Large-N observational data

Large-N observational data

The basic idea

- Whenever cases are non-experimental and one wants to analyze several of them, researcher has to revert to statistical methods to control for confounding variables.
- Association between variables can be established visually (i.e., through scatterplots) and captured as minimizing sum of the squared distances (OLS regression)
- You need to do the best you can to control for major alternative hypotheses.

Common pitfalls

- Endogeneity
- LOVB
- Measurement error (and crappy data)
- Non-comparable data (e.g., urbanization)
- Causal heterogeneity

Observational data very useful in *disconfirming* contentions, as correlation is commonly a requisite for causal relationship

Omitted variable bias and endogeneity

Omitted variable bias can inflate coefficients An example

People use the term "measurement error" to refer to at least two different things

Valid but not reliable (inefficient/imprecise) Example? Reliable but not valid

Example?

Inefficient measures have different effects

e.g., British colonial legacy

Note that, in the MV case, measurement error can bias coefficients in unpredictable ways

Galton's coefficient of regression (and the concept of "regression toward the mean")

Father's height

MIT OpenCourseWare https://ocw.mit.edu

17.801 Political Science Scope and Methods Fall 2017

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.