Lecture 3

Sum Of Squares For Nonlinear Optimization

MIT 16.S498: Risk Aware and Robust Nonlinear Planning
Fall 2019

Ashkan Jasour

Nonlinear (nonconvex) Optimization

$$
\begin{array}{ll}
\underset{x \in \mathbb{R}^{n}}{\operatorname{minimize}} & f(x) \\
\text { subject to } & g_{i}(x) \geq 0, i=1, \ldots, m
\end{array}
$$

Objective function and constraints are polynomial functions.

Goal: Find Convex Relaxations of Nonlinear Optimization

Tools:
i) Nonnegative Polynomials \quad ii) Semidefinite Programs

Nonlinear (nonconvex) Optimization

$$
\begin{array}{ll}
\underset{x \in \mathbb{R}^{n}}{\operatorname{minimize}} & f(x) \\
\text { subject to } & g_{i}(x) \geq 0, i=1, \ldots, m
\end{array}
$$

Tools: i) Nonnegative Polynomials ii) Semidefinite Programs

Step 1:

Reformulate Nonlinear Optimization problem in terms of Nonnegative Polynomials

Step 2:

Represent Nonnegative Polynomials with Positive Semidefinite Matrices (PSD)

Reformulate Nonlinear Optimization as Semidefinite Program

Nonlinear (nonconvex) Optimization

$$
\begin{array}{ll}
\underset{x \in \mathbb{R}^{n}}{\operatorname{minimize}} & f(x) \\
\text { subject to } & g_{i}(x) \geq 0, i=1, \ldots, m
\end{array}
$$

Tools: i) Nonnegative Polynomials ii) Semidefinite Programs

Nonlinear Optimization

Nonnegative Polynomials

> Monomials
$>$ Polynomials
> Nonnegative Polynomials

Polynomials

- Monomials: product of powers of variables
variables x : $x=\left[x_{1}, \ldots, x_{n}\right]^{T}$ n-tuple: $\quad \alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right), \quad \alpha_{i} \in \mathbb{N}$
- Monomial (powers of variables):

$$
x^{\alpha}=x_{1}^{\alpha_{1}} x_{2}^{\alpha_{2}} \ldots x_{n}^{\alpha_{n}}
$$

- Degree of monomial: $\sum_{i=1}^{n} \alpha_{i}$

Polynomials

- Monomials: product of powers of variables
variables x : $x=\left[x_{1}, \ldots, x_{n}\right]^{T}$ n-tuple: $\quad \alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right), \quad \alpha_{i} \in \mathbb{N}$
- Monomial (powers of variables):

- Degree of monomial: $\sum_{i=1}^{n} \alpha_{i}$
- Polynomials: finite linear combination of monomials.
- Polynomial: $p(x): \mathbb{R}^{n} \rightarrow \mathbb{R}$

$$
p(x)=\sum_{\alpha} p_{\alpha} x^{\alpha}
$$

(univariate) Polynomial of order 3 in x_{1} $p\left(x_{1}\right)=1+0.5 x_{1}^{2}+0.75 x_{1}^{3}$
(multivariate) Polynomial of order 5 in x_{1} and x_{2} $p\left(x_{1}, x_{2}\right)=0.56+0.5 x_{1}+2 x_{2}^{2}+0.75 x_{1}^{3} x_{2}^{2}$

- Degree of polynomial: Maximum degree of monomial in the polynomial

Polynomials

- Polynomials: finite linear combination of monomials.
- Polynomial: $p(x): \mathbb{R}^{n} \rightarrow \mathbb{R}$
(univariate) Polynomial of order 3 in x_{1} $p\left(x_{1}\right)=1+0.5 x_{1}^{2}+0.75 x_{1}^{3}$

$$
p(x)=\sum_{\alpha} p_{\alpha} x^{\alpha}
$$

$$
\text { (multivariate) Polynomial of order } 5 \text { in } x_{1} \text { and } x_{2}
$$

$$
p\left(x_{1}, x_{2}\right)=0.56+0.5 x_{1}+2 x_{2}^{2}+0.75 x_{1}^{3} x_{2}^{2}
$$

- Vector representation: $\quad p(x)=C^{T} B(x)$

Vector of coefficients Vector of monomials

$$
p\left(x_{1}\right)=1+0.5 x_{1}^{2}+0.75 x_{1}^{3}=\left[\begin{array}{c}
1 \\
0.5 \\
0.75
\end{array}\right]^{T}\left[\begin{array}{c}
1 \\
x_{1}^{2} \\
x_{1}^{3}
\end{array}\right] \quad p\left(x_{1}, x_{2}\right)=0.56+0.5 x_{1}+2 x_{2}^{2}+0.75 x_{1}^{3} x_{2}^{2}=\left[\begin{array}{c}
0.56 \\
0.5 \\
2 \\
0.75
\end{array}\right]^{T}\left[\begin{array}{c}
1 \\
x_{1} \\
x_{2}^{2} \\
x_{1}^{3} x_{2}^{2}
\end{array}\right]
$$

Polynomials

- Polynomials: finite linear combination of monomials.
- Polynomial: $p(x): \mathbb{R}^{n} \rightarrow \mathbb{R}$
(univariate) Polynomial of order 3 in x_{1} $p\left(x_{1}\right)=1+0.5 x_{1}^{2}+0.75 x_{1}^{3}$

$$
p(x)=\sum_{\alpha} p_{\alpha} x^{\alpha}
$$

$$
\text { (multivariate) Polynomial of order } 5 \text { in } x_{1} \text { and } x_{2}
$$

$$
p\left(x_{1}, x_{2}\right)=0.56+0.5 x_{1}+2 x_{2}^{2}+0.75 x_{1}^{3} x_{2}^{2}
$$

- Vector representation: $\quad p(x)=C^{T} B(x)$

Vector of coefficients Vector of monomials

$$
p\left(x_{1}\right)=1+0.5 x_{1}^{2}+0.75 x_{1}^{3}=\left[\begin{array}{c}
1 \\
0.5 \\
0.75
\end{array}\right]^{T}\left[\begin{array}{c}
1 \\
x_{1}^{2} \\
x_{1}^{3}
\end{array}\right] \quad p\left(x_{1}, x_{2}\right)=0.56+0.5 x_{1}+2 x_{2}^{2}+0.75 x_{1}^{3} x_{2}^{2}=\left[\begin{array}{c}
0.56 \\
0.5 \\
2 \\
0.75
\end{array}\right]^{T}\left[\begin{array}{c}
1 \\
x_{1} \\
x_{2}^{2} \\
x_{1}^{3} x_{2}^{2}
\end{array}\right]
$$

$\mathbb{R}[x]$ Set (ring)of real polynomial in the variables $x \in \mathbb{R}^{n} \quad \mathbb{R}_{d}[x] \subset \mathbb{R}[x]$ Set of polynomials of degree at most d

Level Set of Polynomials

Semialgebraic Set: Set described by level sets of polynomials

$$
\left\{x \in \mathbb{R}^{n}: g_{i}(x) \geq 0, i=1, \ldots, n, \quad h_{i}(x)=0, i=1, \ldots m\right\}
$$

$$
\left\{x \in \mathbb{R}^{3}: g\left(x_{1}, x_{2}, x_{3}\right) \geq 1\right\}
$$

$-0.42 x_{1}^{5}-1.2 x_{1}^{4} x_{2}-0.48 x_{1}^{4}+0.3 x_{1}^{3} x_{2}^{2}-0.57 x_{1}^{3} x_{2}+0.61 x_{1}^{3}-0.66 x_{1}^{2} x_{2}^{3}+0.17 x_{1}^{2} x_{2}^{2}+1.9 x_{1}^{2} x_{2}+0.066 x_{1}^{2}+$
$0.69 x_{1} x_{2}^{4}-0.14 x_{1} x_{2}^{3}-0.85 x_{1} x_{2}^{2}+0.6 x_{1} x_{2}-0.22 x_{1}+0.011 x_{2}^{5}-0.068 x_{2}^{4}-0.07 x_{2}^{3}-0.42 x_{2}^{2}-0.084 x_{2}+0.84$

Nonnegative Polynomials

$p(x) \in \mathbb{R}[x] \xrightarrow{\text { Nonnegative Polynomials }} p(x) \geq 0 \quad \forall x \in \mathbb{R}^{n}$

Nonnegative Polynomials

$p(x) \in \mathbb{R}[x] \xrightarrow{\text { Nonnegative Polynomials }} p(x) \geq 0 \quad \forall x \in \mathbb{R}^{n}$

Nonnegative Polynomial on the Set

$$
p(x) \geq 0 \quad \forall x \in\left\{x \in \mathbb{R}^{n}: g_{i}(x) \geq 0, i=1, \ldots, m\right\}
$$

Set

Nonnegative Polynomials

$p(x) \in \mathbb{R}[x] \xrightarrow{\text { Nonnegative Polynomials }} p(x) \geq 0 \quad \forall x \in \mathbb{R}^{n}$

For Unconstrained Optimization

Nonnegative Polynomial on the Set

$$
p(x) \geq 0 \quad \forall x \in\left\{x \in \mathbb{R}^{n}: g_{i}(x) \geq 0, i=1, \ldots, m\right\}
$$

Set

For Constrained Optimization

Nonlinear (nonconvex) Optimization

$$
\begin{array}{ll}
\underset{x \in \mathbb{R}^{n}}{\operatorname{minimize}} & f(x) \\
\text { subject to } & g_{i}(x) \geq 0, i=1, \ldots, m
\end{array}
$$

Tools: i) Nonnegative Polynomials ii) Semidefinite Programs

Step 1:
 Reformulate Nonlinear Optimization problem in terms of Nonnegative Polynomials

Nonnegative Polynomials

Nonlinear Optimization and Nonnegative Polynomials

Unconstrained Optimization and Nonnegative polynomials

Unconstrained Optimization and Nonnegative polynomials

$p(x) \in \mathbb{R}[x]$

Unconstrained Optimization and Nonnegative polynomials

Feasible interval for γ
γ should be below of the $p(x)$

Unconstrained Optimization and Nonnegative polynomials

$p(x) \in \mathbb{R}[x]$

Unconstrained Optimization and Nonnegative polynomials

$p(x) \in \mathbb{R}[x]$

Unconstrained Optimization and Nonnegative polynomials

Constrained Optimization and Nonnegative polynomials

$$
\begin{aligned}
& \underset{x \in \mathbb{R}^{n}}{\operatorname{minimize}} \quad p(x) \\
& \text { subject to } \quad g_{i}(x) \geq 0, i=1, \ldots, m \\
& p(x), g_{i}(x) \in \mathbb{R}[x], i=1, \ldots, m
\end{aligned}
$$

Constrained Optimization and Nonnegative polynomials

$\underset{x \in \mathbb{R}^{n}}{\operatorname{minimize}}$	$p(x)$
subject to	$g_{i}(x) \geq 0, \quad i=1, \ldots, m$

$p(x), g_{i}(x) \in \mathbb{R}[x], \quad i=1, \ldots, m$

$\underset{\gamma \in \mathbb{R}}{\operatorname{maximize}}$
subject to
$p(x)-\gamma \geq 0, \quad \forall x \in\left\{x \in \mathbb{R}^{n}: g_{i}(x) \geq 0, i=1, \ldots, m\right\}$
Feasible Set

Constrained Optimization and Nonnegative polynomials

$$
\begin{array}{ll}
\underset{x \in \mathbb{R}^{n}}{\operatorname{minimize}} & p(x) \\
\text { subject to } & g_{i}(x) \geq 0, \quad i=1, \ldots, m
\end{array}
$$

$$
p(x), g_{i}(x) \in \mathbb{R}[x], i=1, \ldots, m
$$

$\underset{\gamma \in \mathbb{R}}{\operatorname{maximize}} \quad \gamma$
subject to $\quad p(x)-\gamma \geq 0, \quad \forall x \in\left\{x \in \mathbb{R}^{n}: g_{i}(x) \geq 0, i=1, \ldots, m\right\}$

Feasible interval for γ γ should be below of the $p(x)$ over the feasible region.

Constrained Optimization and Nonnegative polynomials

$\underset{x \in \mathbb{R}^{n}}{\operatorname{minimize}}$	$p(x)$
subject to	$g_{i}(x) \geq 0, \quad i=1, \ldots, m$

$p(x), g_{i}(x) \in \mathbb{R}[x], \quad i=1, \ldots, m$

$\underset{\gamma \in \mathbb{R}}{\operatorname{maximize}}$

subject to $\quad p(x)-\gamma \geq 0, \quad \forall x \in\left\{x \in \mathbb{R}^{n}: g_{i}(x) \geq 0, i=1, \ldots, m\right\}$
Feasible Set

Constrained Optimization and Nonnegative polynomials

$\underset{x \in \mathbb{R}^{n}}{\operatorname{minimize}}$	$p(x)$
subject to	$g_{i}(x) \geq 0, \quad i=1, \ldots, m$

$p(x), g_{i}(x) \in \mathbb{R}[x], \quad i=1, \ldots, m$

$\underset{\gamma \in \mathbb{R}}{\operatorname{maximize}}$

subject to $\quad p(x)-\gamma \geq 0, \quad \forall x \in\left\{x \in \mathbb{R}^{n}: g_{i}(x) \geq 0, i=1, \ldots, m\right\}$
Feasible Set

Constrained Optimization and Nonnegative polynomials

$\underset{x \in \mathbb{R}^{n}}{\operatorname{minimize}}$	$p(x)$
subject to	$g_{i}(x) \geq 0, \quad i=1, \ldots, m$

$p(x), g_{i}(x) \in \mathbb{R}[x], i=1, \ldots, m$

\longrightarrow Linear constraint
$\underset{\gamma \in \mathbb{R}}{\operatorname{maximize}} \quad \gamma$
subject to $\quad p(x)-\gamma \geq 0, \quad \forall x \in\left\{x \in \mathbb{R}^{n}: g_{i}(x) \geq 0, i=1, \ldots, m\right\} \longrightarrow$ Polynomial Nonnegativity constraint
We are looking for γ such that $p(x)-\gamma$ be a nonnegative polynomial on the set $\left\{x \in \mathbb{R}^{n}: g_{i}(x) \geq 0, i=1, \ldots, m\right\}$

Nonlinear Optimization and Nonnegative polynomials

Constrained Optimization:

$\underset{x \in \mathbb{R}^{n}}{\operatorname{minimize}}$	$p(x)$
subject to	$g_{i}(x) \geq 0, i=1, \ldots, m$

Polynomial Nonnegativity Constraint
$p(x), g_{i}(x) \in \mathbb{R}[x], i=1, \ldots, m$

Nonlinear Optimization and Nonnegative polynomials

Unconstrained Optimization: $\begin{aligned} & \quad \underset{x \in \mathbb{R}^{n}}{\operatorname{minimize}^{2}} p(x) \\ & p(x) \in \mathbb{R}[x] \end{aligned}$	
Constrained Optimization: $\begin{aligned} & \underset{x \in \mathbb{R}^{n}}{\operatorname{minimize}} p(x) \\ & \text { subject to } g_{i}(x) \geq 0, i=1, \ldots, m \\ & p(x), g_{i}(x) \in \mathbb{R}[x], \quad i=1, \ldots, m \end{aligned}$	

>Reformulation of Nonlinear Optimization in terms of nonnegative polynomials.
$>$ We can also reformulate different problems (in different domains) in terms of nonnegative polynomials.
$>$ Reformulation of Nonlinear Optimization in terms of nonnegative polynomials.

We can also reformulate different problems (in different domains) in terms of

 nonnegative polynomials.Example: Stability of Nonlinear Systems
Given a nonlinear dynamical system

$$
\dot{x}=f(x), \quad x(0)=x_{0}
$$

We want to show that solutions $x(t)$ converge to zero for all initial conditions (stability).

- To prove this, we need to find an energy function $V(x)$ with following properties

$$
\text { Lyapunov function: } \quad V(x)>0 \text { on } x \neq 0 \quad-\dot{V}(x)>0
$$

Reformulation of Nonlinear Optimization in terms of nonnegative polynomials.

We can also reformulate different problems (in different domains) in terms of

 nonnegative polynomials.Example: Stability of Nonlinear Systems
Given a nonlinear dynamical system

$$
\dot{x}=f(x), \quad x(0)=x_{0}
$$

We want to show that solutions $x(t)$ converge to zero for all initial conditions (stability).

- To prove this, we need to find an energy function $V(x)$ with following properties

$$
\text { Lyapunov function: } \quad V(x)>0 \text { on } x \neq 0 \quad-\dot{V}(x)>0
$$

Example: MAX CUT Problem in Graph Theory

Nonlinear (nonconvex) Optimization

$$
\begin{array}{ll}
\underset{x \in \mathbb{R}^{n}}{\operatorname{minimize}} & f(x) \\
\text { subject to } & g_{i}(x) \geq 0, i=1, \ldots, m
\end{array}
$$

Tools: i) Nonnegative Polynomials ii) Semidefinite Programs

Step 1:
 Reformulate Nonlinear Optimization problem in terms of Nonnegative Polynomials

 Polynomials
Nonlinear (nonconvex) Optimization

$$
\begin{array}{ll}
\underset{x \in \mathbb{R}^{n}}{\operatorname{minimize}} & f(x) \\
\text { subject to } & g_{i}(x) \geq 0, i=1, \ldots, m
\end{array}
$$

Tools: i) Nonnegative Polynomials ii) Semidefinite Programs

Step 1:

Reformulate Nonlinear Optimization problem in terms of Nonnegative Polynomials

Step 2:

Represent Nonnegative Polynomials with Positive Semidefinite Matrices (PSD)
Reformulate Nonlinear Optimization as Semidefinite Programs

Nonlinear Optimization

Nonlinear (nonconvex) Optimization

$$
\begin{array}{ll}
\underset{x \in \mathbb{R}^{n}}{\operatorname{minimize}} & f(x) \\
\text { subject to } & g_{i}(x) \geq 0, i=1, \ldots, m
\end{array}
$$

Tools: i) Nonnegative Polynomials ii) Semidefinite Programs

Step 1:

Reformulate Nonlinear Optimization problem in terms of Nonnegative Polynomials

$$
\begin{gathered}
\text { Semidefinite } \\
\text { Programs }
\end{gathered}
$$

Step 2:

2.1 Replace Nonnegative Polynomials with Sum of Squares (SOS) Polynomials
2.2 Represent SOS Polynomials with Positive Semidefinite Matrices (PSD)

Reformulate Nonlinear Optimization as Semidefinite Programs

Sum of Squares (SOS) Polynomials

Sum of Squares (SOS) Polynomials

Polynomial $p(x)$ is sum of squares (SOS) polynomial if:
it can be written as a finite sum of squares of other polynomials.

$$
p(x) \in \mathbb{R}[x] \underset{\operatorname{sOS}}{ } \quad p(x)=\sum_{i=1}^{\ell} h_{i}^{2}(x) \quad h_{i}(x) \in \mathbb{R}[x], \quad i=1, \ldots, \ell
$$

Sum of Squares (SOS) Polynomials

Polynomial $p(x)$ is sum of squares (SOS) polynomial if :
it can be written as a finite sum of squares of other polynomials.

$$
p(x) \in \mathbb{R}[x] \underset{\text { SOS }}{ } \quad p(x)=\sum_{i=1}^{\ell} h_{i}^{2}(x) \quad h_{i}(x) \in \mathbb{R}[x], \quad i=1, \ldots, \ell
$$

$>$ If polynomial $p(x)$ is SOS, then it is $\boldsymbol{p}(\boldsymbol{x}) \geq \mathbf{0}$ for all $x \in \mathbb{R}^{n}$.

Sum of Squares (SOS) Polynomials

Polynomial $p(x)$ is sum of squares (SOS) polynomial if :
it can be written as a finite sum of squares of other polynomials.

$$
p(x) \in \mathbb{R}[x] \underset{\text { SOS }}{ } \quad p(x)=\sum_{i=1}^{\ell} h_{i}^{2}(x) \quad h_{i}(x) \in \mathbb{R}[x], \quad i=1, \ldots, \ell
$$

$>$ If polynomial $p(x)$ is SOS, then it is $\boldsymbol{p}(\boldsymbol{x}) \geq \mathbf{0}$ for all $x \in \mathbb{R}^{n}$.

$$
p(x)=\sum_{i=1}^{\ell} \underbrace{h_{i}^{2}(x)}_{+}
$$

Sum of Squares (SOS) Polynomials

Polynomial $p(x)$ is sum of squares (SOS) polynomial if :
it can be written as a finite sum of squares of other polynomials.

$$
p(x) \in \mathbb{R}[x] \underset{\text { SOS }}{ } \quad p(x)=\sum_{i=1}^{\ell} h_{i}^{2}(x) \quad h_{i}(x) \in \mathbb{R}[x], \quad i=1, \ldots, \ell
$$

$>$ If polynomial $p(x)$ is SOS, then it is $\boldsymbol{p}(\boldsymbol{x}) \geq \mathbf{0}$ for all $x \in \mathbb{R}^{n}$.

$$
p(x)=\sum_{i=1}^{\ell} \underbrace{h_{i}^{2}(x)}_{+}
$$

$$
\operatorname{deg}(p(x))=2 d \text { even degree polynomial }
$$

Sum of Squares (SOS) Polynomials

Polynomial $p(x)$ is sum of squares (SOS) polynomial if :
it can be written as a finite sum of squares of other polynomials.

$$
p(x) \in \mathbb{R}[x] \underset{\text { SOS }}{ } \quad p(x)=\sum_{i=1}^{\ell} h_{i}^{2}(x) \quad h_{i}(x) \in \mathbb{R}[x], \quad i=1, \ldots, \ell
$$

$>$ If polynomial $p(x)$ is $\mathbf{S O S}$, then it is $\boldsymbol{p}(\boldsymbol{x}) \geq \mathbf{0}$ for all $x \in \mathbb{R}^{n}$.

$$
p(x)=\sum_{i=1}^{\ell} \underbrace{h_{i}^{2}(x)}_{+}
$$

Example:

Sum of Squares (SOS) Polynomials

Polynomial $p(x)$ is sum of squares (SOS) polynomial if :
it can be written as a finite sum of squares of other polynomials.

$$
p(x) \in \mathbb{R}[x] \square \operatorname{SOS}^{\operatorname{SOS}} \quad p(x)=\sum_{i=1}^{\ell} h_{i}^{2}(x) \quad h_{i}(x) \in \mathbb{R}[x], \quad i=1, \ldots, \ell
$$

$>$ If polynomial $p(x)$ is SOS, then it is $\boldsymbol{p}(\boldsymbol{x}) \geq \mathbf{0}$ for all $x \in \mathbb{R}^{n} . \quad p(x)=\sum_{i=1}^{\ell} h_{i}^{2}(x)$
$>$ We use SOS polynomials to represent Nonnegative Polynomials.

Sum of Squares (SOS) Polynomials

Polynomial $p(x)$ is sum of squares (SOS) polynomial if :
it can be written as a finite sum of squares of other polynomials.

$$
p(x) \in \mathbb{R}[x] \square \quad \square \quad h_{i}(x) \in \mathbb{R}[x], \quad i=1, \ldots, \ell
$$

$>$ If polynomial $p(x)$ is SOS, then it is $\boldsymbol{p}(\boldsymbol{x}) \geq \mathbf{0}$ for all $x \in \mathbb{R}^{n} . \quad p(x)=\sum_{i=1}^{\ell} h_{i}^{2}(x)$
$>$ We use SOS polynomials to represent Nonnegative Polynomials.

SOS condition is a sufficient certificate for polynomial nonnegativity.

Sum of Squares (SOS) Polynomials

Polynomial $p(x)$ is sum of squares (SOS) polynomial if :
it can be written as a finite sum of squares of other polynomials.

$$
p(x) \in \mathbb{R}[x] \underset{\operatorname{sOS}}{ } \quad p(x)=\sum_{i=1}^{\ell} h_{i}^{2}(x) \quad h_{i}(x) \in \mathbb{R}[x], \quad i=1, \ldots, \ell
$$

$>$ If polynomial $p(x)$ is SOS, then it is $\boldsymbol{p}(\boldsymbol{x}) \geq \mathbf{0}$ for all $x \in \mathbb{R}^{n} . \quad p(x)=\sum_{i=1}^{\ell} h_{i}^{2}(x)$
$>$ We use SOS polynomials to represent Nonnegative Polynomials.

SOS condition is a sufficient certificate for polynomial nonnegativity.
Nonnegative Polynomials

SOS Polynomials

Sum of Squares (SOS) Polynomials

Polynomial $p(x)$ is sum of squares (SOS) polynomial if :
it can be written as a finite sum of squares of other polynomials.

$$
p(x) \in \mathbb{R}[x] \square \quad \square \quad h_{i}(x) \in \mathbb{R}[x], \quad i=1, \ldots, \ell
$$

$>$ If polynomial $p(x)$ is SOS, then it is $\boldsymbol{p}(\boldsymbol{x}) \geq \mathbf{0}$ for all $x \in \mathbb{R}^{n} . \quad p(x)=\sum_{i=1}^{\ell} h_{i}^{2}(x)$
$>$ We use SOS polynomials to represent Nonnegative Polynomials.

SOS condition is a sufficient certificate for polynomial nonnegativity.
Example: Motzkin polynomial $p\left(x_{1}, x_{2}\right)=x_{1}^{4} x_{2}^{2}+x_{1}^{2} x_{2}^{4}+1-3 x_{1}^{2} x_{2}^{2}$
Nonnegative Polynomials

$$
p\left(x_{1}, x_{2}\right) \geq 0 \quad p\left(x_{1}, x_{2}\right) \notin S O S
$$

Sum of Squares (SOS) Polynomials

$>$ SOS condition is a sufficient test for polynomial nonnegativity.

- The investigation of the relation between nonnegativity and SOS

Nonnegative Polynomials began in the paper of Hilbert from 1888.
D. Hilbert," Uber die Darstellung Definiter Formen als Summe von Formenquadraten" , Math. Ann., 32 (1888)

Sum of Squares (SOS) Polynomials

$>$ SOS condition is a sufficient test for polynomial nonnegativity.

- The investigation of the relation between nonnegativity and SOS began in the paper of Hilbert from 1888.
D. Hilbert," Uber die Darstellung Definiter Formen als Summe von Formenquadraten" , Math. Ann., 32 (1888)
- Hilbert showed that every nonnegative polynomial is SOS only in the following three cases:
i) Univariate Polynomials , ii) Quadratic Polynomials ($\mathrm{d}=2$), iii) Bivariate polynomial of degree 4 ($\mathrm{n}=2, \mathrm{~d}=4$)

Sum of Squares (SOS) Polynomials

$>$ SOS condition is a sufficient test for polynomial nonnegativity.

- The investigation of the relation between nonnegativity and SOS began in the paper of Hilbert from 1888.
D. Hilbert," Uber die Darstellung Definiter Formen als Summe von Formenquadraten" , Math. Ann., 32 (1888)
- Hilbert showed that every nonnegative polynomial is SOS only in the following three cases:
i) Univariate Polynomials , ii) Quadratic Polynomials ($\mathrm{d}=2$), iii) Bivariate polynomial of degree 4 ($\mathrm{n}=2, \mathrm{~d}=4$)

Hilbert's 17th problem asked whether this is true in general:
Hilbert's 17th problem (1900):
Given a nonnegative polynomial, can it be represented as a sum of squares of rational functions?
Hilbert, David "Mathematical Problems". Bulletin of the American Mathematical Society. 8 (10): 437-479.
© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/

Sum of Squares (SOS) Polynomials

1) Nonnegativity Condition of $p(x) \in \mathbb{R}[x]$

Nonnegative polynomial			
$p(x) \geq 0, \forall x \in \mathbb{R}^{n}$	\square	\quad	SOS Condition
:---			
$p(x) \in S O S$	$\quad \square \searrow$	$p(x)=\sum_{i=1}^{\ell} h_{i}^{2}(x)$	
:---			
$h_{i}(x) \in \mathbb{R}[x], \quad i=1, \ldots, \ell$			

Sum of Squares (SOS) Polynomials

1) Nonnegativity Condition of $p(x) \in \mathbb{R}[x]$

Nonnegative polynomial			
$p(x) \geq 0, \forall x \in \mathbb{R}^{n}$	\square	\quad	SOS Condition
:---			
$p(x) \in S O S$	$\quad \square \searrow$	$p(x)=\sum_{i=1}^{\ell} h_{i}^{2}(x)$	
:---			
$h_{i}(x) \in \mathbb{R}[x], \quad i=1, \ldots, \ell$			

2) Nonnegativity Condition Of $p(x) \in \mathbb{R}[x]$ On The Set
Nonnegative polynomial
$p(x) \geq 0, \quad \forall x \in \underset{\text { set }}{\mathbf{K}=\left\{x \in \mathbb{R}^{n}: g_{i}(x) \geq 0, \quad i=1, \ldots, m\right\}}$ SOS

Sum of Squares (SOS) Polynomials

2) Nonnegativity Condition of $p(x) \geq 0, \quad \forall x \in \mathbf{K}=\left\{x \in \mathbb{R}^{n}: g_{i}(x) \geq 0, i=1, \ldots, m\right\}$

Putinar's Certificate (Positivstellensatze): ${ }^{1}$

Let the semialgebraic set \mathbf{K} be a compact set. ${ }^{2}$ If Polynomial $p(x)$ is nonnegative on the set \mathbf{K} then,

$$
p(x)=\sigma_{0}(x)+\sum_{i=1}^{m} \sigma_{i}(x) g_{i}(x)
$$

for some $\sigma_{i}(x) \in S O S, i=0, \ldots, m$

1:- Putinar, M. Positive polynomials on compact semi-algebraic sets, Indiana Univ. Math. J. 42 (1993), 969-984.

- Section 3.6.2: Monique Laurent, "Sums Of Squares, Moment Matrices and Optimization Over Polynomials", 2010,
https://homepages.cwi.nl/~monique/files/moment-ima-update-new.pdf
- Sections 2.5.1: Jean Bernard Lasserre, "Moments, Positive Polynomials and Their Applications" Imperial College Press Optimization Series, V. 1, 2009. 2: Archimedean set.

[^0]51

Sum of Squares (SOS) Polynomials

2) Nonnegativity Condition of $p(x) \geq 0, \quad \forall x \in \mathbf{K}=\left\{x \in \mathbb{R}^{n}: g_{i}(x) \geq 0, i=1, \ldots, m\right\}$

Putinar's Certificate (Positivstellensatze): ${ }^{1}$

Let the semialgebraic set \mathbf{K} be a compact set. ${ }^{2}$ If Polynomial $p(x)$ is nonnegative on the set \mathbf{K} then,

$$
p(x)=\sigma_{0}(x)+\sum_{i=1}^{m} \sigma_{i}(x) g_{i}(x)
$$

for some $\quad \sigma_{i}(x) \in S O S, i=0, \ldots, m$

$$
\begin{aligned}
& {[x \in \mathbf{K} \quad p(x)=\underbrace{\sigma_{0}(x)}_{+}+\sum_{i=1}^{m} \underbrace{\sigma_{i}(x)}_{+} \underbrace{}_{+}) \longrightarrow p(x) \geq 0} \\
& \{x \notin \mathbf{K} \quad p(x)=\underbrace{\sigma_{0}(x)}_{+}+\sum_{i=1}^{m} \underbrace{\sigma_{i}(x)}_{+-} \underbrace{g_{i}(x)}_{-} \longrightarrow \begin{array}{c}
p(x) \geq 0 \\
\text { or } \\
p(x) \leq 0
\end{array}]\left[\begin{array}{l}
p(x) \geq 0 \quad \forall x \in \mathbf{K}
\end{array}\right.
\end{aligned}
$$

- Section 3.6.2: Monique Laurent, "Sums Of Squares, Moment Matrices and Optimization Over Polynomials", 2010,
https://homepages.cwi.nl/~monique/files/moment-ima-update-new.pdf
- Sections 2.5.1: Jean Bernard Lasserre, "Moments, Positive Polynomials and Their Applications" Imperial College Press Optimization Series, V. 1, 2009. 2: Archimedean set.

[^1]
Sum of Squares (SOS) Polynomials

$>$ In Putinar's Certificate, set K should be Archimedean (slightly stronger than compactness).

$$
\mathbf{K}=\left\{x \in \mathbb{R}^{n}: g_{i}(x) \geq 0, i=1, \ldots, m\right\} \square \text { Archimedean }
$$

Sum of Squares (SOS) Polynomials

In Putinar's Certificate, set K should be Archimedean (slightly stronger than compactness).

$$
\mathbf{K}=\left\{x \in \mathbb{R}^{n}: g_{i}(x) \geq 0, i=1, \ldots, m\right\} \square \text { Archimedean }
$$

Archimedean : Set \mathbf{K} is Archimedean if there exist a $u(x) \in \mathbf{K}$ of the form $u(x)=\sigma_{0}+\sum_{i=1}^{m} \sigma_{i} g_{i}(x), \sigma_{i} \in S O S$ such that set $\{x: u(x) \geq 0\}$ is compact. ${ }^{1,2}$

Sum of Squares (SOS) Polynomials

In Putinar's Certificate, set \mathbf{K} should be Archimedean (slightly stronger than compactness).

$$
\mathbf{K}=\left\{x \in \mathbb{R}^{n}: g_{i}(x) \geq 0, \quad i=1, \ldots, m\right\} \square \text { Archimedean }
$$

Archimedean : Set \mathbf{K} is Archimedean if there exist a $u(x) \in \mathbf{K}$ of the form $u(x)=\sigma_{0}+\sum_{i=1}^{m} \sigma_{i} g_{i}(x), \sigma_{i} \in \operatorname{SOS}$ such that set $\{x: u(x) \geq 0\}$ is compact. ${ }^{1,2}$

Archimedean condition is bot very restrictive. Archimedean condition is satisfied in the following cases:

- All the polynomials of the set \mathbf{K} are affine and the set is a polytope . ${ }^{1,3}$
- The set $\left\{x: g_{i}(x) \geq 0\right\}$ is compact for some $g_{i}(x) \in \mathbf{K}$. ${ }^{1}$

Sum of Squares (SOS) Polynomials

In Putinar's Certificate, set \mathbf{K} should be Archimedean (slightly stronger than compactness).

$$
\mathbf{K}=\left\{x \in \mathbb{R}^{n}: g_{i}(x) \geq 0, \quad i=1, \ldots, m\right\} \square \text { Archimedean }
$$

Archimedean : Set \mathbf{K} is Archimedean if there exist a $u(x) \in \mathbf{K}$ of the form $u(x)=\sigma_{0}+\sum_{i=1}^{m} \sigma_{i} g_{i}(x), \sigma_{i} \in \operatorname{SOS}$ such that set $\{x: u(x) \geq 0\}$ is compact. ${ }^{1,2}$

Archimedean condition is bot very restrictive. Archimedean condition is satisfied in the following cases:

- All the polynomials of the set \mathbf{K} are affine and the set is a polytope . ${ }^{1,3}$
- The set $\left\{x: g_{i}(x) \geq 0\right\}$ is compact for some $g_{i}(x) \in \mathbf{K}$. ${ }^{1}$
$>$ If the set \mathbf{K} is not Archimedean, we can add the (redundant) polynomial $g_{m+1}(x)=M-\|x\|^{\wedge} 2$ where $M \geq 0$ such that the set $\left\{x: g_{m+1}(x) \geq 0\right\}$ contains the set \mathbf{K}. Adding such polynomial to the set, does not change the geometry of the set. ${ }^{1}$

1: Section 2.5: Jean Bernard Lasserre, "Moments, Positive Polynomials and Their Applications" Imperial College Press Optimization Series, V. 1, 2009.
2: M. Putinar, "Positive polynomials on compact semi-algebraic sets", Indiana University Mathematics Journal, 42, pp. 969-984, 1993.
3:Theorem 7.1.3, M. Marshall. "Positive Polynomials and Sums of Squares". American Mathematical Society, Providence, Rhode Island, 2008.
4: A. Jasour, N. S. Aybat, C. Lagoa "Semidefinite Programming For Chance Constrained Optimization Over Semialgebraic Sets", SIAM Journal on Optimization, 25(3), $1411-1440,2015$.

Sum of Squares (SOS) Polynomials

In Putinar's Certificate, set \mathbf{K} should be Archimedean (slightly stronger than compactness).

$$
\mathbf{K}=\left\{x \in \mathbb{R}^{n}: g_{i}(x) \geq 0, \quad i=1, \ldots, m\right\} \square \text { Archimedean }
$$

Archimedean : Set \mathbf{K} is Archimedean if there exist a $u(x) \in \mathbf{K}$ of the form $u(x)=\sigma_{0}+\sum_{i=1}^{m} \sigma_{i} g_{i}(x), \sigma_{i} \in \operatorname{SOS}$ such that set $\{x: u(x) \geq 0\}$ is compact. ${ }^{1,2}$

Archimedean condition is bot very restrictive. Archimedean condition is satisfied in the following cases:

- All the polynomials of the set \mathbf{K} are affine and the set is a polytope . ${ }^{1,3}$
- The set $\left\{x: g_{i}(x) \geq 0\right\}$ is compact for some $g_{i}(x) \in \mathbf{K}$. ${ }^{1}$
$>$ If the set \mathbf{K} is not Archimedean, we can add the (redundant) polynomial $g_{m+1}(x)=M-\|x\|^{\wedge} 2$ where $M \geq 0$ such that the set $\left\{x: g_{m+1}(x) \geq 0\right\}$ contains the set \mathbf{K}. Adding such polynomial to the set, does not change the geometry of the set. ${ }^{1}$
- Archimedean property is not a geometric property of the set \mathbf{K} but rather an algebraic property related to the representation of the set by its defining polynomials. ${ }^{4}$

Sum of Squares (SOS) Polynomials

In Putinar's Certificate, set K should be Archimedean (slightly stronger than compactness).

$$
\mathbf{K}=\left\{x \in \mathbb{R}^{n}: g_{i}(x) \geq 0, \quad i=1, \ldots, m\right\} \square \text { Archimedean }
$$

Archimedean : Set \mathbf{K} is Archimedean if there exist a $u(x) \in \mathbf{K}$ of the form $u(x)=\sigma_{0}+\sum_{i=1}^{m} \sigma_{i} g_{i}(x), \sigma_{i} \in \operatorname{SOS}$ such that set $\{x: u(x) \geq 0\}$ is compact. ${ }^{1,2}$

Archimedean condition is bot very restrictive. Archimedean condition is satisfied in the following cases:

- All the polynomials of the set \mathbf{K} are affine and the set is a polytope . ${ }^{1,3}$
- The set $\left\{x: g_{i}(x) \geq 0\right\}$ is compact for some $g_{i}(x) \in \mathbf{K}$. ${ }^{1}$
$>$ If the set \mathbf{K} is not Archimedean, we can add the (redundant) polynomial $g_{m+1}(x)=M-\|x\|^{\wedge} 2$ where $M \geq 0$ such that the set $\left\{x: g_{m+1}(x) \geq 0\right\}$ contains the set \mathbf{K}. Adding such polynomial to the set, does not change the geometry of the set. ${ }^{1}$
> Archimedean property is not a geometric property of the set \mathbf{K} but rather an algebraic property related to the representation of the set by its defining polynomials. ${ }^{4}$

If the set is Archimedean then necessarily is compact but the reverse is not true.

1: Section 2.5: Jean Bernard Lasserre, "Moments, Positive Polynomials and Their Applications" Imperial College Press Optimization Series, V. 1, 2009.
2: M. Putinar, "Positive polynomials on compact semi-algebraic sets", Indiana University Mathematics Journal, 42, pp. 969-984, 1993.
3:Theorem 7.1.3, M. Marshall. "Positive Polynomials and Sums of Squares". American Mathematical Society, Providence, Rhode Island, 2008.
4: A. Jasour, N. S. Aybat, C. Lagoa "Semidefinite Programming For Chance Constrained Optimization Over Semialgebraic Sets", SIAM Journal on Optimization, 25(3), $1411-1440,2015$.

Sum of Squares (SOS) Polynomials

$>$ In Putinar's Certificate, set K should be Archimedean (slightly stronger than compactness).

$$
\mathbf{K}=\left\{x \in \mathbb{R}^{n}: g_{i}(x) \geq 0, i=1, \ldots, m\right\} \square \text { Archimedean }
$$

In the presence Archimedean assumption, the number of the terms in the SOS representation, i.e., $p(x)=\sigma_{0}+\sum_{i=1}^{m} \sigma_{i} g_{i}(x)$, is linear in the number of polynomials that defines \mathbf{K}
$>$ In the absence of Archimedean assumption, the number of terms in SOS representation is exponential in the number of polynomials that defines \mathbf{K}

$$
p(x)=\sigma_{0}+\sum_{i} \sigma_{i}(x)+\sum_{i, j} g_{i j} g_{i}(x) g_{j}(x)+\sum_{i, j, k} \sigma_{i j} g_{i}(x) g_{j}(x) g_{k}(x)+\ldots
$$

- Section 2.5: Jean Bernard Lasserre, "Moments, Positive Polynomials and Their Applications" Imperial College Press Optimization Series, V. 1, 2009.
- M. Putinar, "Positive polynomials on compact semi-algebraic sets", Indiana University Mathematics Journal, 42, pp. 969-984, 1993.

2) Nonnegativity Condition of $p(x) \in \mathbb{R}[x]$ on the set

Nonnegative polynomial

$$
p(x) \geq 0, \quad \forall x \in \mathbf{K}=\left\{x \in \mathbb{R}^{n}: g_{i}(x) \geq 0, i=1, \ldots, m\right\}
$$

Putinar's Certificate:

$$
p(x)=\sigma_{0}(x)+\sum_{i=1}^{m} \sigma_{i}(x) g_{i}(x) \quad \sigma_{i}(x) \in S O S, i=0, \ldots, m
$$

2) Nonnegativity Condition of $p(x) \in \mathbb{R}[x]$ on the set

Nonnegative polynomial

$$
p(x) \geq 0, \quad \forall x \in \mathbf{K}=\left\{x \in \mathbb{R}^{n}: g_{i}(x) \geq 0, i=1, \ldots, m\right\}
$$

Putinar's Certificate:

\rightarrow| $p(x)=\sigma_{0}(x)+\sum_{i=1}^{m} \sigma_{i}(x) g_{i}(x) \quad \sigma_{i}(x) \in S O S, i=0, \ldots, m$ | |
| ---: | :--- |
| $p(x)-\sum_{i=1}^{m} \sigma_{i}(x) g_{i}(x)=\sigma_{0}(x)$ | |
| $p(x)-\sum_{i=1}^{m} \sigma_{i}(x) g_{i}(x) \in S O S$ | $\sigma_{i}(x) \in S O S, i=1, \ldots, m$ |

Sum of Squares (SOS) Polynomials

1) Nonnegativity Condition of $p(x) \in \mathbb{R}[x]$

Nonnegative polynomial			
$p(x) \geq 0, \forall x \in \mathbb{R}^{n}$	\square SOS	\quad	SOS Condition
:---			
$p(x) \in S O S$	$\quad \square \checkmark$	$p(x)=\sum_{i=1}^{\ell} h_{i}^{2}(x)$	
:---			
$h_{i}(x) \in \mathbb{R}[x], \quad i=1, \ldots, \ell$			

2) Nonnegativity Condition of $p(x) \in \mathbb{R}[x]$ on the set

Nonnegative polynomial

$$
p(x) \geq 0, \quad \forall x \in \mathbf{K}=\left\{x \in \mathbb{R}^{n}: g_{i}(x) \geq 0, i=1, \ldots, m\right\}
$$

SOS Condition

$$
\begin{aligned}
& p(x)-\sum_{i=1}^{m} \sigma_{i}(x) g_{i}(x) \in S O S \\
& \sigma_{i}(x) \in S O S, i=1, \ldots, m
\end{aligned}
$$

Sum of Squares (SOS) Polynomials

1) Nonnegativity Condition of $p(x) \in \mathbb{R}[x]$

2) Nonnegativity Condition of $p(x) \in \mathbb{R}[x]$ on the set

Nonnegative polynomial

$$
p(x) \geq 0, \quad \forall x \in \underbrace{\mathbf{K}=\left\{x \in \mathbb{R}^{n}: g_{i}(x) \geq 0, \quad i=1, \ldots, m\right\}}
$$

SOS Condition

$$
\begin{aligned}
& p(x)-\sum_{i=1}^{m} \sigma_{i}(x) g_{i}(x) \in S O S \\
& \sigma_{i}(x) \in S O S_{2} d_{i}, i=1, \ldots, m \\
& \operatorname{deg}\left(\sigma_{i}(x)\right)=\stackrel{2 d_{i}}{ }
\end{aligned}
$$

Nonlinear (nonconvex) Optimization

$$
\begin{array}{ll}
\underset{x \in \mathbb{R}^{n}}{\operatorname{minimize}} & f(x) \\
\text { subject to } & g_{i}(x) \geq 0, i=1, \ldots, m
\end{array}
$$

Tools: i) Nonnegative Polynomials ii) Semidefinite Programs

Step 1:

Reformulate Nonlinear Optimization problem in terms of Nonnegative Polynomials

Step 2:

2.1 Replace Nonnegative Polynomials with Sum of Squares (SOS) Polynomials
2.2 Represent SOS Polynomials with Positive Semidefinite Matrices (PSD)

Reformulate Nonlinear Optimization as Semidefinite Programs

Nonlinear (nonconvex) Optimization

$\underset{x \in \mathbb{R}^{n}}{\operatorname{minimize}}$	$f(x)$
subject to	$g_{i}(x) \geq 0, i=1, \ldots, m$

Tools: i) Nonnegative Polynomials ii) Semidefinite Programs

Step 1:

Reformulate Nonlinear Optimization problem in terms of Nonnegative Polynomials
 Step 2:
2.1 Replace Nonnegative Polynomials with Sum of Squares (SOS) Polynomials

SOS Programming using YALMIP
2.2 Represent SOS Polynomials with Positive Semidefinite Matrices (PSD)

Reformulate Nonlinear Optimization as Semidefinite Programs

SOS Programming
 Problems with SOS Conditions

- Verification Problems
$>$ Design Problems
> Optimization

YALMIP: J. Lofberg,"YALMIP : A Toolbox for Modeling and Optimization in MATLAB", In Proceedings of the CACSD Conference, 2004 https://yalmip.github.io/
SOSTOOLS: MATLAB toolbox for formulating and solving sums of squares (SOS) optimization programs https://www.cds.caltech.edu/sostools/

Input: SOS Program

- Generates Semidefinite Program (SDP) from SOS Program
- Solves the SDP using SDP solvers

SDP solvers: e.g., MOSEK https://www.mosek.com SEDUMI http://sedumi.ie.lehigh.edu

SOS Programming

1) Nonnegativity Verification:

Given, $p(x) \in \mathbb{R}[x]$
Check if $p(x) \geq 0$

Given, $p(x) \in \mathbb{R}[x]$ and the sset $\mathbf{K}=\left\{x \in \mathbb{R}^{n}: g_{i}(x) \geq 0, i=1, \ldots, m\right\}$
Check if $p(x) \geq 0 \quad \forall x \in \mathbf{K}$

SOS Programming

1) Nonnegativity Verification:

Example: Check the nonnegativity of polynomial $p(x)$

$$
p(x)=x_{1}^{4}+4 x_{1}^{3}+6 x_{1}^{2}+4 x_{1}+5 \square p(x) \in S O S
$$

SOS Programming

1) Nonnegativity Verification:

Example: Check the nonnegativity of polynomial $p(x)$

$$
p(x)=x_{1}^{4}+4 x_{1}^{3}+6 x_{1}^{2}+4 x_{1}+5 \square p(x) \in S O S
$$

```
YALMIP
x = sdpvar(1); }\longrightarrow\mathrm{ variables }
p = x(1)^4+4*x(1)^3+6*x(1)^2+4x(1)+5; \longrightarrow p(x)
F = sos(p);\longrightarrow
ops = sdpsettings('solver','mosek');\longrightarrow SDP solver
[sol,v,Q]=solvesos(F);
h=sosd(F); sdisplay(h'*h) 
```


SOS Programming

1) Nonnegativity Verification:

Example: Check the nonnegativity of polynomial $p(x)$

$$
p(x)=x_{1}^{4}+4 x_{1}^{3}+6 x_{1}^{2}+4 x_{1}+5 \square p(x) \in S O S
$$

```
YALMIP
x = sdpvar(1); }\longrightarrow\mathrm{ variables }
p = x(1)^4+4*x(1)^3+6*x(1)^2+4x(1)+5; \longrightarrow p(x)
F}=\operatorname{sos}(\textrm{p});\longrightarrowp(x)\inSO
ops = sdpsettings('solver','mosek');\longrightarrow SDP solver
[sol,v,Q]=solvesos(F);\longrightarrow solve SOS programming
h=sosd(F); sdisplay(h'*h) 
```

SOS Decomposition
$p(x)=\left(-1.54-2.25 x_{1}-0.65 x^{2}\right)^{2}+\left(1.61-0.92 x-0.63 x^{2}\right)^{2}+\left(0.066-0.163 x+0.405 x^{2}\right)^{2} \square \mathrm{p}(\mathrm{x})$ is nonnegative

SOS Programming

1) Nonnegativity Verification:

Example: Check the nonnegativity of polynomial $p(x)$

$$
p(x)=x_{1}^{4}+4 x_{1}^{3}+6 x_{1}^{2}+4 x_{1}+5 \square p(x) \in S O S
$$

```
YALMIP
x = sdpvar(1); }\longrightarrow\mathrm{ variables }
p = x(1)^4+4*x(1)^3+6*x(1)^2+4x(1)+5;\longrightarrow p(x)
F = sos(p);\longrightarrow
ops = sdpsettings('solver','mosek');\longrightarrow SDP solver
[sol,v,Q]=solvesos(F);\longrightarrow solve SOS programming
h=sosd(F); sdisplay(h'*h) 
```

SOS Decomposition
$p(x)=\left(-1.54-2.25 x_{1}-0.65 x^{2}\right)^{2}+\left(1.61-0.92 x-0.63 x^{2}\right)^{2}+\left(0.066-0.163 x+0.405 x^{2}\right)^{2} \square \mathrm{p}(\mathbf{x})$ is nonnegative
If $p(x)$ does not have SOS representation: Yalmip output: Problem status: The problem is primal infeasible

SOS Programming

1) Nonnegativity Verification:

Example: Check the nonnegativity of polynomial $p(x)$ on the set \mathbf{K}

$$
p(x)=x_{1}^{3}-4 x_{1}^{2}+2 x_{1} x_{2}-x_{2}^{2}+x_{2}^{3}
$$

$$
\mathbf{K}=\left\{x: x_{1} \geq 0, x_{2} \geq 0, x_{1}+x_{2}-1 \geq 0\right\}
$$

SOS Programming

1) Nonnegativity Verification:

Example: Check the nonnegativity of polynomial $p(x)$ on the set \mathbf{K}

$$
p(x)=x_{1}^{3}-4 x_{1}^{2}+2 x_{1} x_{2}-x_{2}^{2}+x_{2}^{3} \quad \mathbf{K}=\left\{x: x_{1} \geq 0, x_{2} \geq 0, x_{1}+x_{2}-1 \geq 0\right\}
$$

SOS Condition

$$
p(x)-\sigma_{1} x_{1}-\sigma_{2} x_{2}-\sigma_{3}\left(x_{1}+x_{2}-1\right) \in S O S \quad \text { where, } \sigma_{i}(x) \in S O S_{2}, i=1,2,3
$$

SOS Condition

$$
p(x)-\sigma_{1} x_{1}-\sigma_{2} x_{2}-\sigma_{3}\left(x_{1}+x_{2}-1\right) \in S O S
$$

$$
\text { where, } \sigma_{i}(x) \in S O S_{2}, i=1,2,3
$$

sdpvar $\times 1 \times 2 \longrightarrow$ variables x_{1}, x_{2}
$\mathrm{p}=\mathrm{x} 1^{\wedge} 3-\times 1^{\wedge} 2+2^{*} \times 1^{*} \times 2-\times 2^{\wedge} 2+\times 2 \wedge 3 ; \longrightarrow p(x)$
$\mathrm{g}=[\mathrm{x} 1 ; \times 2 ; \times 1+\times 2-1] \longrightarrow \mathrm{K}$
$\mathrm{d}=2$; \longrightarrow order of σ_{i}
$[\mathrm{s} 1, \mathrm{c} 1]=\operatorname{polynomial}([\mathrm{x} 1 \mathrm{x} 2], \mathrm{d}) ; \longrightarrow \sigma_{1}$ with coefficients c_{1}
$[\mathrm{s} 2, \mathrm{c} 2]=\operatorname{polynomial}([\mathrm{x} 1 \mathrm{x} 2], \mathrm{d}) ; \longrightarrow \sigma_{2}$ with coefficients c_{2}

$[\mathrm{s} 3, \mathrm{c} 3]=\operatorname{polynomial}([\mathrm{x} 1 \mathrm{x} 2], \mathrm{d}) ; \longrightarrow \sigma_{3}$ with coefficients c_{3}
ops = sdpsettings('solver','mosek') $; \longrightarrow$ SDP solver
$\mathrm{F}=\left[\operatorname{sos}\left(\mathrm{p}-[\mathrm{s} 1 \mathrm{~s} 2 \mathrm{~s} 3]^{*} \mathrm{~g}\right), \operatorname{sos}(\mathrm{s} 1), \operatorname{sos}(\mathrm{s} 2), \operatorname{sos}(\mathrm{s} 3)\right] ; \longrightarrow p(x)-\sigma_{1} x_{1}-\sigma_{2} x_{2}-\sigma_{3}\left(x_{1}+x_{2}-1\right) \in \operatorname{SOS}$
$[$ sol, $\mathrm{v}, \mathrm{Q}]=\operatorname{solvesos}\left(\mathrm{F},[], \mathrm{ops},[\mathrm{c0;c1;c2;c3]}) ; \longrightarrow\right.$ solve SOS programming $\quad \sigma_{i}(x) \in S O S_{2}, i=1,2,3$

$$
\begin{aligned}
& \operatorname{sdisplay}\left(\operatorname{sosd}(F(1))^{\prime *} \operatorname{sosd}(F(1))\right) \longrightarrow p(x)-\sigma_{1} x_{1}-\sigma_{2} x_{2}-\sigma_{3}\left(x_{1}+x_{2}-1\right)=\sum_{i=1}^{\ell} h_{i}^{2}(x) \\
& \operatorname{sdisplay}\left(\operatorname{sosd}(F(2))^{\prime *} \operatorname{sosd}(F(2))\right) \longrightarrow \sigma_{1}
\end{aligned}
$$

sOS Decomposition \downarrow

$p(x)$ is nonnegative on the set K
https://github.com/iasour/rarnop19/blob/master/Lecture3 SOS NonlinearOptimization/SOS Decomposition/Example 3.m

SOS Programming

2) Design Problem:

Given, $p(x, c) \in \mathbb{R}[x]$ with unknown parameters $c \in \mathbb{R}^{m}$, e.g., some unknown coefficients
Find c such that $p(x) \geq 0$

Find c to satisfy
SOS Condition:

$$
p(x, c) \in S O S
$$

Given, $p(x, c) \in \mathbb{R}[x]$ with unknown parameters $c \in \mathbb{R}^{m}$
and the set $\mathbf{K}=\left\{x \in \mathbb{R}^{n}: g_{i}(x) \geq 0, i=1, \ldots, m\right\}$

Find c such that $p(x) \geq 0 \quad \forall x \in \mathbf{K}$

Find c to satisfy SOS Condition:

$$
\begin{gathered}
p(x, c)-\sum_{i=1}^{m} \sigma_{i}(x) g_{i}(x) \in S O S \\
\sigma_{i}(x) \in \operatorname{SOS}_{2 d_{i}}, i=1, \ldots, m
\end{gathered}
$$

SOS Programming

2) Design Problem:

Example: Lyapunov Function Search Using SOS Programming

Given a dynamical system $\quad \dot{x}=f(x), x(0)=x_{0}$
We want to show that solutions $x(t)$ converge to zero for all initial conditions (stability).

- To prove this, we need to find an energy function $V(x)$ with following properties

$$
\underset{\substack{\text { Lyapunov function }}}{V(x)=0 \text { on } x=0 \quad} \quad-\dot{V}(x)>0
$$

- A. Papachristodoulou and S. Prajna. On the construction of Lyapunov functions using the sum of squares decomposition. In Proceedings of the 41st IEEE Conference on Decision and Control, pages 3482-3487, December 2002.
- Stability of Polynomial Differential Equations: Complexity and Converse Lyapunov Questions A. A. Ahmadi and P. A. Parrilo IEEE Transactions on Automatic Control, Submitted, 2013, http://web.mit.edu/~a a a/Public/Publications/poly stability.pdf
- A. A. Ahmadi, P. A. Parrilo, "SOS Lyapunov Function", 2011, http://web.mit.edu/~a a a/Public/Presentations/AAA CDC11 paper1.pdf

SOS Programming

2) Design Problem:

Example: Lyapunov Function Search Using SOS Programming

Given a dynamical system $\quad \dot{x}=f(x), x(0)=x_{0}$
We want to show that solutions $x(t)$ converge to zero for all initial conditions (stability).

- To prove this, we need to find an energy function $V(x)$ with following properties

$$
\underbrace{V(x)=0 \text { on } x=0 \quad \begin{array}{c}
V(x)>0 \text { on } x \neq 0
\end{array}-\dot{V}(x)>0}_{\text {Lyapunov function }}
$$

- We look for polynomial Lyapunov function $V(x)=c^{T} B(x)$
- A. Papachristodoulou and S. Prajna. On the construction of Lyapunov functions using the sum of squares decomposition. In Proceedings of the 41st IEEE Conference on Decision and Control, pages 3482-3487, December 2002.
- Stability of Polynomial Differential Equations: Complexity and Converse Lyapunov Questions A. A. Ahmadi and P. A. Parrilo IEEE Transactions on Automatic Control, Submitted, 2013, http://web.mit.edu/~a a a/Public/Publications/poly stability.pdf
- A. A. Ahmadi, P. A. Parrilo, "SOS Lyapunov Function", 2011, http://web.mit.edu/~a a a/Public/Presentations/AAA CDC11 paper1.pdf

SOS Programming

2) Design Problem:

Example: Lyapunov Function Search Using SOS Programming

Given a dynamical system

$$
\dot{x}=f(x), x(0)=x_{0}
$$

We want to show that solutions $x(t)$ converge to zero for all initial conditions (stability).

- To prove this, we need to find an energy function $V(x)$ with following properties

$$
\underbrace{V(x)=0 \text { on } x=0 \quad V(x)>0 \text { on } x \neq 0}_{\text {Lyapunov function }} \quad-\dot{V}(x)>0
$$

- We look for polynomial Lyapunov function $V(x)=c^{T} B(x)$
- Instead of checking nonnegativity, we check SOS conditions.

$$
V(0)=0 \longrightarrow c(1)=0 \quad V(x) \in \operatorname{SOS}_{2 d} \quad-\dot{V}(x) \in \operatorname{SOS}
$$

- A. Papachristodoulou and S. Prajna. On the construction of Lyapunov functions using the sum of squares decomposition. In Proceedings of the 41st IEEE Conference on Decision and Control, pages 3482-3487, December 2002.
- Stability of Polynomial Differential Equations: Complexity and Converse Lyapunov Questions A. A. Ahmadi and P. A. Parrilo IEEE Transactions on Automatic Control, Submitted, 2013, http://web.mit.edu/~a a a/Public/Publications/poly stability.pdf
- A. A. Ahmadi, P. A. Parrilo, "SOS Lyapunov Function", 2011, http://web.mit.edu/~a a a/Public/Presentations/AAA CDC11 paper1.pdf

SOS Programming

2) Design Problem:

Lyapunov Function Search

$$
\begin{aligned}
& \dot{x}_{1}=-x_{1}+\left(1+x_{1}\right) x_{2} \\
& \dot{x}_{2}=-\left(1+x_{1}\right) x_{1}
\end{aligned}
$$

SOS Conditions:

$$
V(x)=c^{T} B_{4}(x) \quad V(0)=0 \longrightarrow c(1)=0
$$

$$
V(x) \in \operatorname{SOS}_{2 d} \quad-\dot{V}(x) \in \operatorname{SOS}
$$

$$
V(x)=\left(-2.46 e-06+0.93 x(1)-1.19 x(2)+0.14 x(1) x(2)+0.06 x(1)^{2}+0.09 x(2)^{2}\right)^{2}
$$

$$
+\left(-4.32 e-06+0.03 x(1)-0.13 x(2)-1.32 x(1) x(2)+0.0071 x(1)^{2}+0.01 x(2)^{2}\right)^{2}
$$

$$
+\left(6.41 e-06-0.83 x(1)-0.66 x(2)+0.041 x(1) x(2)-0.26 x(1)^{2}-0.0045 x(2)^{2}\right)^{2}
$$

$$
+\left(4.99 e-05+0.19 x(1)+0.046 x(2)-0.012 x(1) x(2)-0.698 x(1)^{2}-0.756 x(2)^{2}\right)^{2}
$$

$$
+\left(-1.432 e-05+0.12 x(1)+0.11 x(2)-0.0032 x(1) x(2)-0.65 x(1)^{2}+0.645 x(2)^{2}\right)^{2}
$$

$$
+\left(-0.0001+1.34 e-10 x(1)-1.74 e-10 x(2)+3.03 e-10 x(1) x(2)-2.4456 e-09 x(1)^{2}-4.89 e\right.
$$

SOS Programming

2) Design Problem:

SOS Programming

$$
\underset{x \in \mathbb{R}}{\operatorname{minimize}} \quad x^{4}+2 x^{3}-12 x^{2}-2 x+6
$$

$\begin{array}{ll} \underset{\gamma \in \mathbb{R}}{\operatorname{maximize}} & \gamma \\ \text { subject to } & x^{4}+2 x^{3}-12 x^{2}-2 x+6-\gamma \geq 0, \quad \forall x \in \mathbb{R} \end{array}$	sos	$\begin{aligned} & \underset{\gamma \in \mathbb{R}}{\operatorname{maximize}} \\ & \text { subject to } \end{aligned}$	γ $x^{4}+2 x^{3}-12 x^{2}-2 x+6-\gamma \in S O S$

SOS Programming in Yalmip

SOS
$\underset{\gamma \in \mathbb{R}}{\operatorname{maximize}} \quad \gamma$
subject to $\quad x^{4}+2 x^{3}-12 x^{2}-2 x+6-\gamma \in S O S$
sdpvar x gamma \longrightarrow variables x, γ
$\mathrm{p}=\mathrm{x}^{\wedge} 4+2^{*} \mathrm{x}^{\wedge} 3-12^{*} \mathrm{x}^{\wedge} 2-2^{*} \mathrm{x}+6 ; \longrightarrow p(x)$
$\mathrm{F}=\operatorname{sos}(\mathrm{p}$-gamma); $\longrightarrow p(x)-\gamma \in S O S$
ops = sdpsettings('solver','mosek'); \longrightarrow SDP solver
$[$ sol, v, Q]=solvesos(F,-gamma,ops)i \longrightarrow solve SOS programming
value(gamma) \longrightarrow obtained γ
sdisplay (sosd $(\mathrm{F})) \longrightarrow h(x)$ vector in $p(x)-\gamma=h(x)^{T} h(x)=\sum_{i=1}^{\ell} h_{i}^{2}(x)$

https://github.com/iasour/rarnop19/blob/master/Lecture3 SOS NonlinearOptimization/SOS Optimization/Example 2 UnconOpt.m

SOS Programming

```
\(\mathrm{P}^{*}=\) minimize \(\quad-x_{1}\)
\(x \in \mathbb{R}^{2}\)
    subject to \(\quad x \in \mathbf{K}=\left\{x \in \mathbb{R}^{2}: 3-2 x_{2}-x_{1}^{2}-x_{2}^{2} \geq 0,-x_{1}-x_{2}-x_{1} x_{2} \geq 0,1+x_{1} x_{2} \geq 0\right\}\)
```

$$
p(x)-\gamma=\sigma_{0}(x)+\sum_{i=1}^{m} \sigma_{i}(x) g_{i}(x) \quad \sigma_{i}(x) \in S O S_{2 d_{i}}, i=1,2,3
$$

SOS Programming

$$
\begin{aligned}
\mathrm{P}^{*}=\underset{x \in \mathbb{R}^{2}}{\operatorname{minimize}} & -x_{1} \\
& \text { subject to } \\
& x \in \mathbf{K}=\left\{x \in \mathbb{R}^{2}: 3-2 x_{2}-x_{1}^{2}-x_{2}^{2} \geq 0,-x_{1}-x_{2}-x_{1} x_{2} \geq 0,1+x_{1} x_{2} \geq 0\right\}
\end{aligned}
$$

$$
p(x)-\gamma=\sigma_{0}(x)+\sum_{i=1}^{m} \sigma_{i}(x) g_{i}(x) \quad \sigma_{i}(x) \in \operatorname{SOS}_{2 d_{i}}, i=1,2,3
$$

$$
\begin{aligned}
\gamma^{*} & =\mathrm{P}^{*}=-1.6180 \\
\sigma_{0} & =0.126-0.114 x_{1}+0.1085 x_{2}+0.0307 x_{1}^{2}+0.05633 x_{2}^{2}-0.02405 x_{1} x_{2} \\
\sigma_{1} & =0.227-0.219 x_{1}+0.163 x_{2}+0.0604 x_{1}^{2}+0.082 x_{2}^{2}-0.0382 x_{1} x_{2} \\
\sigma_{2} & =0.413+0.10407 x_{1}+0.3416 x_{2}+0.148 x_{1}^{2}+0.0834 x_{2}^{2}+0.0665 x_{1} x_{2} \\
\sigma_{3} & =0.2985+0.262 x_{1}+0.16294 x_{2}+0.18915 x_{1}^{2}+0.0700 x_{2}^{2}-0.0258 x_{1} x 2
\end{aligned}
$$

Unconstrained Optimization

$$
\mathrm{P}=\underset{x \in \mathbb{R}^{n}}{\operatorname{minimize}} \quad p(x)
$$

$$
\mathrm{P}_{\text {sos }}=\underset{\gamma}{\operatorname{maximize}} \gamma
$$

subject to

$$
p(x)-\gamma \in S O S
$$

Constrained Optimization

$$
\begin{array}{cl}
\mathrm{P}=\underset{x \in \mathbb{R}^{n}}{\operatorname{minimize}} & f(x) \\
\text { subject to } & g_{i}(x) \geq 0, i=1, \ldots, n \\
\text { SOS Programming } & \\
\mathrm{P}_{\text {sos }}=\underset{\gamma, \sigma_{i}}{\operatorname{maximize}} & \gamma \\
\text { subject to } & p(x)-\gamma-\sum_{i=1}^{m} \sigma_{i} g_{i}(x) \in \operatorname{SOS} \\
& \sigma_{i} \in \operatorname{SOS}_{2 d_{i}}, i=1, \ldots, m
\end{array}
$$

Nonlinear (nonconvex) Optimization

$$
\begin{array}{ll}
\underset{x \in \mathbb{R}^{n}}{\operatorname{minimize}} & f(x) \\
\text { subject to } & g_{i}(x) \geq 0, i=1, \ldots, m
\end{array}
$$

Semidefinite Program

Semidefinite Program

Semidefinite Program:

```
minimize
    X\in\mp@subsup{\mathbb{R}}{}{n\timesn}
subject to }A\bulletX=b\longrightarrowlinear constraint
X\succcurlyeq0 \longrightarrow linear matrix inequality (LMI)
    Positive Semidefinite Matrix (PSD)
```


Semidefinite Program

Semidefinite Program:

```
minimize
    X\in\mathbb{R}
subject to }A\bulletX=b\longrightarrowlinear constraint
X\succcurlyeq0 \longrightarrow linear matrix inequality (LMI)
                                Positive Semidefinite Matrix (PSD)
```

Example
$X=\left[\begin{array}{ll}x_{11} & x_{12} \\ x_{12} & x_{22}\end{array}\right] \quad$$\min _{\mathrm{x}} 3 x_{11}+5 x_{12}+x_{22}$ $x_{11}+3 x_{12}+5 x_{22}=2$ $x_{11}+9 x_{12}+4 x_{22}=1$ $X \succcurlyeq 0$

Semidefinite Program

Convex Optimization

Semidefinite Program:

$\underset{X \in \mathbb{R}^{n \times n}}{\operatorname{minimize}}$	$C \bullet X \quad \longrightarrow$ linear function
subject to	$A \bullet X=b \longrightarrow$ linear constraints
	$X \succcurlyeq 0 \longrightarrow$linear matrix inequality (LMI) Positive Semidefinite Matrix (PSD)

Example

$$
X=\left[\begin{array}{ll}
x_{11} & x_{12} \\
x_{12} & x_{22}
\end{array}\right]
$$

$$
\min _{\mathrm{x}} 3 x_{11}+5 x_{12}+x_{22}
$$

$$
\text { s.t. } \quad x_{11}+3 x_{12}+5 x_{22}=2
$$

$$
x_{11}+9 x_{12}+4 x_{22}=1
$$

$$
X \succcurlyeq 0
$$

Linear Program:

$$
\underset{\sim \in \mathbb{T} n}{\operatorname{minimize}}
$$ $x \in \mathbb{R}^{n}$

$c^{T} x \longrightarrow$ linear function
subject to
$A x=b$
$x \geq 0 \quad$ linear constraints

Example
Find $\left[x_{1}, x_{2}, x_{3}\right]$ to

$$
\begin{array}{ll}
\min _{\mathrm{x}} & 3 x_{1}+5 x_{2}+x_{3} \\
\text { s.t. } & x_{1}+3 x_{2}+5 x_{3}=2 \\
& x_{1}+9 x_{2}+4 x_{3}=1 \\
& x_{1} \geq 0, x_{2} \geq 0
\end{array}
$$

Semidefinite Program

Convex Optimization

Semidefinite Program:

$\underset{X \in \mathbb{R}^{n \times n}}{\operatorname{minimize}}$	$C \bullet X \quad \longrightarrow$ linear function
subject to	$A \bullet X=b \longrightarrow$ linear constraints
	$X \succcurlyeq 0 \longrightarrow$linear matrix inequality (LMI) Positive Semidefinite Matrix (PSD)

Linear Program:

$$
\left.\begin{array}{ll}
\underset{x \in \mathbb{R}^{n}}{\operatorname{minimize}} & c^{T} x \longrightarrow \text { linear function } \\
\text { subject to } & A x=b \\
& x \geq 0
\end{array}\right\} \text { linear constraints }
$$

Example
Find $\left[x_{1}, x_{2}, x_{3}\right]$ to

$$
\begin{array}{ll}
\min _{\mathrm{x}} & 3 x_{1}+5 x_{2}+x_{3} \\
\text { s.t. } & x_{1}+3 x_{2}+5 x_{3}=2 \\
& x_{1}+9 x_{2}+4 x_{3}=1 \\
& x_{1} \geq 0, x_{2} \geq 0
\end{array}
$$

Element of SDP: Symmetric Square Matrix, Positive Semidefinite Matrix, Linear Function of Matrix

Positive Semidefinite Matrix

- Symmetric Matrix $X \in \mathbb{R}^{n \times n}$ is Positive Semidefinite (PSD) dented by $X \succcurlyeq 0$ if

$$
\text { for any } \quad x \in \mathbb{R}^{n} \neq 0 \quad \zeta \quad \underbrace{x^{T} X x}_{\in \mathbb{R}} \geq 0
$$

Positive Semidefinite Matrix

- Symmetric Matrix $X \in \mathbb{R}^{n \times n}$ is Positive Semidefinite (PSD) dented by $X \succcurlyeq 0$ if

$$
\text { for any } \quad x \in \mathbb{R}^{n} \neq 0 \quad \zeta \quad \underbrace{x^{T} X x}_{\in \mathbb{R}} \geq 0
$$

Example:

$$
\begin{aligned}
X=\left[\begin{array}{ll}
a & b \\
b & c
\end{array}\right] \quad x & =\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] \\
x^{T} X x \geq 0 & \longrightarrow\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]^{T}\left[\begin{array}{ll}
a & b \\
b & c
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=a x_{1}^{2}+2 b x_{1} x_{2}+c x_{2}^{2} \geq 0, \forall x \neq 0
\end{aligned}
$$

- Infinite linear constraints in terms of entries of matrix
- Instead we can look at eigenvalues

Positive Semidefinite Matrix

- Symmetric Matrix $X \in \mathbb{R}^{n \times n}$ is Positive Semidefinite (PSD) dented by $X \succcurlyeq 0$ if

$$
\text { for any } \quad x \in \mathbb{R}^{n} \neq 0 \quad \zeta \quad \underbrace{x^{T} X x}_{\in \mathbb{R}} \geq 0
$$

- Geometrical Interpretation:

$$
X \succcurlyeq 0 \quad \measuredangle \quad|\theta| \leq 90^{\circ}
$$

Angle between vectors X are $X X$ is less or equal 90°

Positive Semidefinite Matrix

- Symmetric Matrix $X \in \mathbb{R}^{n \times n}$ is Positive Semidefinite (PSD) dented by $X \succcurlyeq 0$ if

$$
\text { for any } \quad x \in \mathbb{R}^{n} \neq 0 \quad \zeta \quad \underbrace{x^{T} X x}_{\in \mathbb{R}} \geq 0
$$

- Geometrical Interpretation:

$$
x^{T} X v=<x, X x>\geq 0 \quad \leftrightarrows \text { Angle between vectors } x \text { are } X x \text { is less or equal } 90^{\circ}
$$

Inner product (dot product) of 2 vector

Positive Semidefinite Matrix

- Symmetric Matrix $X \in \mathbb{R}^{n \times n}$ is Positive Semidefinite (PSD) dented by $X \succcurlyeq 0$ if

$$
\text { for any } \quad x \in \mathbb{R}^{n} \neq 0 \quad \zeta \quad \underbrace{x^{T} X x}_{\in \mathbb{R}} \geq 0
$$

- Geometrical Interpretation:

$$
x^{T} X v=<x, X x>\geq 0 \quad \zeta \text { Angle between vectors } x \text { are } X x \text { is less or equal } 90^{\circ}
$$

Inner product (dot product) of 2 vector
$X \in \mathcal{S}_{+}^{n} \quad$ Positive Semidefinite (PSD)

Eigenvalues of Matrix

Eigenvalue and Eigenvector of Matrix $X \in \mathbb{R}^{n \times n}$

$$
\begin{array}{ll}
\text { Eigenvalue } \lambda \in \mathbb{R} & \text { Eigenvalue: } \operatorname{det}(X-\lambda I)=0 \\
\text { Eigenvector } v \in \mathbb{R}^{n} & X v=\lambda v \\
& \text { eigenvâlue eîgenvector }
\end{array}
$$

Eigenvalues of Matrix

$>$ Eigenvalue and Eigenvector of Matrix $X \in \mathbb{R}^{n \times n}$

$$
\begin{array}{ll}
\text { Eigenvalue } \lambda \in \mathbb{R} & \text { Eigenvalue: } \operatorname{det}(X-\lambda I)=0 \\
\text { Eigenvector } v \in \mathbb{R}^{n} & X v=\lambda v \\
& \text { eigenvalue eigenvector }
\end{array}
$$

X Linear Map
v Input vector
$X v$ Output vector

Eigenvalues of Matrix

$>$ Eigenvalue and Eigenvector of Matrix $X \in \mathbb{R}^{n \times n}$

$$
\begin{array}{ll}
\text { Eigenvalue } \lambda \in \mathbb{R} & \text { Eigenvalue: } \operatorname{det}(X-\lambda I)=0 \\
\text { Eigenvector } v \in \mathbb{R}^{n} & X v=\lambda v \\
& \begin{array}{l}
\text { eigenvàlue eigenvector }
\end{array}
\end{array}
$$

$>$ If $X \in \mathbb{R}^{n \times n}$ is symmetric: all eigenvalues are real numbers.
PSD matrix: Eigenvalues are all nonnegative real numbers.

Eigenvalues of Matrix

> Eigenvalue Decomposition: $X=V D V^{-1}$
D : diagonal matrix of eigenvalues
V : matrix whose columns are the corresponding eigenvectors
(MATLAB: $[V, D]=\operatorname{eig}(X)$)

Eigenvalues of Matrix

- Eigenvalue Decomposition: $\quad X=V D V^{-1}$

D : diagonal matrix of eigenvalues
V : matrix whose columns are the corresponding eigenvectors
(MATLAB: $[V, D]=\operatorname{eig}(X)$)
Example: $X=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$
Eigenvalues:

$$
\left.\left.|X-\lambda I|=0 \quad\left|\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right]-\left[\begin{array}{cc}
\lambda_{1} & 0 \\
0 & \lambda_{2}
\end{array}\right]\right|=0 \quad \right\rvert\, \begin{array}{cc}
1-\lambda_{1} & 2 \\
3 & 4-\lambda_{2}
\end{array}\right] \left\lvert\,=\left(1-\lambda_{1}\right)\left(4-\lambda_{2}\right)-3 \times 6=0 \quad \begin{aligned}
& \lambda_{1}=-0.37 \\
& \lambda_{2}=5.37
\end{aligned}\right.
$$

Eigenvectors:
$X v=\lambda v$
Eigenvalue Decomposition

$$
X=\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right]=\left[\begin{array}{cc}
-0.8246 & -0.4160 \\
0.5657 & -0.9094
\end{array}\right]\left[\begin{array}{cc}
-0.3723 & 0 \\
0 & 5.3723
\end{array}\right]\left[\begin{array}{cc}
-0.8246 & -0.4160 \\
0.5657 & -0.9094
\end{array}\right]^{-1}
$$

Eigenvalues of Matrix

> Eigenvalue Decomposition: $\quad X=V D V^{-1}$
D : diagonal matrix of eigenvalues
V : matrix whose columns are the corresponding eigenvectors
(MATLAB: $[V, D]=\operatorname{eig}(X)$)
$>$ If $X \in \mathbb{R}^{n \times n}$ is symmetric: all eigenvalues are real numbers and matrix V is orthogonal matrix.

$$
\text { Eigenvalue Decomposition: } \quad X=V D V^{T} \quad\left(V^{-1}=V^{T}\right)
$$

PSD Matrix Decomposition $X \in \mathbb{R}^{n \times n}$

Gramian matrix

Given $L \in \mathbb{R}^{n \times k} \longrightarrow$ Gram matrix of $L: \quad X=L L^{T} \in \mathbb{R}^{n \times n}$

PSD Matrix Decomposition $X \in \mathbb{R}^{n \times n}$

Gramian matrix

Given $L \in \mathbb{R}^{n \times k} \longrightarrow$ Gram matrix of $L: \quad X=L L^{T} \in \mathbb{R}^{n \times n}$

- The Gramian matrix is PSD $\quad x^{T} X x \geq 0 \quad x^{T} L L^{T} x=\underset{\in \mathbb{R}}{\left(x^{T} L\right)\left(x^{T} L\right)^{T}} \geq 0$

PSD Matrix Decomposition $X \in \mathbb{R}^{n \times n}$

Gramian matrix

Given $L \in \mathbb{R}^{n \times k} \longrightarrow$ Gram matrix of $L: \quad X=L L^{T} \in \mathbb{R}^{n \times n}$

- The Gramian matrix is PSD

$$
x^{T} X x \geq 0 \quad x^{T} L L^{T} x=\underbrace{\left(x^{T} L\right)\left(x^{T} L\right)^{T}}_{\in \mathbb{R}} \geq 0
$$

- Every PSD matrix is the Gramian matrix for some set of vectors.
$X \in \mathcal{S}_{+}^{n} \longrightarrow X=V D V^{T}=V \sqrt{D} \sqrt{D} V^{T}=(V \sqrt{D})(V \sqrt{D})^{T} \longrightarrow X$ is a Gram matrix of $V \sqrt{D}$
Eigenvalue Decomposition Nonnegative eigenvalues

PSD Matrix Decomposition $X \in \mathbb{R}^{n \times n}$

Given $L \in \mathbb{R}^{n \times k} \longrightarrow$ Gram matrix of $L: \quad X=L L^{T} \in \mathbb{R}^{n \times n}$
Example $\quad X=\left[\begin{array}{ccc}5 & 0 & -3 \\ 0 & 5 & 1 \\ -3 & 1 & 2\end{array}\right] \quad$ Eigenvalues: $0,5,7$

PSD Matrix Decomposition $X \in \mathbb{R}^{n \times n}$
Given $L \in \mathbb{R}^{n \times k} \longrightarrow$ Gram matrix of $L: \quad X=L L^{T} \in \mathbb{R}^{n \times n}$
Example $\quad X=\left[\begin{array}{ccc}5 & 0 & -3 \\ 0 & 5 & 1 \\ -3 & 1 & 2\end{array}\right] \quad$ Eigenvalues: 0,5,7

Eigenvalue Decomposition:
Eigenvectors Eigenvalues

$$
X=V D V^{T}
$$

$$
X=\left[\begin{array}{ccc}
-0.5071 & 0.3162 & -0.8018 \\
0.1690 & 0.9487 & 0.2673 \\
-0.8452 & 0 & 0.5345
\end{array}\right]\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 5 & 0 \\
0 & 0 & 7
\end{array}\right]\left[\begin{array}{ccc}
-0.5071 & 0.3162 & -0.8018 \\
0.1690 & 0.9487 & 0.2673 \\
-0.8452 & 0 & 0.5345
\end{array}\right]^{T}
$$

PSD Matrix Decomposition $X \in \mathbb{R}^{n \times n}$
Given $L \in \mathbb{R}^{n \times k} \longrightarrow$ Gram matrix of $L: \quad X=L L^{T} \in \mathbb{R}^{n \times n}$
Example $\quad X=\left[\begin{array}{ccc}5 & 0 & -3 \\ 0 & 5 & 1 \\ -3 & 1 & 2\end{array}\right] \quad$ Eigenvalues: 0,5,7

Eigenvalue Decomposition:
Eigenvectors Eigenvalues

$$
\begin{aligned}
& X=V D V^{T} \\
& X=\left[\begin{array}{ccc}
-0.5071 & 0.3162 & -0.8018 \\
0.1690 & 0.9487 & 0.2673 \\
-0.8452 & 0 & 0.5345
\end{array}\right]\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 5 & 0 \\
0 & 0 & 7
\end{array}\right]\left[\begin{array}{ccc}
-0.5071 & 0.3162 & -0.8018 \\
0.1690 & 0.9487 & 0.2673 \\
-0.8452 & 0 & 0.5345
\end{array}\right]^{T} \\
& X=V \sqrt{D} \sqrt{D} V^{T}=(V \sqrt{D})(V \sqrt{D})^{T} \quad X=\left[\begin{array}{ccc}
0 & 0.7071 & -2.1213 \\
0 & 2.1213 & 0.7071 \\
0 & 0 & 1.4142
\end{array}\right]\left[\begin{array}{ccc}
0 & 0.7071 & -2.1213 \\
0 & 2.1213 & 0.7071 \\
0 & 0 & 1.4142
\end{array}\right]^{T}
\end{aligned}
$$

PSD Matrix Decomposition $X \in \mathbb{R}^{n \times n}$
Given $L \in \mathbb{R}^{n \times k} \longrightarrow$ Gram matrix of $L: \quad X=L L^{T} \in \mathbb{R}^{n \times n}$
Example $\quad X=\left[\begin{array}{ccc}5 & 0 & -3 \\ 0 & 5 & 1 \\ -3 & 1 & 2\end{array}\right] \quad$ Eigenvalues: $0,5,7$

Eigenvalue Decomposition:
Eigenvectors Eigenvalues

$$
\begin{gathered}
X=V D V^{T}=\left[\begin{array}{ccc}
-0.5071 & 0.3162 & -0.8018 \\
0.1690 & 0.9487 & 0.2673 \\
-0.8452 & 0 & 0.5345
\end{array}\right]\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 5 & 0 \\
0 & 0 & 7
\end{array}\right]\left[\begin{array}{cc}
-0.5071 & 0.3162 \\
0.1690 & 0.9487 \\
-0.8452 & 0
\end{array} 0.2673\right. \\
X=V \sqrt{D} \sqrt{D} V^{T}=(V \sqrt{D})(V \sqrt{D})^{T} \quad X=\left[\begin{array}{ccc}
0 & 0.7071 & -2.1213 \\
0 & 2.1213 & 0.7071 \\
0 & 0 & 1.4142
\end{array}\right]\left[\begin{array}{ccc}
0 & 0.7071 & -2.1213 \\
0 & 2.1213 & 0.7071 \\
0 & 0 & 1.4142
\end{array}\right]^{T} \\
X=\left[\begin{array}{ccc}
0.7071 & -2.1213 \\
2.1213 & 0.7071 \\
0 & 1.4142
\end{array}\right]\left[\begin{array}{ccc}
0.7071 & -2.1213 \\
2.1213 & 0.7071 \\
0 & 1.4142
\end{array}\right]^{T} \\
L \in \mathbb{R}^{3 \times 2}
\end{gathered}
$$

Linear Function of Matrix X

$>$ Inner product of matrixes $\quad A \bullet X=\operatorname{trace}\left(A^{T} X\right) \quad\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right] \cdot\left[\begin{array}{ll}3 & 0 \\ 1 & 6\end{array}\right]=\operatorname{trace}\left(\left[\begin{array}{cc}6 & 18 \\ 10 & 24\end{array}\right]\right)=30$

Linear Function of Matrix X

$>$ Inner product of matrixes

$$
A \bullet X=\operatorname{trace}\left(A^{T} X\right) \quad\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right] \cdot\left[\begin{array}{ll}
3 & 0 \\
1 & 6
\end{array}\right]=\operatorname{trace}\left(\left[\begin{array}{cc}
6 & 18 \\
10 & 24
\end{array}\right]\right)=30
$$

$>A(X)$: Linear function of matrix X

$$
A(X) \longrightarrow A \bullet X=\operatorname{trace}\left(A^{T} X\right) \in \mathbb{R}
$$

$$
A=\left[\begin{array}{ll}
1 & 0 \\
0 & 3
\end{array}\right] \quad X=\left[\begin{array}{ll}
x_{11} & x_{12} \\
x_{12} & x_{22}
\end{array}\right] \quad A(X)=A \bullet X=\operatorname{trace}\left(\left[\begin{array}{cc}
x_{11}+2 x_{12} & x_{12}+2 x_{22} \\
2 x_{11}+3 x_{12} & 2 x_{12}+3 x_{22}
\end{array}\right]\right)=x_{11}+4 x_{12}+3 x_{22}
$$

Linear Function of Matrix X

$>$ Inner product of matrixes

$$
A \bullet X=\operatorname{trace}\left(A^{T} X\right) \quad\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right] \cdot\left[\begin{array}{ll}
3 & 0 \\
1 & 6
\end{array}\right]=\operatorname{trace}\left(\left[\begin{array}{cc}
6 & 18 \\
10 & 24
\end{array}\right]\right)=30
$$

$>A(X)$: Linear function of matrix X

$$
A(X) \longrightarrow A \bullet X=\operatorname{trace}\left(A^{T} X\right) \in \mathbb{R}
$$

$$
A=\left[\begin{array}{ll}
1 & 0 \\
0 & 3
\end{array}\right] \quad X=\left[\begin{array}{ll}
x_{11} & x_{12} \\
x_{12} & x_{22}
\end{array}\right] \quad A(X)=A \bullet X=\operatorname{trace}\left(\left[\begin{array}{cc}
x_{11}+2 x_{12} & x_{12}+2 x_{22} \\
2 x_{11}+3 x_{12} & 2 x_{12}+3 x_{22}
\end{array}\right]\right)=x_{11}+4 x_{12}+3 x_{22}
$$

- If X is a symmetric matrix, without loss of generality, we assume that the matrix A is also symmetric.

Semidefinite Program

$$
\begin{aligned}
\underset{X \in \mathbb{R}^{n \times n}}{\operatorname{minimize}} & C \bullet X \\
\text { subject to } & A_{i} \bullet X=b_{i} \quad i=1, \ldots, m . \\
& X \succcurlyeq 0 .
\end{aligned}
$$

- We are looking for symmetric PSD matrix $X \in \mathbb{S}_{+}^{n}$ to minimize the linear function $C(X)$ with respect to linear constraints $A_{i}(X)=b_{i}$.

Semidefinite Program

$$
\begin{aligned}
\underset{X \in \mathbb{R}^{n \times n}}{\operatorname{minimize}} & C \bullet X \\
\text { subject to } & A_{i} \bullet X=b_{i} \quad i=1, \ldots, m . \\
& X \succcurlyeq 0 .
\end{aligned}
$$

- We are looking for symmetric PSD matrix $X \in \mathbb{S}_{+}^{n}$ to minimize the linear function $C(X)$ with respect to linear constraints $A_{i}(X)=b_{i}$.

$$
C=\left[\begin{array}{lll}
1 & 2 & 3 \\
2 & 9 & 0 \\
3 & 0 & 7
\end{array}\right] \quad A_{1}=\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 3 & 7 \\
1 & 7 & 5
\end{array}\right] \quad A_{2}=\left[\begin{array}{lll}
0 & 2 & 8 \\
2 & 6 & 0 \\
8 & 0 & 4
\end{array}\right] \quad b=\left[\begin{array}{l}
11 \\
19
\end{array}\right] \quad X=\left[\begin{array}{lll}
x_{11} & x_{12} & x_{13} \\
x_{12} & x_{22} & x_{23} \\
x_{13} & x_{23} & x_{33}
\end{array}\right]
$$

Semidefinite Program

- Cone of PSD Matrixes: Set of PSD symmetric matrix $\mathbb{S}_{+}^{n}=\left\{X \in \mathbb{S}^{n}: X \succcurlyeq 0\right\}$

We need to show that $X_{1}, X_{2} \in \mathbb{S}_{+}^{n} \xrightarrow{\alpha, \beta \geq 0} \alpha X_{1}+\beta X_{2} \in \mathbb{S}_{+}^{n}$

Semidefinite Program

- Cone of PSD Matrixes: Set of PSD symmetric matrix $\mathbb{S}_{+}^{n}=\left\{X \in \mathbb{S}^{n}: X \succcurlyeq 0\right\}$

We need to show that $X_{1}, X_{2} \in \mathbb{S}_{+}^{n} \xrightarrow{\alpha, \beta \geq 0} \alpha X_{1}+\beta X_{2} \in \mathbb{S}_{+}^{n}$

$$
X_{1}, X_{2} \in \mathbb{S}_{+}^{n} \xrightarrow[v \in \mathbb{R}^{n} \neq 0]{\alpha, \beta \geq 0} v^{T}\left(\alpha X_{1}+\beta X_{2}\right) v=\alpha v^{T} X_{1} v+\beta v^{T} X_{2} v \succcurlyeq 0
$$

$$
\longrightarrow \alpha X_{1}+\beta X_{2} \in \mathbb{S}_{+}^{n}
$$

Semidefinite Program

- Cone of PSD Matrices: Set of PSD symmetric matrix $\mathbb{S}_{+}^{n}=\left\{X \in \mathbb{S}^{n}: X \succcurlyeq 0\right\}$

We need to show that $X_{1}, X_{2} \in \mathbb{S}_{+}^{n} \xrightarrow{\alpha, \beta \geq 0} \alpha X_{1}+\beta X_{2} \in \mathbb{S}_{+}^{n}$

$$
X_{1}, X_{2} \in \mathbb{S}_{+}^{n} \xrightarrow[v, \beta \geq 0]{\alpha, \mathbb{R}^{n} \neq 0} v^{T}\left(\alpha X_{1}+\beta X_{2}\right) v=\alpha v^{T} X_{1} v+\beta v^{T} X_{2} v \succcurlyeq 0
$$

$$
\longrightarrow \alpha X_{1}+\beta X_{2} \in \mathbb{S}_{+}^{n}
$$

YALMIP: J. Lofberg,"YALMIP : A Toolbox for Modeling and Optimization in MATLAB", In Proceedings of the CACSD Conference, 2004 https://yalmip.github.io/

CVX: Matlab Software for Disciplined Convex Programming, http://cvxr.com/cvx/

Input: SDP

- Solves SDP's using SDP solvers
SDP solvers: e.g., MOSEK https://www.mosek.com SEDUMI http://sedumi.ie.lehigh.edu

$\underset{X \in \mathbb{R}^{3 \times 3}}{\operatorname{minimize}}$	$C \bullet X$
subject to	$A_{i} \bullet X=b_{i} \quad i=1,2$.
	$X \succcurlyeq 0$.

$\underset{X}{\operatorname{minimize}} \quad x_{11}+4 x_{12}+6 x_{13}+9 x_{22}+7 x_{13}$
subject to $\quad x_{11}+2 x_{13}+3 x_{22}+14 x_{23}+5 x_{33}=11$

$$
4 x_{12}+16 x_{13}+6 x_{22}+4 x_{33}=19
$$

$$
X \succcurlyeq 0
$$

$$
X=\left[\begin{array}{lll}
x_{11} & x_{12} & x_{13} \\
x_{12} & x_{22} & x_{23} \\
x_{13} & x_{23} & x_{33}
\end{array}\right] \quad C=\left[\begin{array}{ccc}
1 & 2 & 3 \\
2 & 9 & 0 \\
3 & 0 & 7
\end{array}\right] \quad A_{1}=\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 3 & 7 \\
1 & 7 & 5
\end{array}\right] \quad A_{2}=\left[\begin{array}{lll}
0 & 2 & 8 \\
2 & 6 & 0 \\
8 & 0 & 4
\end{array}\right] \quad b=\left[\begin{array}{l}
11 \\
19
\end{array}\right]
$$

```
A1 = [1 0 1;0 3 7;1 7 5 l;
A2=[0 2 8;2 6 0;8 0 4];
C=[1 2 3;2 9 0;3 0 7];
b=[11;19];
X = sdpvar(3,3); \longrightarrowX X ( 
F = [trace(A1*X)==b(1); trace(A2*X)==b(2);X >= 0 ]; Constraints
ops = sdpsettings('solver','sedumi');\longrightarrow SDP solvers: MOSEK, SEDUMI or SDPT3.
optimize(F,trace(C'*X),ops); }\longrightarrow\mathrm{ SDP
value(X)\longrightarrow Obtained Solution
```

- Theory and applications of semidefinite programs, and an introduction to primal-dual interior-point methods: L. Vandenberghe and S. Boyd," SEMIDEFINITE PROGRAMMING" SIAM Review, 38(1): 49-95, March 1996. https://web.stanford.edu/~boyd/papers/sdp.htm|
- Lieven Vandenberghe "Nonnegative polynomials, SDP formulations, and primal-dual interior point methods", http://www.mit.edu/~parrilo/cdc03 workshop/Vandenberghe.pdf
- Comparison of SDP solvers:
H. D. Mittelmann " The State-of-the-Art in Conic Optimization Software"
http://www.optimization-online.org/DB FILE/2010/08/2694.pdf
- A. Majumdar, G. Hall, and A. A. Ahmadi, "A Survey of Recent Scalability Improvements for Semidefinite Programming with Applications in Machine Learning, Control, and Robotics" Annual Reviews in Control, Robotics, and Autonomous Systems, 2019, https://arxiv.org/pdf/1908.05209.pdf

From SOS Program To Semidefinite Program

From SOS to SDP

Polynomial $p(x)$ is sum of squares (SOS) polynomial if:
it can be written as a finite sum of squares of other polynomials.

$$
p(x) \in \mathbb{R}[x] \underset{\operatorname{sos}}{ } \quad p(x)=\sum_{i=1}^{\ell} h_{i}^{2}(x) \quad h_{i}(x) \in \mathbb{R}[x], \quad i=1, \ldots, \ell
$$

From SOS to SDP

Polynomial $p(x)$ is sum of squares (SOS) polynomial if:
it can be written as a finite sum of squares of other polynomials.

PSD Matrix representation of SOS polynomials

$$
Q \in \mathcal{S}^{n}, \quad Q \succcurlyeq 0 \quad p(x)=B(x)^{T} Q B(x) \quad \text { where } B(x) \text { :vector of monomials in } x
$$ PSD Matrix

Example: $p(x)=2 x_{1}^{4}+5 x_{2}^{4}-x_{1}^{2} x_{2}^{2}+2 x_{1}^{3} x_{2}$

$$
\begin{aligned}
& \text { Example: } p(x)=2 x_{1}^{4}+5 x_{2}^{4}-x_{1}^{2} x_{2}^{2}+2 x_{1}^{3} x_{2} \square \operatorname{sos} \text { Form } p(x)=\sum_{i=1}^{\ell} h_{i}^{2}(x) \\
& p(x)=\left(\frac{h_{1}(x)}{1}\left(2 x_{1}^{2}-3 x_{2}^{2}+x_{1} x_{2}\right)^{1}\right)^{2}+\left(\frac{h_{2}(x)}{\sqrt{2}}\left(x_{2}^{2}+3 x_{1} x_{2}\right)^{1}\right)^{2}
\end{aligned}
$$

$$
\begin{gathered}
\text { Example: } p(x)=2 x_{1}^{4}+5 x_{2}^{4}-x_{1}^{2} x_{2}^{2}+2 x_{1}^{3} x_{2} \square \text { sOs For } \\
p(x)=\left(\frac{h_{1}(x)}{1}\left(2 x_{1}^{2}-3 x_{2}^{2}+x_{1} x_{2}\right)^{1}\right)^{2}+\left(\frac{h_{2}(x)}{\sqrt{2}}\left(x_{2}^{2}+3 x_{1} x_{2}\right)^{1}\right)^{2}
\end{gathered}
$$

$$
\begin{aligned}
& \text { Example: } p(x)=2 x_{1}^{4}+5 x_{2}^{4}-x_{1}^{2} x_{2}^{2}+2 x_{1}^{3} x_{2} \\
& \text { SOS Form } p(x)=\sum_{i=1}^{\ell} h_{i}^{2}(x) \\
& p(x)=\left(\frac{h_{1}(x)}{1} \frac{h_{2}(x)}{1 \sqrt{2}}\left(2 x_{1}^{2}-3 x_{2}^{2}+x_{1} x_{2}\right)^{\prime}\right)^{2}+\left(\frac{1}{\sqrt{2}}\left(x_{2}^{2}+3 x_{1} x_{2}\right)_{1}^{1}\right)^{2} \\
& =\left(\frac{1}{\sqrt{2}}\left[\begin{array}{lll}
-3 & 1 & 2
\end{array}\right]\left[\begin{array}{c}
x_{2}^{2} \\
x_{1} x_{2} \\
x_{1}^{2}
\end{array}\right]\right)^{2}+\left(\frac{1}{\sqrt{2}}\left[\begin{array}{lll}
1 & 3 & 0
\end{array}\right]\left[\begin{array}{c}
x_{2}^{2} \\
x_{1} x_{2} \\
x_{1}^{2}
\end{array}\right]\right)^{2} \\
& \text { vector of coefficients vector of monomials in } x_{1} \text { and } x_{2} \\
& h_{1}(x)=C_{1}^{T} B(x) \\
& h_{2}(x)=C_{2}^{T} B(x)
\end{aligned}
$$

Example: $p(x)=2 x_{1}^{4}+5 x_{2}^{4}-x_{1}^{2} x_{2}^{2}+2 x_{1}^{3} x_{2}$
sos Form $p(x)=\sum_{i=1}^{\ell} h_{i}^{2}(x)$
$p(x)=\binom{h_{1}(x)}{\frac{1}{\sqrt{2}}\left(2 x_{1}^{2}-3 x_{2}^{2}+x_{1} x_{2}\right)^{\vdots}}^{2}+\left(\frac{h_{2}(x)}{\frac{1}{\sqrt{2}}\left(x_{2}^{2}+3 x_{1} x_{2}\right)}\right)^{2}$
vector of coefficients vector of monomials in x_{1} and x_{2}

$$
h_{1}(x)=C_{1}^{T} B(x)
$$

$$
h_{2}(x) \stackrel{ }{=} C_{2}^{T} B(x)
$$

Example: $p(x)=2 x_{1}^{4}+5 x_{2}^{4}-x_{1}^{2} x_{2}^{2}+2 x_{1}^{3} x_{2}$
sOS Form $p(x)=\sum_{i=1}^{\ell} h_{i}^{2}(x)$
$p(x)=\binom{h_{1}(x)}{1 \sqrt{2}\left(2 x_{1}^{2}-3 x_{2}^{2}+x_{1} x_{2}\right)_{i}^{2}}^{h_{2}(x)}+\left(\frac{1}{\sqrt{2}}\left(x_{2}^{2}+3 x_{1} x_{2}\right)^{1}\right)^{2}$

Example: $p(x)=2 x_{1}^{4}+5 x_{2}^{4}-x_{1}^{2} x_{2}^{2}+2 x_{1}^{3} x_{2}$
SOS Form $p(x)=\sum_{i=1}^{\ell} h_{i}^{2}(x)$
$p(x)=\left(\frac{h_{1}(x)}{1} \frac{h_{2}(x)}{1 \sqrt{2}}\left(2 x_{1}^{2}-3 x_{2}^{2}+x_{1} x_{2}\right)^{2} i^{2}+\left(\frac{1}{\sqrt{2}}\left(x_{2}^{2}+3 x_{1} x_{2}\right)_{1}^{1}\right)^{2}\right.$

$$
\begin{aligned}
& h_{1}(x)=C_{1}^{T} B(x) \\
= & \frac{\left(\frac{1}{\sqrt{2}}\left[\begin{array}{ccc}
-3 & 1 & 2 \\
1 & 3 & 0
\end{array}\right]\right.}{} \begin{array}{l}
\left.\left[\begin{array}{c}
x_{2}^{2} \\
x_{1} x_{2} \\
x_{1}^{2}
\end{array}\right]\right)^{T} \\
{\left[\begin{array}{l}
h_{1}(x) \\
h_{2}(x)
\end{array}\right]^{T}}
\end{array} \frac{\left(\frac{1}{\sqrt{2}}\left[\begin{array}{ccc}
-3 & 1 & 2 \\
1 & 3 & 0
\end{array}\right]\left[\begin{array}{c}
x_{2}^{2} \\
x_{1} x_{2} \\
x_{1}^{2}
\end{array}\right]\right)}{\left[\begin{array}{l}
h_{1}(x) \\
h_{2}(x)
\end{array}\right]}
\end{aligned}
$$

Example: $p(x)=2 x_{1}^{4}+5 x_{2}^{4}-x_{1}^{2} x_{2}^{2}+2 x_{1}^{3} x_{2}$
SOS Form $p(x)=\sum_{i=1}^{\ell} h_{i}^{2}(x)$
$p(x)=\left(\frac{h_{1}(x)}{1} \frac{h_{2}(x)}{1 \sqrt{2}}\left(2 x_{1}^{2}-3 x_{2}^{2}+x_{1} x_{2}\right)^{2} i^{2}+\left(\frac{1}{\sqrt{2}}\left(x_{2}^{2}+3 x_{1} x_{2}\right)_{1}^{1}\right)^{2}\right.$

$$
h_{1}(x)=C_{1}^{T} B(x)
$$

$$
=\frac{\left(\frac{1}{\sqrt{2}}\left[\begin{array}{ccc}
-3 & 1 & 2 \\
1 & 3 & 0
\end{array}\right]\left[\begin{array}{c}
x_{2}^{2} \\
x_{1} x_{2} \\
x_{1}^{2}
\end{array}\right]\right)^{T}}{\left[\begin{array}{l}
h_{1}(x) \\
h_{2}(x)
\end{array}\right]^{T}} \frac{\left(\frac{1}{\sqrt{2}}\left[\begin{array}{ccc}
-3 & 1 & 2 \\
1 & 3 & 0
\end{array}\right]\left[\begin{array}{c}
x_{2}^{2} \\
x_{1} x_{2} \\
x_{1}^{2}
\end{array}\right]\right)}{\left[\begin{array}{l}
h_{1}(x) \\
h_{2}(x)
\end{array}\right]}=\left[\begin{array}{c}
x_{2}^{2} \\
x_{1} x_{2} \\
x_{1}^{2}
\end{array}\right]^{T}(\frac{1}{\sqrt{2}}\left[\begin{array}{ccc}
-3 & 1 & 2 \\
1 & 3 & 0
\end{array}\right]^{T} \underbrace{\left.\frac{1}{\sqrt{2}}\left[\begin{array}{ccc}
-3 & 1 & 2 \\
1 & 3 & 0
\end{array}\right]\right)}_{L} L^{T}\left[\begin{array}{c}
x_{2}^{2} \\
x_{1} x_{2} \\
x_{1}^{2}
\end{array}\right]
$$

Example: $p(x)=2 x_{1}^{4}+5 x_{2}^{4}-x_{1}^{2} x_{2}^{2}+2 x_{1}^{3} x_{2}$
SOS Form $p(x)=\sum_{i=1}^{\ell} h_{i}^{2}(x)$
$p(x)=\left(\frac{h_{1}(x)}{1} \frac{h_{2}(x)}{1 \sqrt{2}}\left(2 x_{1}^{2}-3 x_{2}^{2}+x_{1} x_{2}\right)^{\prime}\right)^{2}+\left(\frac{1}{\sqrt{2}}\left(x_{2}^{2}+3 x_{1} x_{2}\right)_{1}^{1}\right)^{2}$

$$
=\frac{\left(\frac{1}{\sqrt{2}}\left[\begin{array}{ccc}
-3 & 1 & 2 \\
1 & 3 & 0
\end{array}\right]\left[\begin{array}{c}
x_{2}^{2} \\
x_{1} x_{2}^{2} \\
x_{1}^{2}
\end{array}\right]\right)^{T}}{\left[\begin{array}{l}
h_{1}(x) \\
h_{2}(x)
\end{array}\right]^{T}} \frac{\left(\frac{1}{\sqrt{2}}\left[\begin{array}{ccc}
-3 & 1 & 2 \\
1 & 3 & 0
\end{array}\right]\left[\begin{array}{c}
x_{2}^{2} \\
x_{1} x_{2} \\
x_{1}^{2}
\end{array}\right]\right)}{\left[\begin{array}{l}
h_{1}(x) \\
h_{2}(x)
\end{array}\right]}=\left[\begin{array}{c}
x_{2}^{2} \\
x_{1} x_{2} \\
x_{1}^{2}
\end{array}\right]^{T} \underbrace{(\frac{1}{\sqrt{2}}\left[\begin{array}{ccc}
-3 & 1 & 2 \\
1 & 3 & 0
\end{array}\right]^{T} \underbrace{\left.\frac{1}{\sqrt{2}}\left[\begin{array}{ccc}
-3 & 1 & 2 \\
1 & 3 & 0
\end{array}\right]\right)}_{L^{T}}\left[\begin{array}{c}
x_{2}^{2} \\
x_{1} x_{2} \\
x_{1}^{2}
\end{array}\right]}_{L}
$$

$$
\begin{aligned}
& h_{1}(x)=C_{1}^{T} B(x) \\
& =\left[\begin{array}{c}
x_{2}^{2} \\
x_{1} x_{2} \\
x_{1}^{2}
\end{array}\right]^{T} \frac{\left[\begin{array}{ccc}
5 & 0 & -3 \\
0 & 5 & 1 \\
-3 & 1 & 2
\end{array}\right]}{Q=L L^{T}}\left[\begin{array}{c}
x_{2}^{2} \\
x_{1} x_{2} \\
x_{1}^{2}
\end{array}\right]
\end{aligned}
$$

Example: $p(x)=2 x_{1}^{4}+5 x_{2}^{4}-x_{1}^{2} x_{2}^{2}+2 x_{1}^{3} x_{2}$
SOS Form $p(x)=\sum_{i=1}^{\ell} h_{i}^{2}(x)$
$p(x)=\left(\frac{h_{1}(x)}{1} \frac{h_{2}(x)}{1 \sqrt{2}}\left(2 x_{1}^{2}-3 x_{2}^{2}+x_{1} x_{2}\right)^{2} i^{2}+\left(\frac{1}{\sqrt{2}}\left(x_{2}^{2}+3 x_{1} x_{2}\right)_{1}^{1}\right)^{2}\right.$

$$
\begin{aligned}
& h_{1}(x)=C_{1}^{T} B(x) \\
& =\left[\begin{array}{c}
x_{2}^{2} \\
x_{1} x_{2} \\
x_{1}^{2}
\end{array}\right]^{T}\left[\begin{array}{ccc}
5 & 0 & -3 \\
0 & 5 & 1 \\
-3 & 1 & 2
\end{array}\right]\left[\begin{array}{c}
x_{2}^{2} \\
x_{1} x_{2} \\
x_{1}^{2}
\end{array}\right] \\
& \text { Eigenvalues of } Q=0,5,7 \quad \square \quad Q \succcurlyeq 0 \\
& Q=L L^{T}
\end{aligned}
$$

From SOS to SDP

- Polynomial $p(x)$ is sum of squares (SOS) polynomial if it can be written as a finite sum of squares of other polynomials.

PSD Matrix representation of SOS polynomials

From SOS to SDP

- Polynomial $p(x)$ is sum of squares (SOS) polynomial if it can be written as a finite sum of squares of other polynomials.

PSD Matrix representation of SOS polynomials
(1) $p(x)=\sum_{i=1}^{\ell} h_{i}^{2}(x) \geq 0$

From SOS to SDP

- Polynomial $p(x)$ is sum of squares (SOS) polynomial if it can be written as a finite sum of squares of other polynomials.

PSD Matrix representation of SOS polynomials
(1) $p(x)=\sum_{i=1}^{\ell} h_{i}^{2}(x) \geq 0 \quad \square$
(2) $p(x)=\sum_{i=1}^{\ell} h_{i}^{2}(x)=\sum_{i=1}^{\ell}\left(C_{i}^{T} B(x)\right)^{2}$

Coefficient vector of $h_{i}(x)$
$h_{i}(x)=C_{i}^{T} B(x)$
(2) $Q \succcurlyeq 0 \square$ (1)

From SOS to SDP

- Polynomial $p(x)$ is sum of squares (SOS) polynomial if it can be written as a finite sum of squares of other polynomials.

PSD Matrix representation of SOS polynomials
(1) $p(x)=\sum_{i=1}^{\ell} h_{i}^{2}(x) \geq 0$

(2) $p(x)=\sum_{i=1}^{\ell} h_{i}^{2}(x)=\sum_{i=1}^{\ell}\left(C_{i}^{T} B(x)\right)^{2}$

Coefficient vector of $h_{i}(x)$ $h_{i}(x)=C_{i}^{T} B(x)$
$\left[\begin{array}{c}h_{1}(x) \\ \vdots \\ h_{\ell}(x)\end{array}\right]=\left[\begin{array}{c}C_{1}^{T} B(x) \\ \vdots \\ C_{\ell}^{T} B(x)\end{array}\right]=\left[\begin{array}{c}C_{1}^{T} \\ \vdots \\ C_{\ell}^{T}\end{array}\right] B(x)=C^{T} B(x)$
(2) $Q \succcurlyeq 0 \square$ (1)

From SOS to SDP

- Polynomial $p(x)$ is sum of squares (SOS) polynomial if it can be written as a finite sum of squares of other polynomials.

PSD Matrix representation of SOS polynomials
(1) $p(x)=\sum_{i=1}^{\ell} h_{i}^{2}(x) \geq 0 \quad \square$
(2) $p(x)=\sum_{i=1}^{\ell} h_{i}^{2}(x)=\sum_{i=1}^{\ell}\left(C_{i}^{T} B(x)\right)^{2}$

Coefficient vector of $h_{i}(x)$ $h_{i}(x)=C_{i}^{T} B(x)$
$\left[\begin{array}{c}h_{1}(x) \\ \vdots \\ h_{\ell}(x)\end{array}\right]=\left[\begin{array}{c}C_{1}^{T} B(x) \\ \vdots \\ C_{\ell}^{T} B(x)\end{array}\right]=\left[\begin{array}{c}C_{1}^{T} \\ \vdots \\ C_{\ell}^{T}\end{array}\right] B(x)=C^{T} B(x)$

$$
=\frac{\left(C^{T} B(x)\right)^{T}\left(C^{T} B(x)\right)}{\left[\begin{array}{c}
h_{1}(x) \\
\vdots \\
h_{\ell}(x)
\end{array}\right]^{T}\left[\begin{array}{c}
h_{1}(x) \\
\vdots \\
h_{\ell}(x)
\end{array}\right]}
$$

(2) $Q \succcurlyeq 0$ \square

From SOS to SDP

- Polynomial $p(x)$ is sum of squares (SOS) polynomial if it can be written as a finite sum of squares of other polynomials.

PSD Matrix representation of SOS polynomials
(1) $p(x)=\sum_{i=1}^{\ell} h_{i}^{2}(x) \geq 0 \quad \square$
(2) $p(x)=\sum_{i=1}^{\ell} h_{i}^{2}(x)=\sum_{i=1}^{\ell}\left(C_{i}^{T} B(x)\right)^{2}$

Coefficient vector of $h_{i}(x)$

$$
h_{i}(x)=C_{i}^{T} B(x)
$$

$\left[\begin{array}{c}h_{1}(x) \\ \vdots \\ h_{\ell}(x)\end{array}\right]=\left[\begin{array}{c}C_{1}^{T} B(x) \\ \vdots \\ C_{\ell}^{T} B(x)\end{array}\right]=\left[\begin{array}{c}C_{1}^{T} \\ \vdots \\ C_{\ell}^{T}\end{array}\right] B(x)=C^{T} B(x) \quad \frac{\left(C^{T} B(x)\right)^{T}\left(C^{T} B(x)\right)}{\left[\begin{array}{c}h_{1}(x) \\ \vdots \\ h_{\ell}(x)\end{array}\right]^{T}\left[\begin{array}{c}h_{1}(x) \\ \vdots \\ h_{\ell}(x)\end{array}\right]}=B^{T}(x)\left(C^{T}\right) B(x)=B(x)^{T}(Q) B(x)$
(2) $Q \succcurlyeq 0 \square(1)$

From SOS to SDP

- Polynomial $p(x)$ is sum of squares (SOS) polynomial if it can be written as a finite sum of squares of other polynomials.

PSD Matrix representation of SOS polynomials
(1) $p(x)=\sum_{i=1}^{\ell} h_{i}^{2}(x) \geq 0$

(2) $p(x)=\sum_{i=1}^{\ell} h_{i}^{2}(x)=\sum_{i=1}^{\ell}\left(C_{i}^{T} B(x)\right)^{2}$

Coefficient vector of $h_{i}(x)$

$$
h_{i}(x)=C_{i}^{T} B(x)
$$

$\left[\begin{array}{c}h_{1}(x) \\ \vdots \\ h_{\ell}(x)\end{array}\right]=\left[\begin{array}{c}C_{1}^{T} B(x) \\ \vdots \\ C_{\ell}^{T} B(x)\end{array}\right]=\left[\begin{array}{c}C_{1}^{T} \\ \vdots \\ C_{\ell}^{T}\end{array}\right] B(x)=C^{T} B(x)$

$$
=\frac{\left(C^{T} B(x)\right)^{T}\left(C^{T} B(x)\right)}{\left[\begin{array}{c}
h_{1}(x) \\
\vdots \\
h_{\ell}(x)
\end{array}\right]^{T}\left[\begin{array}{c}
{\left[\begin{array}{c}
h_{1}(x) \\
\vdots \\
h_{\ell}(x)
\end{array}\right]}
\end{array}=B^{T}(x)\right)^{-C C^{T}} B(x)=B(x)^{T}(\underset{Q}{Q} B(x)}
$$

(2) $Q \succcurlyeq 0$

$$
Q=L L^{T}, L \in R^{n \times \ell} \quad i-t h \text { element of vector } L^{T} B(x)
$$

$$
\left.p(x)=B^{T}(x) Q B(x)=B^{T}(x)\left(L L^{T}\right) B(x)=\left(L^{T} B(x)\right)^{T}\left(L^{T} B(x)\right)=\sum_{i=1}^{\ell} \sqrt{\left(L_{i}^{T} B(x)\right.}\right)^{2}=\sum_{i=1}^{\ell} h_{i}^{2}(x) \quad \zeta p(x) \text { is } \mathbf{~ O S}
$$

From SOS to SDP

SOS Decomposition

PSD Matrix representation of SOS polynomials

From SOS to SDP

SOS Decomposition

PSD Matrix representation of SOS polynomials
> In general, SOS decomposition is NOT unique.

From SOS to SDP

Example : $\quad p(x)=2 x_{1}^{4}+5 x_{2}^{4}-x_{1}^{2} x_{2}^{2}+2 x_{1}^{3} x_{2}$

SOS Decomposition 1

$$
p(x)=\frac{1}{2}\left(2 x_{1}^{2}-3 x_{2}^{2}+x_{1} x_{2}\right)^{2}+\frac{1}{2}\left(x_{2}^{2}+3 x_{1} x_{2}\right)^{2}
$$

$$
L=\frac{1}{\sqrt{2}}\left[\begin{array}{ccc}
-3 & 1 & 2 \\
1 & 3 & 0
\end{array}\right]^{T} \measuredangle
$$

$$
p(x)=\underbrace{\left[\begin{array}{c}
x_{2}^{2} \\
x_{1} x_{2} \\
x_{1}^{2}
\end{array}\right]^{T}} \underbrace{\left[\begin{array}{ccc}
5 & 0 & -3 \\
0 & 5 & 1 \\
-3 & 1 & 2
\end{array}\right]}_{Q=L L^{T}} \underbrace{\left[\begin{array}{c}
x_{2}^{2} \\
x_{1} x_{2} \\
x_{1}^{2}
\end{array}\right]}_{B(x)}
$$

$$
\text { eigenvalues }=0,5,7 \quad \quad \zeta Q \succcurlyeq 0
$$

From SOS to SDP

Example : $\quad p(x)=2 x_{1}^{4}+5 x_{2}^{4}-x_{1}^{2} x_{2}^{2}+2 x_{1}^{3} x_{2}$

SOS Decomposition 1

$$
p(x)=\frac{1}{2}\left(2 x_{1}^{2}-3 x_{2}^{2}+x_{1} x_{2}\right)^{2}+\frac{1}{2}\left(x_{2}^{2}+3 x_{1} x_{2}\right)^{2}
$$

SOS Decomposition 2

$$
L=\frac{1}{\sqrt{2}}\left[\begin{array}{ccc}
-3 & 1 & 2 \\
1 & 3 & 0
\end{array}\right]^{T} \longmapsto
$$

$$
p(x)=\underbrace{\left[\begin{array}{c}
x_{2}^{2} \\
x_{1} x_{2} \\
x_{1}^{2}
\end{array}\right]^{T}} \underbrace{\left[\begin{array}{ccc}
5 & 0 & -3 \\
0 & 5 & 1 \\
-3 & 1 & 2
\end{array}\right]}_{Q=L L^{T}} \underbrace{\left[\begin{array}{c}
x_{2}^{2} \\
x_{1} x_{2} \\
x_{1}^{2}
\end{array}\right]}_{B(x)}
$$

$$
\text { eigenvalues }=0,5,7 \quad \quad \zeta Q \succcurlyeq 0
$$

$$
\begin{aligned}
& p(x)=\left(1.0262 x_{1}^{2}-2.1569 x_{2}^{2}+0.2967 x_{1} x_{2}\right)^{2} \\
& +\left(-0.6889 x_{1}^{2}-0.5253 x_{2}^{2}-1.4364 x_{1} x_{2}\right)^{2} \\
& +\left(0.6873 x_{1}^{2}+0.2682 x_{2}^{2}-0.4277 x_{1} x_{2}\right)^{2} \\
& L=\left[\begin{array}{ccc}
0.2682 & 0.5253 & -2.1569 \\
-0.4277 & 1.4364 & 0.2967 \\
0.6873 & 0.6889 & 1.0262
\end{array}\right] \\
& p(x)=\left[\begin{array}{c}
x_{2}^{2} \\
x_{1} x_{2} \\
x_{1}^{2}
\end{array}\right]^{T} \underbrace{\left[\begin{array}{ccc}
5 & 0 & -1.667 \\
0 & 2.334 & 1 \\
-1.667 & 1 & 2
\end{array}\right]}_{Q=L L^{T}} \underbrace{\left[\begin{array}{c}
x_{2}^{2} \\
x_{1} x_{2} \\
x_{1}^{2}
\end{array}\right]}_{B(x)} \\
& \text { eigenvalues }=0.72,2.81,5.79 \quad \square Q \succcurlyeq 0
\end{aligned}
$$

From SOS to SDP

SOS Decomposition

PSD Matrix representation of SOS polynomials

From SOS To SDP

> Verification Problems
> Design Problems
> Optimization

From SOS to SDP

1) Nonnegativity Verification:

From SOS to SDP

Example: Check the nonnegativity of polynomial $p(x)$

$$
\begin{aligned}
& \text { xample: Check the nonnegativity of polynomial } p(x) \\
& p(x)=x_{1}^{4}+4 x_{1}^{3}+6 x_{1}^{2}+4 x_{1}+5 \square p(x)= \\
& {\left[\begin{array}{c}
1 \\
x_{1} \\
x_{1}^{2}
\end{array}\right]^{T} \underset{Q \in \mathcal{S}^{n}}{\left[\begin{array}{lll}
q_{00} & q_{01} & q_{02} \\
q_{01} & q_{11} & q_{12} \\
q_{02} & q_{12} & q_{22}
\end{array}\right]} \underset{B_{2}(x)}{\left[\begin{array}{c}
1 \\
x_{1} \\
x_{1}^{2}
\end{array}\right]}}
\end{aligned}
$$

From SOS to SDP

Example: Check the nonnegativity of polynomial $p(x)$

$$
\begin{aligned}
p(x) & =B_{2}(x)^{T} Q B_{2}(x) \\
x_{1}^{4}+4 x_{1}^{3}+6 x_{1}^{2}+4 x_{1}+5 & =q_{22} x_{1}^{4}+2 q_{12} x_{1}^{3}+\left(q_{11}+2 q_{02}\right) x_{1}^{2}+2 q_{01} x_{1}+q_{00}
\end{aligned}
$$

SDP
Find $Q \succcurlyeq 0$ Such that, $\underbrace{q_{22}=1}_{x_{1}^{4}}, \underbrace{2 q_{12}=4}_{x_{1}^{3}}, \underbrace{q_{11}+2 q_{02}=6}_{x_{1}^{2}}, \underbrace{2 q_{01}=4,}_{x_{1}} \underbrace{q_{00}=5}_{x_{1}^{0}}$ (coefficients of monomials)

$$
\text { Linear constraints to satisfy } p(x)=B_{2}^{T}(x) Q B_{2}(x)
$$

From SOS to SDP

2) Design Problem:

Given, $p(x, c) \in \mathbb{R}[x]$ with unknown parametersc $\in \mathbb{R}^{m}$, e.g., some unknown coefficients Find c such that $p(x) \geq 0$

SOS Condition
$p(x, c) \in S O S$

SOS

SDP
Find $\quad c \in \mathbb{R}^{m}, \quad Q \in \mathcal{S}^{n}, \quad Q \succcurlyeq 0 \quad(P S D)$

Such that,

$$
\begin{aligned}
& \text { Coefficient of polynomial } p(x) \text { and } B(x)^{T} Q B(x) \text { matches. } \\
& \text { Linear constraints to satisfy } p(x)=B^{T}(x) Q B(x)
\end{aligned}
$$

From SOS to SDP

Example : Design γ such that $p(x) \geq 0$
$\left.\left.p(x)=x_{1}^{4}+4 x_{1}^{3}+6 x_{1}^{2}+4 x_{1}+5-\gamma \square\right\rangle p(x)=\square>c_{1}^{x_{1}} \begin{array}{c}T \\ x_{1}^{2}\end{array}\right]^{\left[\begin{array}{lll}q_{00} & q_{01} & q_{02} \\ q_{01} & q_{11} & q_{12} \\ q_{02} & q_{12} & q_{22}\end{array}\right]\left[\begin{array}{c}1 \\ x_{1} \\ x_{1}^{2}\end{array}\right]} \underset{Q \in \mathcal{S}^{n}}{B_{2}(x)}$
SDP
Find $\gamma \in \mathbb{R}, Q \succcurlyeq 0$ Such that, $\underbrace{q_{22}=1}_{x_{1}^{4}}, \underbrace{2 q_{12}=4}_{x_{1}^{3}}, \underbrace{q_{11}+2 q_{02}=6}_{x_{1}^{2}}, \underbrace{2 q_{01}=4,}_{x_{1}} \underbrace{q_{00}=5-\gamma}_{x_{1}^{0}}$ (coefficients of monomials) Linear constraints to satisfy $p(x)=B_{2}^{T}(x) Q B_{2}(x)$

From SOS to SDP

Lyapunov Function Search

Example:

$$
\begin{aligned}
& \dot{x}_{1}=-x_{1}+\left(1+x_{1}\right) x_{2} \\
& \dot{x}_{2}=-\left(1+x_{1}\right) x_{1}
\end{aligned}
$$

SOS Conditions: $\quad V(x)=c^{T} B_{4}(x) \quad V(0)=0 \longrightarrow c(1)=0 \quad V(x) \in \operatorname{SOS}_{2 d} \quad-\dot{V}(x) \in \operatorname{SOS}$

$$
\begin{aligned}
& V(x)=B_{2}(x) Q B_{2}(x)=\left[\begin{array}{c}
x_{2} \\
x_{1} \\
x_{2}^{2} \\
x_{1} x_{2} \\
x_{1}^{2}
\end{array}\right]^{T}\left[\begin{array}{ccccc}
1.8991 & -0.5393 & -0.0812 & -0.0294 & -0.0064 \\
-0.5393 & 1.6216 & 0.0294 & 0.0506 & 0.0747 \\
-0.0812 & 0.0294 & 0.9981 & 0.0000 & 0.1118 \\
-0.0294 & 0.0506 & 0.0000 & 1.7727 & 0.0000 \\
-0.0064 & 0.0747 & 0.1118 & 0.0000 & 0.9981
\end{array}\right]\left[\begin{array}{c}
x_{2} \\
x_{1} \\
x_{2}^{2} \\
x_{1} x_{2} \\
x_{1}^{2}
\end{array}\right] \\
&-\dot{V}(x)=\left[\begin{array}{c}
x_{2} \\
x_{1} \\
x_{2}^{2} \\
x_{1} x_{2} \\
x_{1}^{2}
\end{array}\right]^{T}\left[\begin{array}{ccccc}
1.0786 & -0.2618 & -0.0000 & 0.2073 & 0.1063 \\
-0.2618 & 2.1645 & -0.0000 & 0.0357 & -0.2708 \\
-0.0000 & -0.0000 & 0.0000 & -0.0000 & 0.0001 \\
0.2073 & 0.0357 & -0.0000 & 3.3280 & -0.2241 \\
0.1063 & -0.2708 & 0.0001 & -0.2241 & 4.0809
\end{array}\right]\left[\begin{array}{c}
x_{2} \\
x_{1} \\
x_{2}^{2} \\
x_{1} x_{2} \\
x_{1}^{2}
\end{array}\right]
\end{aligned}
$$

From SOS to SDP

Example:

$$
\underset{x \in \mathbb{R}}{\operatorname{minimize}} x_{1}^{4}+4 x_{1}^{3}+6 x_{1}^{2}+4 x_{1}+5
$$

Example:

$$
\underset{x \in \mathbb{R}}{\operatorname{minimize}} x_{1}^{4}+4 x_{1}^{3}+6 x_{1}^{2}+4 x_{1}+5
$$

Example:

$\underset{x \in \mathbb{R}}{\operatorname{minimize}} \quad x_{1}^{4}+4 x_{1}^{3}+6 x_{1}^{2}+4 x_{1}+5$

Example:

$$
\underset{x \in \mathbb{R}}{\operatorname{minimize}} \quad x_{1}^{4}+4 x_{1}^{3}+6 x_{1}^{2}+4 x_{1}+5
$$

https://github.com/iasour/rarnop19/blob/master/Lecture3 SOS NonlinearOptimization/SOS Optimization/Example 1 UnconOpt.m

From SOS to SDP

3) Constrained Nonnegativity Verification:

| Given, $p(x) \in \mathbb{R}[x]$ and the sset $\mathbf{K}=\left\{x \in \mathbb{R}^{n}: g_{i}(x) \geq 0, i=1, \ldots, m\right\}$ |
| :--- | :--- |
| Check if $p(x) \geq 0 \quad \forall x \in \mathbf{K}$ |\quad| SOS condition |
| ---: |
| $p(x)-\sum_{i=1}^{m} \sigma_{i}(x) g_{i}(x) \in S O S$ |
| $\sigma_{i}(x) \in S O S_{2 d_{i}}, i=1, \ldots, m$ |

From SOS to SDP

3) Constrained Nonnegativity Verification:

| Given, $p(x) \in \mathbb{R}[x]$ and the sset $\mathbf{K}=\left\{x \in \mathbb{R}^{n}: g_{i}(x) \geq 0, i=1, \ldots, m\right\}$ |
| :--- | :--- | :--- |
| Check if $p(x) \geq 0 \quad \forall x \in \mathbf{K}$ |\quad| SOS condition |
| ---: |
| $p(x)-\sum_{i=1}^{m} \sigma_{i}(x) g_{i}(x) \in S O S$ |
| $\sigma_{i}(x) \in S O S_{2 d_{i}}, i=1, \ldots, m$ |

$$
\sigma_{i} \in \operatorname{SOS}_{2 d_{i}}, i=1, \ldots, m \xrightarrow[\text { Vector monomials up to order } d_{i}]{\stackrel{\sigma_{i}=B_{i}(x)^{T} Q_{i} B_{i}(x), \quad i=1, \ldots, m}{\longrightarrow}} Q_{i} \in \mathcal{S}^{n}, \quad Q_{i} \succcurlyeq 0, \quad i=1, \ldots, m
$$

From SOS to SDP

3) Constrained Nonnegativity Verification:

$$
\sigma_{i} \in \operatorname{SOS}_{2 d_{i}}, i=1, \ldots, m \xrightarrow[\text { Vector monomials up to order } d_{i}]{\stackrel{\sigma_{i}=B_{i}(x)^{T} Q_{i} B_{i}(x), \quad i=1, \ldots, m}{\longrightarrow}} Q_{i} \in \mathcal{S}^{n}, \quad Q_{i} \succcurlyeq 0, \quad i=1, \ldots, m
$$

$$
p(x)-\sum_{i=1}^{m} \sigma_{i} g_{i}(x) \in S O S \xrightarrow{p(x)-\sum_{i=1}^{m} \sigma_{i} g_{i}(x)=B(x)^{T} Q_{0} B(x)} Q_{0} \in \mathcal{S}^{n}, \quad Q_{0} \succcurlyeq 0
$$

From SOS to SDP

3) Constrained Nonnegativity Verification:

$$
\begin{aligned}
& \text { Given, } p(x) \in \mathbb{R}[x] \text { and the sset } \mathbf{K}=\left\{x \in \mathbb{R}^{n}: g_{i}(x) \geq 0, i=1, \ldots, m\right\} \quad \text { SOS condition } \\
& \text { Check if } p(x) \geq 0 \quad \forall x \in \mathbf{K}
\end{aligned}
$$

$\sigma_{i} \in S O S_{2 d_{i}}, i=1, \ldots, m \xrightarrow[\text { Vector monomials up to order } d_{i}]{\stackrel{\sigma_{i}=B_{i}(x)^{T} Q_{i} B_{i}(x), \quad i=1, \ldots, m}{\longrightarrow}} Q_{i} \in \mathcal{S}^{n}, \quad Q_{i} \succcurlyeq 0, \quad i=1, \ldots, m$

$$
p(x)-\sum_{i=1}^{m} \sigma_{i} g_{i}(x) \in S O S \xrightarrow{p(x)-\sum_{i=1}^{m} \sigma_{i} g_{i}(x)=B(x)^{T} Q_{0} B(x)} Q_{0} \in \mathcal{S}^{n}, \quad Q_{0} \succcurlyeq 0
$$

Find $\quad Q_{i} \in \mathcal{S}^{n}, \quad Q_{i} \succcurlyeq 0, \quad i=0, \ldots, m \quad$ (Linear Matrix inequality)
coefficients of polynomial $p(x)-\sum_{i=1}^{m} \sigma_{i} g_{i}(x)=$ coefficients of $B^{T}(x) Q_{0} B(x) \quad$ (Linear Constraint)

Example: Check the nonnegativity of polynomial $p(x)$ on the set \mathbf{K}

$$
p(x)=x_{1}^{3}-4 x_{1}^{2}+2 x_{1} x_{2}-x_{2}^{2}+x_{2}^{3} \quad \mathbf{K}=\left\{x: x_{1} \geq 0, x_{2} \geq 0, x_{1}+x_{2}-1 \geq 0\right\}
$$

Example: Check the nonnegativity of polynomial $p(x)$ on the set \mathbf{K}

$$
p(x)=x_{1}^{3}-4 x_{1}^{2}+2 x_{1} x_{2}-x_{2}^{2}+x_{2}^{3} \quad \mathbf{K}=\left\{x: x_{1} \geq 0, x_{2} \geq 0, x_{1}+x_{2}-1 \geq 0\right\}
$$

Example: Check the nonnegativity of polynomial $p(x)$ on the set \mathbf{K}

$$
p(x)=x_{1}^{3}-4 x_{1}^{2}+2 x_{1} x_{2}-x_{2}^{2}+x_{2}^{3} \quad \mathbf{K}=\left\{x: x_{1} \geq 0, x_{2} \geq 0, x_{1}+x_{2}-1 \geq 0\right\}
$$

We need to show that $p(x)$ can be written as

From SOS to SDP

4) Constrained Design Problem:

Given, $p(x, c) \in \mathbb{R}[x]$ with unknown parameters $c \in \mathbb{R}^{m}$ and the set $\mathbf{K}=\left\{x \in \mathbb{R}^{n}: g_{i}(x) \geq 0, i=1, \ldots, m\right\}$

Find c such that $p(x) \geq 0 \quad \forall x \in \mathbf{K}$

$$
\begin{aligned}
& p(x, c)-\sum_{i=1}^{m} \sigma_{i} g_{i}(x) \in S O S \\
& \sigma_{i} \in S O S_{2 d_{i}}, i=1, \ldots, m
\end{aligned}
$$

Find $\quad c \in \mathbb{R}^{m}, Q_{i} \in \mathcal{S}^{n}, \quad Q_{i} \succcurlyeq 0, \quad i=0, \ldots, m \quad$ (Linear Matrix inequality)
coefficients of polynomial $p(x, c)-\sum_{i=1}^{m} \sigma_{i} g_{i}(x)=$ coefficients of $B^{T}(x) Q_{0} B(x) \quad$ (Linear Constraint)

$$
\sigma_{i}=B_{d_{i}}(x)^{T} Q_{i} B_{d_{i}}(x), \quad i=1, \ldots, m
$$

From SOS to SDP

Constrained Optimization

$\underset{\sim}{\operatorname{minimize}} \quad f(x)$

$x \in \mathbb{R}^{n}$
subject to $\quad g_{i}(x) \geq 0, i=1, \ldots, n$
$\underset{\gamma}{\operatorname{maximize}} \quad \gamma$
subject to $\quad p(x)-\gamma \geq 0, \quad \forall x \in\left\{x \in \mathbb{R}^{n}: g_{i}(x) \geq 0, i=1, \ldots, n\right\}$

```
~,}\underset{\gamma,\mp@subsup{\sigma}{i}{}}{\operatorname{maximize}
```

subject to $\quad p(x)-\gamma-\sum_{i=1}^{m} \sigma_{i} g_{i}(x) \in S O S$

$$
\sigma_{i} \in \operatorname{SOS}_{2 d_{i}}, i=1, \ldots, m
$$

SDP
$\underset{\text { maximize }}{\max }$
$\gamma,\left.Q_{i}\right|_{i=0} ^{m}$
subject to coefficients of polynomial $p(x)-\sum_{i=1}^{m} \sigma_{i} g_{i}(x)=$ coefficients of $B^{T}(x) Q_{0} B(x)$

$$
\sigma_{i}=B_{d_{i}}(x)^{T} Q_{i} B_{d_{i}}(x), \quad i=1, \ldots, m
$$

Nonlinear (nonconvex) Optimization

$$
\begin{array}{ll}
\underset{x \in \mathbb{R}^{n}}{\operatorname{minimize}} & f(x) \\
\text { subject to } & g_{i}(x) \geq 0, i=1, \ldots, m
\end{array}
$$

Tools: i) Nonnegative Polynomials ii) Semidefinite Programs

Step 1:

Reformulate Nonlinear Optimization problem in terms of Nonnegative Polynomials Step 2:
2.1 Replace Nonnegative Polynomials with Sum of Squares (SOS) Polynomials

```
SOS Programming using YALMIP
```

2.2 Represent SOS Polynomials with Positive Semidefinite Matrices (PSD)

Reformulate Nonlinear Optimization as Semidefinite Programs

Unconstrained Optimization

$$
\mathrm{P}=\underset{x \in \mathbb{R}^{n}}{\operatorname{minimize}} \quad p(x)
$$

Constrained Optimization

$$
\begin{array}{ll}
\mathrm{P}=\underset{x \in \mathbb{R}^{n}}{\operatorname{minimize}} & f(x) \\
\text { subject to } & g_{i}(x) \geq 0, i=1, \ldots, n
\end{array}
$$

Unconstrained Optimization

$$
\mathrm{P}=\underset{x \in \mathbb{R}^{n}}{\operatorname{minimize}} \quad p(x)
$$

$$
\begin{array}{ll}
\mathrm{P}_{\text {sos }}=\underset{\gamma}{\operatorname{maximize}} & \gamma \\
\text { subject to } & p(x)-\gamma \in S O S
\end{array}
$$

Constrained Optimization

$$
\begin{array}{ll}
\mathrm{P}=\underset{x \in \mathbb{R}^{n}}{\operatorname{minimize}} & f(x) \\
\text { subject to } & g_{i}(x) \geq 0, i=1, \ldots, n
\end{array}
$$

0
SOS Programming

$$
\mathrm{P}_{\text {sos }}=\underset{\gamma, \sigma_{i}}{\operatorname{maximize}} \gamma
$$

subject to

$$
p(x)-\gamma-\sum_{i=1}^{m} \sigma_{i} g_{i}(x) \in S O S
$$

$$
\sigma_{i} \in S O S_{2 d_{i}}, i=1, \ldots, m
$$

Unconstrained Optimization

$$
\mathrm{P}=\underset{x \in \mathbb{R}^{n}}{\operatorname{minimize}} \quad p(x)
$$

SOS Programming

$$
\begin{array}{ll}
\mathrm{P}_{\text {sos }}=\underset{\gamma}{\operatorname{maximize}} & \gamma \\
\text { subject to } & p(x)-\gamma \in S O S
\end{array}
$$

Constrained Optimization

Unconstrained Optimization

$$
\mathrm{P}=\underset{x \in \mathbb{R}^{n}}{\operatorname{minimize}} \quad p(x)
$$

-SDP

subject to coefficients of $p(x)-\gamma=$ coefficients of $B^{T}(x) Q B(x)$ $Q \succcurlyeq 0$

Constrained Optimization

 \(\mathrm{P}=\underset{x \in \mathbb{R}^{n}}{\operatorname{minimize}} \quad f(x)\)
 subject to
 \(g_{i}(x) \geq 0, \quad i=1\),
 \(n\)
 n
0
maximize
$\gamma,\left.Q_{i}\right|_{i=0} ^{m}$
subject to
coefficients of polynomial $p(x)-\sum_{i=1}^{m} \sigma_{i} g_{i}(x)=$ coefficients of $B^{T}(x) Q_{0} B(x)$
$\sigma_{i}=B_{d_{i}}(x)^{T} Q_{i} B_{d_{i}}(x), \quad i=1, \ldots, m$

Optimal solution \boldsymbol{x}^{*}

At optimal solution x^{*} : Unconstrained Optimization
Constrained Optimization

$$
\begin{aligned}
& p\left(x^{*}\right)=\gamma^{*} \\
& p\left(x^{*}\right)=\gamma^{*} \quad g_{i}\left(x^{*}\right) \geq 0, i=1, \ldots, m
\end{aligned}
$$

System of nonlinear equations and inequalities

Unconstrained Optimization

$$
\mathrm{P}=\underset{x \in \mathbb{R}^{n}}{\operatorname{minimize}} \quad p(x)
$$

Constrained Optimization

$\quad \mathrm{P}=\underset{x \in \mathbb{R}^{n}}{\operatorname{minimize}} f(x)$
\quad subject to $\quad g_{i}(x) \geq 0, i=1, \ldots, n$
$\underset{\substack{\text { SDP } \\ \operatorname{maximize} \\ \text { subject to } \\ \text { sume }}}{\text { coefficients of polynomial } p(x)-\sum_{i=1}^{m} \sigma_{i} g_{i}(x)=\text { coefficients of } B^{T}(x) Q_{0} B(x)}$
$\sigma_{i}=B_{d_{i}}(x)^{T} Q_{i} B_{d_{i}}(x), \quad i=1, \ldots, m$

Optimal solution \boldsymbol{x}^{*}

At optimal solution x^{*} : Unconstrained Optimization
Constrained Optimization

$$
\begin{aligned}
& p\left(x^{*}\right)=\gamma^{*} \\
& p\left(x^{*}\right)=\gamma^{*} \quad g_{i}\left(x^{*}\right) \geq 0, i=1, \ldots, m
\end{aligned}
$$

System of nonlinear equations and inequalities

- To obtain optimal solutions x^{*}, we will look at dual optimization problem (dual SDP)
(Complementary slackness in KKT optimality condition)

By looking at the Dual SDP of SOS SDP:

> Obtain Optimal Solution x^{*}
> Monotonic Nondecreasing Convergence

- Optimal Objective function of $\mathrm{P}_{S D P}^{* d} \leq \mathrm{P}_{S D P}^{* d+1} \leq \ldots \leq \mathrm{P}_{S D P}^{* \infty}=\mathrm{P}^{*}$ SOS SDP/ Dual SDP with relaxation order d

Optimal Objective function of Original Optimization
$>$ Finite Convergence $\exists d^{*} \quad \mathrm{P}_{S D P}^{* d^{*}}=\mathrm{P}^{*} d \geq d^{*}$

Theory of Sum of Squares

- P. A. Parrilo, "Structured semidefinite programs and semialgebraic geometry methods in robustness and optimization", PhD thesis, California Institute of Technology, May 2000, http://www.mit.edu/~parrilo//pubs/files/thesis.pdf
- Pablo A. Parrilo,"Sum of Squares Optimization in the Analysis and Synthesis of Control Systems", 2006, http://www.mit.edu/~parrilo/pubs/talkfiles/Eckman.pdf
- Pablo A. Parrilo, Sanjay Lall , "Semidefinite Programming Relaxations and Algebraic Optimization in Control" European Journal of Control, V. 9, No. 2-3, pp. 307-321, 2003, http://www.mit.edu/~parrilo/cdc03 workshop/ejc03 comp.pdf
- Workshop: SDP Relaxations and Algebraic Optimization in Control, 2003 http://www.mit.edu/~parrilo/cdc03 workshop/index.html
- Mini-Course on SDP Relaxations and Algebraic Optimization in Control, 2003 http://www.mit.edu/~parrilo/ecc03 course/index.html
- Georgina Hall ,"Engineering and Business Applications of Sum of Squares Polynomials", 2019, https://arxiv.org/pdf/1906.07961.pdf
- Section 4: Applications of Sum of Squares Programming, A. Papachristodoulou, J. Anderson, G. Valmorbida, S. Prajna, P. Seiler, P. A. Parrilo, "SOSTOOLS Sum of Squares Optimization Toolbox for MATLAB", 2013, http://www.cds.caltech.edu/sostools/sostools.pdf

Application in Nonlinear Optimization

- Sections 2 and 5: Jean Bernard Lasserre, "Moments, Positive Polynomials and Their Applications" Imperial College Press Optimization Series, V. 1, 2009.
- Section 3: Monique Laurent, "Sums Of Squares, Moment Matrices and Optimization Over Polynomials", 2010, https://homepages.cwi.nl/~monique/files/moment-ima-update-new.pdf

SOS Programming Using YALMIP

https://yalmip.github.io/tutorial/sumofsquaresprogramming/
https://yalmip.github.io/example/moresos/

MIT OpenCourseWare
https://ocw.mit.edu/
16.S498 Risk Aware and Robust Nonlinear Planning

Fall 2019

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

[^0]: MIT 16.S498: Risk Aware and Robust Nonlinear Planning

[^1]: MIT 16.S498: Risk Aware and Robust Nonlinear Planning

