log2 = 0.6931

MIT 16.S498: Risk Aware and Robust Nonlinear Planning Fall 2019



Example:

e This problem can be solved analytically, with optimal trajectory

x(t) = et leaving Xy at x(0) = 1 and reaching Xy at x(T) = %for T =log2 = 0.6931

inf (22, p)
(1) I ' Oz -
% — (d;) = llp — [T

(L, o) =1

* So the optimal measures solving the LP are

S.t.

pldt, dr) = dt o.—(dx), poldt,dx) = oo(dt) 6y(dz), pr(dt,dr)

Y Y

= Olog2(dt) 5% (dx)

)

I

x() =e" x(0) =1 x(T = log2) =

1

2

MIT 16.S498: Risk Aware and Robust Nonlinear Planning
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Infinite-dimensional LP problem:

inf (L, p)
s.t. % +div fu = pg — pr
(LP!'O) =l

Initial measure:  fo € A4 ({0} x Xo)
Terminal measure: up € A4, ({1} x X7)
Occupation Measure: i € #.([0,T] x X)

To obtain finite SDP, we will work with finite number of moments:

3
* Moments of measure: ZZaijaym = b; i=1,..3 j=1,...,m
i=1 «

* Moments should also satisfy Moment and Localizing Matrices
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Infinite-dimensional LP problem:

inf (L, p)
s.t. % +div fu = pg — pr
(1, p0) =1

Initial measure:  fo € A4 ({0} x Xo)
Terminal measure: up € A4, ({1} x X7)
Occupation Measure: y € #.([0,T] x X)

Moment Formulation

inf >y 2 g Cialia

y; has a representing measure

S.t. Z?:l Za Qijaliac = bj, j = 1, Sy n =23

Xim {2 € R : pu@) 20, k=1,...,m)
Moment SDP: inf Z Z —
5.1 Z;—' Y o Ol =0 J=Tiism

M(y;) = 0, J[(pzkyz) =l d=10.08 k=1,

ooooo
4

Fall 2019
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Example:

We want to find trajectories minimizing the state energy fDT 22(t)dt.

inf fo 23(t)dt
st. T=-—zx x(t) e X, te€ [0,T]
2(0) € Xo. (1) € Xp

Measure in LP for free final time T: 3
inf (2%, p)
s.t —ag;ft) = Ho — M1
(1, po) =1
WU, Ug, Ut supported on X, X,y , Xr.
(Integral form of Liouy , 7 (grad ) f) p= [vopr — [vie = x@

inf [ a?p(de)
st —a [ z%p(dz) = [z*pr(dz) — [ 2%pe(dz), «=0,1,2,...
[ po(dz) =1
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Example:

inf [ 2%u(de)
st. —a [z2op(dz) = [2®ur(dz) — [ 2*po(dz), «=0,1,2,...

J holda) =1

inf 5

9.1 — QU — YTy — Yoy = 0, 1, 2. ..
Yoo = 1

y has a representing measure j € Mo (X)
Yo has a representing measure po € M. (Xo)
yr has a representing measure pp € Mo (Xr)

Moment SDP: inf o
s.t. __.QU& — yTg il yUa: a = 0:' 13 gL :'er
Yoo = 1
M, (y) =20, M,_1(py) =0
M, (yo) >0, M,_1(poyo) >0 Moment and Localizing Matrices

M, (yr) >0, M,_1(pryr) >0
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Example:

e This problem can be solved analytically, with optimal trajectory

x(t) = et leaving Xy at x(0) = 1 and reaching Xy at x(T) = %for T =log2 = 0.6931

. . T
* So the optimal measures solving the LP are u(dr) = f 5oe(dr)dt,  po(de) = 6y(dz),  pp(de) = 61 (de).
0

1
2

Optimal moments:

By = /1,‘“#0((1:1:)

Initial moments : Moments of 6, >
Terminal moments :Moments of 61 > Yo = /ﬁffaxt;r(dfl?)
> :
T ) log 2 1] — 92—«
Moments of p(dz) = f Oc—t(da)dt, > Yo = /a:“,u(d:zz) :/ e~ dt = , a=12,...
0 0 *
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Example:

e This problem can be solved analytically, with optimal trajectory

x(t) = et leaving Xy at x(0) = 1 and reaching Xy at x(T) = %for T =log2 = 0.6931

Optimal moments:

gy = /J:G;L.O(d:zz)

v

Initial moments : Moments of §;

Yo = / x® pp (dx)

Terminal moments :Moments of 61
2

T log 2
Moments of ,u-(dlf) = / de—t(d‘lf)dt: >y, = /lfapi(dlt) _ / o~ gt
0 0

v

e The moment matrices of the initial and terminal measures both have rank one

1

x(0) =yo,., =1 X(T) = yro4oy = P

* To recover the trajectory x(t) we need to look at Dual problem in polynomials.
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Extension to piecewise polynomial dynamics

inf f[} x(T)) +f0 (t, x(t))dt
s.t. z(t) = f;(¢t, 2 ()) ()EX =1,....N, te€|0,T]
( ) - XU (T) XT

* We assume that the state-space partitioning sets Xj are disjoint.

so that the global (average Joccupation measure is . iﬂ'

* We can then extend the measure LP framework to several measures p;, one supported on each cell X;

Fall 2019
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Extension to piecewise polynomial dynamics

inf f[} x(T)) +f0 (t, x(t))dt
s.t. &(t) = f;(8, z(t)), ()EX =1,....N, te€|0,T]
( ) - XU (T) XT

*  We assume that the state-space partitioning sets Xj are disjoint.

so that the global (average Joccupation measure is . iﬂ'

* We can then extend the measure LP framework to several measures p;, one supported on each cell X;

» Measure LP: _ N
inf (va )L1T> i 3 Zj:l(l? H‘j)
8.t Zj\:l (05? + div ij.j) + pr = o (Liouville’s Equation)

» Moment SDP inf, [ folr@) dur(2) + 32, [ i o6 du(t, 2)

inf
S.t. ZL f o tl‘) d# (f 3) + |:> illfy Zk Z ChalYka |:> S.t.y
(Integral form of Zkal (t.2) fk(z‘ :t)dy;\(t #y = ste Yo Y. Oidalie =0, Yi
Liouville’s Equation) Jo(T,z) dur(z) — [ (0, ) dpo(z)

cl'y
Ay=1">

My(grj,y) = 0,

Fall 2019
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Example: one-degree-of-freedom model of a launcher attitude control system in orbital phase

where [ is a given constant inertia, 8(t) is the angle and u(t) is the torque control

* The torque control is given by  u(z(t)) = sat(F'dz(x,.(t) — 2(1)))

where x,-(t) is the given reference signal,
F is a given state feedback,

sat is a saturation function sat(y) = y if |y| < L sat(y) = Lsign(y) otherwise

dz is a dead-zone function such that 1, () = 0 if |2;| < D, dz(z) = 1 otherwise i =1,2

Thresholds L. > 0,D; > 0,D, > 0 are given.

Trajectory Optimization: Y fo +f0 (£, dz‘

s.t. :1() T, il )) ( ) eX;, j=1,...,N, te|0,T]
x(0) € Xo, 2(T) € Xp

T=50
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-- i) . xa(t)
16(t) = u(t) x(t) = [ ; } x () = [ulx(t)) u(x(t)) = sat(F'dz(x,.(t) — 2(t)))
' I

Due to saturation function sat(y) = y if |y| < L sat(y) = Lsign(y) otherwise

We have 3 partition of state-space:
Linear regime: Xi={reR*: [F2[<L}, fi(z)= [ —:;“1’:1: }
Upper saturation X, ={x cR?: F'2 > L}, folz) = [ 11 ]
Lower saturation X, ={x e R? : Fla < —L} f3(x) = [ 1 }

The system state x(t) reaches a given subset X; = {(x,x3): x" x < €} > The objective function of the optimization:
x(T)" x(T)
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GloptiPoly:

I = 27500; % inertia

kp = 2475; kd = 19800; % controller gains

L = 380; % input saturation level

thetamax = 5%pi/180; omegamax = 0.4%*pi/180; % bounds on initial conditions

T = 50; % final time

4 = anput(Zerdes oF Telasation =2 @ = 2Nl /» dynamics on normalized time range [0,1]
% saturation input y normalized in [-1,1]
K = -[kp kd]l/L;

% states

mpol(’x1’,2); % linear regime yl = Kex1; £1 = T*[x1(2); Lxy1/I]; 7% linear regime
mpol(’x2’,2); % upper sat y2 = K*x2; f2 = Tx[x2(2); L/I]; 7% upper sat

mpol (’x3°,2); % lower sat y3 = K*x3; £3 = T*[x3(2); -L/I]; % lower set

mpol(’x0°’,2); % initial

mpol(’xT’,2); Y terminal % test functions for each measure = monomials

gl = mmon([x1’, t1],d);

% time g2 = mmon([x2’, t2],d);
mpol(’t1’, 1); % time for linear regime g3 = mmon([x3’, t3],d);
mpol(’t2’, 1); % time for upper saturation
mpol(°t3’, 1); % time for lower saturation % unknown moments of initial measure
p = genpow(4,d); p = p(:,2:end); % powers
% measures yO0 = ones(size(p,1),1)*[x0’ 0];
ml = meas([x1’, t1]); % linear regime yO = mom(prod((y0.7p)’)’);

m2 = meas([x2’, t2]); % upper sat regime

: % unknown moments of terminal measure
m3 = meas([x3’, t3]); % lower sat regime

_ e p = genpow(4,d); p = p(:,2:end); % powers
m0 = meas(x0); % initial yt = ones(size(p,1),1)*[xT’ 11;

mT = meas(xT); % terminal yT = mom(prod((yt. p)’)’);

96
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% input LMI moment problem
cost = mom(xT’*xT);
Ay = mom(diff(gl,x1)*f1)+mom(diff(gl,t1))...
+ mom(diff (g2,x2)*f2) + mom(diff(g2,t2))...
+ mom(diff (g3,x3)*f3) + mom(diff(g3,t3)); % dynamics

% trajectory constraints
X = [y172<=1; y2>=1; y3<=-1];

% initial constraints
X0 = [x0(1)"2<=thetamax~2, x0(2) 2<=omegamax~2];

% bounds on trajectory
B = [x1’*x1<=1; x2’*x2<=1; x3’*x3<=1];

% bounds on time - scaled to one
Tlim = [t1 >= 0, t1 <=1, t2 >= 0, t2 <=1, t3 >= 0, t3 <= 1];

% input LMI moment problem
P = msdp(max(cost),
mass (m1)+mass (m2) +mass (m3)==1,
mass (m0)==1,
Ay==yT-y0,
X, X0, B, Tlim);

% solve LMI moment problem
[status,obj] = msol(P)
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* For more examples and codes

https://homepages.laas.fr/henrion/papers/safev.pdf

D. Henrion, M. Ganet-Schoeller, S. Bennani. "Measures and LMI for space launcher robust control validation”, Proceedings of the IFAC Symposium on Robust
Control Design, Aalborg, Denmark, June 2012.
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https://homepages.laas.fr/henrion/papers/safev.pdf

Topics:

» Occupation Measure and Liouville’s Equation

» Trajectory Optimization

» Region of Attraction Set

» Nonlinear Feedback Control and Backward Reachable Set
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Optimal Control

D. Henrion, J. B. Lasserre, C. Savorgnan, Nonlinear optimal control synthesis via occupation measures, Proc. IEEE Conf. Decision and Control, 2008.

J. B. Lasserre, D. Henrion, C. Prieur, E. Tr'elat, Nonlinear optimal control via occupation measures and LMI relaxations, SIAM J. Control Opt., 47(4):1643-
1666, 2008.

POCP - Matlab package for solving polynomial optimal control problems. Can be freely downloaded and used. Developed by Didier Henrion, Jean-Bernard
Lasserre and Carlo Savorgnan. http://homepages.laas.fr/henrion/software/pocp/

MIT 16.S498: Risk Aware and Robust Nonlinear Planning Fall 2019
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http://homepages.laas.fr/henrion/software/pocp/

Optimal control problem:

inf [y (¢ (1), u(t))di

s.t. a(t) = ( x(t), u(t)).
x(t) e X, u(t) e U, tel0,T],

2(0) € Xo, 2(T) € Xy

Optimization with respect to a control law u over t € [0, T]
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Occupation Measure:

* Given an initial condition x,, the occupation measure of a trajectory x(t|x,) is defined by

occupation measure: u( Sy XS, |x9) = f Is (x(t]xp))dt givensets S, c[0,T],S, c X
St

> Geometric interpretation: measures the time spent by the graph of the trajectory (t, x(t|xy)) in a given set S; X S,

Controlled Occupation Measure:
* Given an initial condition x,, and a control law u(t), the controlled occupation measure of a
trajectory x(t|xq, u) is defined by
Controlled occupation measure:  u( Sy X Sy X Sy |x0, 1) = J Is xs, (x(t]xo, u))dt givensets S, ¢ [0,T], Sy cX

St S,cU

> Geometric interpretation : measures the time spent by the graph of the trajectory (t, x(t|xy, u), u(t)) in a given set §; X S, X S,,.
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Average Occupation Measure:
Given an initial probability measure of states &, the average occupation measure of the flow of trajectories is defined by

H(Se X Sx) = f.u(St X Syx|x0)§0(dx) given sets S; < [0,T], S =X
X v ’

Occupation measure
(spent time for single x(t|x,) )

Average Controlled Occupation Measure:

Given an initial measure ¢, and control u(t), the average occupation measure of the flow of trajectories is defined by

u(S; xS, x S, lu) = f,u(St X Sy X Syl|x0, ) (dxg) givensets S, c[0,T],S, cX
X
Su.cUu

» Average Controlled Occupation Measure, initial measure, terminal measure, i.e. u, Uy, i, are linked by a linear PDE.
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» Average Controlled Occupation Measure, initial measure, terminal measure, i.e. u, Uy, i, are linked by a linear PDE.

Ol
0—}; +div (fp) = po — pr Controlled Liouville Equation

* The difference with the uncontrolled Liouville equation is that both y and f now also depend on the control variable wu.

* An occupation measure satisfying Controlled Liouville Equation encodes state trajectories but also control trajectories.

LP in measure: inf (I, )
5.k % +div fuu = pg — pr

measures (p, fto, pp) € A([0,T] x X X U) x M ({0} XX0)) x A ({T} x Xr)

Moment SDP: moment representation of the measures.

Moment of Measures: Vo = jt“lx“Zu“w(dx, dt, du)
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Relaxed control

We consider following (disintegrated) form for Average Controlled Occupation Measure:
p(dt, dz, du) = dt £(dz | t) w(du | t, x)

the three components are as follows

* dtisthe time marginal,( the Lebesgue measure of time)

« &(dx|t) is the distribution of state for given time t

* w(dult, x) is the distribution of the control conditional ont and x ( probability measure on U foreach t € [0,T])

» instead of a control law u, we have a relaxed control, a probability measure
w e M (U), /u) =1

parametrized intime t € [0,T] and space x € X. ( Young measures)
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Relaxed control

We consider following (disintegrated) form for Average Controlled Occupation Measure:
p(dt, dz, du) = dt £(dz | t) w(du | t, x)

the three components are as follows

* dtisthe time marginal,( the Lebesgue measure of time)

« &(dx|t) is the distribution of state for given time t

* w(dult, x) is the distribution of the control conditional ont and x ( probability measure on U foreach t € [0,T])

» instead of a control law u, we have a relaxed control, a probability measure
w & ¢%+(U>, \/UJ = l

parametrized intime t € [0,T] and space x € X. ( Young measures)

Instead of working with x(t) = f(x(t), u(t),t) :l> We work with  x(t) = fo(x(t), u(t), t)w(dult, x)

* The set of trajectories modeled by the controlled Liouville equation is larger than the set of trajectories of the original control system.
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Example:

Corresponding autonomous measure LP:

inf (2% + u?, u)

* In terms of moments inf  [(2? + v?)p(dz, du)

s.t. o [ lup(de, du) = -1,

=012, ..

inf o0 + Yoo

s.t. yUl — le]_ . 3-y21 — s o w == _1
M(y) 20

Yo = /:calfuf"m(dr,du),

a=0,12...

* Moment SDP inf Y20 + Yoo
s.t. Yo1 =2y = —1
Yoo Yio Yo
M, (y) = Yo Y20 Yn
Yo1 Y11 Yo2

3.66  1.00  —1.00
|:> M, (y*) = 1.00 0.500 —0.500
~1.00 —0.500  0.500

Fall 2019
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. T
Example: inf f“ (2%(2)

This example can be solved analytically
Optimal solution:  u(t) = —x(t) x(t) =et
Optimal occupation measure u(dx, du) =J 0,-t(dx)6_,-c(du)dt v
0
With moments: Vo = (—1)“Zj e~(@taltgy
: U
_q I 1 1 1
Yio = LYo1r = ~L Y20 =3 Y11= T35 Yoz =3

3.66 1.00 —1.00
—1.00 —=0.500  0.500

Solution obtained by solving moment SDP a7, () = ( 1.00  0.500 —0.500

Fall 2019
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Optimal control recovery

* To recover the optimal control, or the optimal state trajectory from the moments,
we can use the dual problem, which is a relaxation of the Hamilton-Jacobi-Bellman PDE of optimal control.

MIT 16.S498: Risk Aware and Robust Nonlinear Planning Fall 2019



Optimal control recovery

* To recover the optimal control, or the optimal state trajectory from the moments,
we can use the dual problem, which is a relaxation of the Hamilton-Jacobi-Bellman PDE of optimal control.

e Using the duality of moments and SOS polynomials (lecture 5) and defining adjoint linear operator, dual reads as:

max (0, z(0))
PER[t,z]r,s€B[t,z,ulk,qEX[2]r
S5 Ez[tamau] k:—de aqjez[m]r—dpj

agag;, D) il A 5+ T 5, ) = (e m ) Zg T
o(,T) — H(z) = ZgF

In terms of the parameters of the set initial , final, and state sets
X0={$391j(33)§0aj:L---:nI} XT:{'I:gFJ(:B)SOa ,j:l;--':nF} X:{(t,ﬁ?,U):gTj(t,fE,U)So,jzl,...,nT}

and cost-function of optimal control: fo h(t, z(t), u(t))dt + H(z(T))

* Constraints are polynomial nonnegativity conditions.
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Optimal control recovery

max ©(0,2(0))
pER[t,z]r,s€X[t,z,u]k,qEL[T]
2 EE[t,:E,u]k—de \dj EE[-’B]r—dFj

8“’((;; B L i B, )+ i, 5, — B(E, 2y0) > 91tz w)s;(t, 7, u)
J=1
o(z,T) — H(z) = Z gr,(2)g;(x).

In terms of the parameters of the set initial , Terminal, and Trajectory sets
XO={:c:ng(:c)§0?j:1,...,n1} XT:{LE:gFj(LE)SO, j:Ij...,ﬂF} X ={t=zv):9r;(t,z,u) <0, j=1,...,n1}

and cost-function of optimal control: /O h(t, z(t), u(t))dt + H(z(T))

» Every feasible solution ¢ is such that:

Op(z,t)

1) 5 + V.o(z,t) f(t,x,u) + h(t,z,u) >0 V (t,x,u) € X (Trajectory Set)

2) H(z) — ¢(T,z) = 0 Vx € X7 (Terminal Set)
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* Polynomial @(t, x) is polynomial subsolution of the Hamilton-Jacobi-Bellman equation which approximates the value
function along all the optimal trajectories.

* Therefore, given an optimal solution @(t, x) of the SOS optimization, control law u(x(t)) is a global minimizer of

do(z,t
uergi(gm) %Jrvmso(x,t)f(f,:r,uHh(t,a:,u)

POCP - Matlab package for solving polynomial optimal control problems
http://homepages.laas.fr/henrion/software/pocp/

D. Henrion, J. B. Lasserre, C. Savorgnan, Nonlinear optimal control synthesis via occupation measures, Proc. IEEE Conf. Decision and Control, 2008.

J. B. Lasserre, D. Henrion, C. Prieur, E. Tr'elat, Nonlinear optimal control via occupation measures and LMI relaxations, SIAM J. Control Opt., 47(4):1643-
1666, 2008.

POCP - Matlab package for solving polynomial optimal control problems. Can be freely downloaded and used. Developed by Didier Henrion, Jean-Bernard
Lasserre and Carlo Savorgnan. http://homepages.laas.fr/henrion/software/pocp/
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Topics:

» Occupation Measure and Liouville’s Equation

» Trajectory Optimization

» Optimal Control

» Nonlinear Feedback Control and Backward Reachable Set
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Region Of Attraction Set

M. Korda, D. Henrion, C. N. Jones ,”Region of attraction approximations for polynomial dynamical systems”, Conference on Geometry and Algebra of
Linear Matrix Inequalities, GeoLMI 2013, http://homepages.laas.fr/henrion/geolmil3/korda.pdf

D. Henrion, M. Korda. Convex computation of the region of attraction of polynomial control systems, IEEE Transactions on Automatic Control, Vol. 59, No. 2, pp.
297-312, 2014.

M. Korda, D. Henrion, C. N. Jones. Controller design and region of attraction estimation for nonlinear dynamical systems , Proceedings at the [IFAC World
Congress on Automatic Control, Cape Town, South Africa, August 2014.

M. Korda, D. Henrion, C. N. Jones. Inner approximations of the region of attraction for polynomial dynamical systems, Proceedings of the IFAC Symposium on
Nonlinear Control Systems, Toulouse, France, September 2013.
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https://homepages.laas.fr/henrion/Papers/roa.pdf
https://homepages.laas.fr/henrion/Papers/roac.pdf
https://homepages.laas.fr/henrion/Papers/roainner.pdf
http://homepages.laas.fr/henrion/geolmi13/korda.pdf

System:  x(t) = f(t,x(t), w) t € [0,T] x€X

Given Terminal Set X

Region Of Attraction Set

X(xg) := {:1() cdu() eU st a(t) = f(t,x(t),u(t)) a.e. 2(0) = x, 2(t) € X, 2(T) € Xy, Vt € [O,T]},

 ROA is the set of all initial conditions for which there exists an admissible trajectory,
i.e., the set of all initial conditions that can be steered to the target set in an
admissible way.

Fall 2019
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XITIBX

final measure

final measure C
" initial measure

initial measure

“a

i
Wi

Milan Korda, Didier Henrion, Colin N. Jones Milan Korda, Didier Henrion, Colin N. Jones

 ROA set is characterized with the support set of initial measure.
* Look for initial measure that can be steered to the target set.
* |nitial and terminal measures are linked through Liouville’s Equation.

M. Korda, D. Henrion, C. N. Jones ,”Region of attraction approximations for polynomial dynamical systems”, Conference on Geometry and Algebra of Linear Matrix Inequalities, GeoLMI 2013
, http://homepages.laas.fr/henrion/geolmil3/korda.pdf
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X R e ———
D

. ina
final measure final measure

initial measure

e

initial measure

KFE

W

§ D 1T e | Xmin [ o
1 1
Milan Korda, Didier Henrion, Colin N. Jones Milan Korda, Didier Henrion, Colin N. Jones

* To obtain largest ROA set, maximize the volume of initial measure.

max o (X) = [y dug
* Optimal initial measure is the Lebesgue measure over the ROA set.

M. Korda, D. Henrion, C. N. Jones ,”Region of attraction approximations for polynomial dynamical systems”, Conference on Geometry and Algebra of Linear Matrix Inequalities, GeoLMI 2013
, http://homepages.laas.fr/henrion/geolmil3/korda.pdf
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LP in measure

sup (X)) (1)
s.t. 0p ® pp = 00 ® po + L' (2)
o + /:f{] =) 3)
=0, >0, pp >0, g >0
spt i C [0,T] x X xU (4)
spt 1o C X, spt pup C Xp
spt jig C X.

(1) We model ROA with the support of initial measure g~ max py(X) = fX dug

(2) Liouville's Equation captures the information of dynamical system.

(3) To ensures that the optimal value is the Lebesgue measure A > 10 Slack measure | 1o + fip = A\

(4) Support set of measures

D. Henrion, M. Korda. Convex computation of the region of attraction of polynomial control systems, IEEE Transactions on Automatic Control, Vol. 59, No. 2, pp. 297-
312, 2014.
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LP in measure

sup  fio(X)

s.t. Op @ pur = 0o @ po + L'
[o + flo = A
>0, g >0, pp >0, fig >0
sptp C [0, 7] x X xU
spt o C X. spt up C Xp
spt jig C X.

Dual Optimization (SOS Optimization)

)
u) <0, V(t,z,u) € [0,T| x X xU
')

5.t Lo, o,
w(x) >v0,x)+ 1, Vre X
ylT,x) =21 Ve Xp
wlE) >0 Vee X

* ROAC {x: w(x) —1 =0}
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X

) ! XIMaX o o o o o o o o o e
polynomial

final measure

outer
approximation
of Xo

Milan Korda, Didier Henrion, Colin N. Jones

e ROAc {x: w(x)—1=0}
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Dual
inf / w(x) dA(x)
% iy < 0, V(t,z,u) € [0,T| x X xU (1)
')

8.6 Luld,
w(x) >v(0,2)+ 1. Vre X (2)
L,z = 1, Voee Xr (3)
w(x) >0 Ve X,

Interpretation: similar to barrier function based safety verification(Lecture 8, page 29)
(1): v is decreasing along trajectories of the system.
(3): v(T,x) = 0 on X;.
(1) and (3): {x: v(0,x) < 0} is an inner approximation to the set of points that cannot reach the target set.

* Hence, {x: v(0,x) = 0} is an outer approximation to the set of points reach the target set.

* ROAc {x:v(0,x) 20} ={x: w(x) —1=0} (2)

MIT 16.S498: Risk Aware and Robust Nonlinear Planning Fall 2019




Inner approximation
initial measure
o
>
-
final measure e (Mo | final measure
Ko Xo UFE X1 = ' LLF
<\/\ }\
[E—
1
0 T t
A Korda, Didier Henrion Jor O T t
N 1 K Didier Henrion, Colin
‘ X
polynomial 5

* One can apply the same methodology to find the outer approximation
to the target set, i.e., {x: w(x) —1 = 0}

* Inner approximation of ROA: {x: w(x) —1 < 0}

final measure
Xo m Xt
I
inner / 3
approximation
of Xo

0 7 4 t

Milan Korda, Didier Henrion, Colin N. Jones
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Backward VVan der Pol oscillator

)‘('1 = —2)('2

x> = 0.8x; + 10(x? — 0.21)x

X =[-1.2-1.2)?

Xt ={x||[x][2 <0.01}, T = 100

ROA Code: https://homepages.laas.fr/henrion/software/

12 12
1 1
08 08
06 06
04 0.4
02 02
0 0
02 02
04 -04
06 -06
08 -0.8|
e -1
125 7 08 06 04 02 0 02 04 06 08 1 2 12 1 08 06 04 92 0 02 04 06 08 1 12 "f2 i 08 06 04 02 0 02 04 06 08 1 12

D. Henrion, M. Korda. Convex computation of the region of attraction of polynomial control systems, IEEE Transactions on Automatic Control, Vol. 59, No. 2, pp. 297-312, 2014.
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https://homepages.laas.fr/henrion/Papers/roa.pdf
https://homepages.laas.fr/henrion/software/

N{ma) =

gsin(zy + x2) — a1x3 + agsin(zy) + r4sin(xg) (223 + 24) + w4
— Sin(:l?g)il?% — ayzs + gsin(zy + x2) + us
[ = [=10,10] x [—10, 10]
X =[-7/2,7/2| X |—m, 7| X [=5,5] X [=5,5]

X r={l:x se }

ROA Code: https://homepages.laas.fr/henrion/software/

D. Henrion, M. Korda. Convex computation of the region of attraction of polynomial control systems,

NN

[uy |

x3 0 4
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» Occupation Measure and Liouville’s Equation

» Trajectory Optimization
» Optimal Control

» Region of Attraction Set
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Nonlinear Feedback Control
and
Backward Reachable Set

Anirudha Majumdar, Ram Vasudevan, Mark M. Tobenkin, and Russ Tedrake. Convex optimization of nonlinear feedback controllers via occupation measures.
International Journal of Robotics Research (IJRR), 33(9):1209-1230, August 2014

Anirudha Majumdar, Ram Vasudevan, Mark M. Tobenkin, and Russ Tedrake. Convex optimization of nonlinear feedback controllers via occupation measures. In
Proceedings of Robotics: Science and Systems (RSS), 2013

MIT 16.S498: Risk Aware and Robust Nonlinear Planning
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Control-affine system with feedback control e(t) = f(t,x(t)) + g (t,x(t)) u(t, x)

Input constraint  w(t,x) € U = a1, by] X ... X |a,,, b,

* Bounding set, and target set as X — {r c R" | h)\ ) > 0.Vi = {1‘ T ._-n-};}}.
XT = {3_’7 - RT? I hﬂT’i (l- 2 O‘VE — {l ..... 'n-T}}:

Given a finite final time T > 0, let the backwards reachable set (BRS) for a particular control policy u be defined as:

X(u) = {:z?o eR" |i(t) = f(t.x(t)) +g(t. z(t))u(t,z(t)) ae. t €[0,1], x(0) =xg. x(1T) € X7, 2(t) € X VI € [U-_T}}

x(u) is the set of initial conditions for trajectories of dynamical system that remain in the bounding set and arrive in the
target set at the final time when control law u is applied.

» Find a controller u that maximizes the volume of the BRS, i.e.,  max A(y(w)) A(X(u)) = dx
x(u)

Lebesgue measure

MIT 16.S498: Risk Aware and Robust Nonlinear Planning Fall 2019




* Control-affine system with feedback control r(t)=f(t,z(t)) + g (t,x(t)) u(t, x)

*  We maximize the volume of the BRS using control input u.

MIT 16.S498: Risk Aware and Robust Nonlinear Planning Fall 2019



* Control-affine system with feedback control T(I‘) =f (t? ;1“.(1‘.)) + ¢ (tf ;I‘.(I‘.)) u(z‘., ’I‘)

*  We maximize the volume of the BRS using control input u.

e Occupation measure formulation
* Instead of working with controlled average occupation measure u(dt, dx, du), we work with average occupation
measure u(dt, dx)

* We decompose / uj(t, z)dp(t, ) inside the Liouville’s Equation in terms of (nonnegative) measures
AxB

ot,o” € (M([0,T] x X))™

[ witduttn) = [ diot)yta) [ dio)e.o)

X B x B x B

where g1t — o~ isasigned measure. (This will let us to extract the solution)

MIT 16.S498: Risk Aware and Robust Nonlinear Planning Fall 2019




To obtain BRS, we solve measure-LP:

sup to(X) (1)

g.t. }pz. -+ E;(U+ — 07 ) =01 @ ur — o ® o, (2)
07];+ 07 ]+ [6]; =1 3) Vje{l,...,m},
fo + flg = A,
67,07 15,[6]; =0 Viedl,...,m}

s [0, HT f-lﬂ :3 0

(1): We model BRS with the support of initial measure u,

max po(X) = [, duo > max volume(BRS)

(2): Liouville's Equation captures the information of dynamical system.

(3): To ensures that we are able to extract a bounded control law:

p >t + o075 Slack measure ot]; +[07]; + [5];: "

MIT 16.S498: Risk Aware and Robust Nonlinear Planning
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To obtain BRS, we solve measure-LP:

sup to(X) (1)

g.t. }pz. -+ E;(UJr — 07 ) =01 @ ur — o ® o, (2)
07];+ 07 ]+ [6]; =1 3) Vje{l,...,m},
to + flo = A, (4)
67,07 15,[6]; =0 Viedl,...,m}

fey jos s fro = 0,

(4): To ensures that the optimal value is the Lebesgue measure

volume of BRS in terms of Lebesgue measure: A(y(u))

\ > 10 Slack measure | 1o + fig = A

We model BRS with the support of initial measure py: e (X)

* Supports:

(ot, 07,6, wpo. fio, pr) € (M([0.T] x X)) x (M([0,T] x X))™ x (M([0,T] x X))™ x M([0,T] x X) xM(X) x M(X) x M(X7)

MIT 16.S498: Risk Aware and Robust Nonlinear Planning
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* To extract Polynomial u from the moments y}’; 54 ’y; oy and fyf; 10

ui(t, @)dp(t, ) = [ dlo"];(tz) — [ dlo];(t,z)
/ / /.

x B x B x B

/ 10l ) dpll, z) = / t*x%d[ot — o7 ];(t, ),
[0,T]x X l 0,T]x X

Coefficient of polynomial feedback

e Direct calculation shows the linear system of equations

Mic(yk p)vee([urli) = Ui ey, = Yoo,

MIT 16.S498: Risk Aware and Robust Nonlinear Planning Fall 2019



The dual optimization (SOS optimization)allows us to obtain approximations of the BRS

inf / w(z)dA(x)

gt Lev+22[pi <0,
[pls =0, Tl = |[E400] Yiell,.. ,m}
w > 0,
w(z) > v(0,z) +1 Yz € X,
v(T,z) >0 Ve € X
BRS c {J{, | LU(J,) > 1} w(;r,) is upper bound approximation of the indictor function of the BRS set

MIT 16.S498: Risk Aware and Robust Nonlinear Planning
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Dual Optimization

inf ] w(x)dA(x)

X
sl Lsv+ 220 €0,
[pls =0, Tl = [[Eg0l; |} (1) WE e {1;. . - m}
w = 0,
w(x) >v(0,z)+1 (2) ¥ € X,
v(T,z) 20 (3 Ve € Xr

Interpretation: similar to barrier function based safety verification(Lecture 8, page 29)
(1): v decrease along trajectories of the system for any valid control input.
(3): v(T,x) = 0 on X;.
(1) and (3): {x: v(0,x) < 0} is an inner approximation to the set of points that cannot reach the target set.

* Hence, {x: v(0,x) = 0} is an outer approximation to the set of points reach the target set.

* ROA c {x:v(0,x) 20} ={x: w(x) —1= 0} (2)
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Example 1:

T9 = u, Xr={0} T =1

I () = 1 I () = 1

True BRS

x(T)

True BRS

=T}

1 1 1 1
0.6 -0.4 =02 o 0.2 o4 0.6 0.6 -04 -0.2

Obtained feedback control input o (t, ) = —1.541x1 — 4.04621t — 1.09929 — 3.677xot.

Anirudha Majumdar, Ram Vasudevan, Mark M. Tobenkin, and Russ Tedrake. Convex optimization of nonlinear feedback controllers via occupation measures.
International Journal of Robotics Research (IJRR), 33(9):1209-1230, August 2014
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Example 2: Vehicle Control

) Polynomial dynamics r1 = uq.

-

a = v cos(f

b= sin(#). T = U2,

0= w, r3 = riuo9 — Iolq.

0.19

initial conditions in X = {z | ||z|* < 4}
Xr = {r ] o] < 012} '
uy,ug € [—1,1] 5
037 a 047

Anirudha Majumdar, Ram Vasudevan, Mark M. Tobenkin, and Russ Tedrake. Convex optimization of nonlinear feedback controllers via occupation measures.
International Journal of Robotics Research (IJRR), 33(9):1209-1230, August 2014
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Topics:

» Occupation Measure and Liouville’s Equation

» Trajectory Optimization
» Optimal Control
» Region of Attraction Set

» Nonlinear Feedback Control and Backward Reachable Set
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* D. Henrion, M. Ganet-Schoeller, S. Bennani. “Measures and LMI for space launcher robust control validation”, Proceedings of the IFAC Symposium on
Robust Control Design, Aalborg, Denmark, June 2012.

* D. Henrion "Optimization on linear matrix inequalities for polynomial systems control”, Lecture notes used for a tutorial course given during the
International Summer School of Automatic Control held at Grenoble, France, in September 2014.

* D. Henrion, J. B. Lasserre, C. Savorgnan, Nonlinear optimal control synthesis via occupation measures, Proc. IEEE Conf. Decision and Control, 2008.

J. B. Lasserre, D. Henrion, C. Prieur, E. Tr'elat, Nonlinear optimal control via occupation measures and LMI relaxations, SIAM J. Control Opt.,
47(4):1643-1666, 2008.

*  POCP - Matlab package for solving polynomial optimal control problems. Can be freely downloaded and used. Developed by Didier Henrion, Jean-
Bernard Lasserre and Carlo Savorgnan. http://homepages.laas.fr/henrion/software/pocp/

* M. Korda, D. Henrion, C. N. Jones ,”Region of attraction approximations for polynomial dynamical systems”, Conference on Geometry and
Algebra of Linear Matrix Inequalities, GeoLMI 2013, http://homepages.laas.fr/henrion/geolmil3/korda.pdf

* D. Henrion, M. Korda. Convex computation of the region of attraction of polynomial control systems, IEEE Transactions on Automatic Control, Vol. 59, No. 2,
pp. 297-312, 2014.

* M. Korda, D. Henrion, C. N. Jones. Controller design and region of attraction estimation for nonlinear dynamical systems., Proceedings at the IFAC World
Congress on Automatic Control, Cape Town, South Africa, August 2014.

* M. Korda, D. Henrion, C. N. Jones. Inner approximations of the region of attraction for polynomial dynamical systems, Proceedings of the IFAC Symposium on
Nonlinear Control Systems, Toulouse, France, September 2013.

* Anirudha Majumdar, Ram Vasudevan, Mark M. Tobenkin, and Russ Tedrake. Convex optimization of nonlinear feedback controllers via occupation measures.
International Journal of Robotics Research (IJRR), 33(9):1209-1230, August 2014

* Anirudha Majumdar, Ram Vasudevan, Mark M. Tobenkin, and Russ Tedrake. Convex optimization of nonlinear feedback controllers via occupation measures. In
Proceedings of Robotics: Science and Systems (RSS), 2013
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