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Course Overview 

• A “graduate-level” introduction to formal theoretical analysis 

in political science 

• After this course, you will: 
• understand several key theoretical concepts in political science, 

e.g., median voter theorem, probabilistic voting model, etc. 
• be able to critically read and understand formal theoretical 

studies in social science 
• be prepared to take more advanced courses 

• The course covers: 
• Basic principles of preferences of rational political actors 

(understanding rational decisionmaking by political actors) 
• Static/Dynamic Games of Complete and Incomplete 

Information (understanding strategic interactions among 
rational actors) 
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Who Should Take This Course? 

• Take this course if: 
• You are interested in politics and want to learn how formal 

mathematical tools are used to study politics. 
• You want to get an introduction to formal political science 
• You want to critically read/understand game theoretical 

models 
• You plan to utilize formal modeling in your research 
• You plan to take advanced game theory courses in social 

science 
(e.g., 14.121, 14.122, 14.126, 14.129) 

• This course may not be for you if: 
• You just want a superficial introduction to game theory 
• You have a econ M.A. or taken a Ph.D.-level microeconomics 

sequence 
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Why Models? 

Social scientists are interested in causal explanations for social 

phenomena. 

• A non-social example: lightning → thunder 

• We seek the causal mechanisms behind empirical regularities 
• Social examples abound: 

• economic downturn → incumbent loses election 
• democracies are less likely than autocracies to go to war with 

each other? 

Underlying many causal arguments about social outcomes are 

strategic interactions. 

• Goal-oriented people, rationally pursuing their own goals, 

engaging in conflict and cooperation with each other 

5



 

 

The Basic Tenets of Rational Choice Theory 

1 The actor assumption: 
• Accounts of aggregate behavior are grounded in individual 

actions: votes require voters, vetoes require vetoers 

2 The intentions assumption: 
• “The behavior of individual actors is to be understood in terms 

of their goals, opportunities, incentives, and constraints” 
(Cameron). 

3 The aggregation assumption: 
• We can recover aggregate behavior from the intentional 

actions of individual agents. 

“To a large extent, rational choice theory is nothing more than our 

everyday method for understanding the social world around us, 

elevated to a method of systematic research” (Cameron, Veto 
Cameron, Charles M. Veto Bargaining: Presidents and the Politics of Negative Power. Cambridge University Press, 2000. © Cambridge 
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What Rational Choice Theory Is Not 

• History, behavioral economics, social psychology... 
• “[Vetoes] do not occur, at least in a rational choice account, 

because the zeitgeist was working itself out, or because social 
forces distinguishable from any human agency somehow 
compelled the political system to produce vetoes.” 

• “we would not assume the president vetoed the bill in a fit of 
absentmindedness, or in a compulsive spasm triggered by a 
deeply repressed childhood trauma, or in the inexorable grip of a 
historical cycle far outside his merely conscious awareness.” 

• But let’s be clear about what rationality demands: 
• We have no normative commitments about people’s goals 
• Actors may be extremely constrained in what they can do 
• Actors may be operating with limited information 
• Outcomes may therefore be unintended, unanticipated, or 

suboptimal; the relationship between goals and choices is 
complex.Cameron, Charles M. Veto Bargaining: Presidents and the Politics of Negative Power. Cambridge University Press, 2000. © Cambridge University Press. All rights 

reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/. 
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Game Theory versus Decision Theory 

• Decision theory concerns how individuals make choices. 

• Game theory analyzes how individuals make choices in 
strategic setting. 

• How do players make choices when outcomes depend on the 
choices of other players? 
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What political questions can we ask with models? 

International relations assumes states are unitary rational actors 

seeking survival. Why does North Korea pursue nuclear weapons? 

American politics debates whether rational politicians are office 

motivated or policy motivated. Why do politicians run for office? 

Why do voters vote even though one vote is not likely to change 

electoral outcomes? 

Comparative politics considers how a rational dictator trades off 

the incentives to extract rents from being leader and the risk of 

revolt. Under what conditions can citizens solve their collective 

action problems and revolt against their leader? 

Political economy considers how a rational consumer chooses labor 

and leisure facing various tax regimes. What is the optimal tax 

rate? 9



Elements of Game Theoretic Modeling 

• What agents play the game (players)? 

• What agents can do (strategies)? 

• What is the structure of the problem (game form)? 

• What are agents’ preferences over outcomes (payoffs)? 

• What do the agents know (information)? 
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Requirements 

• Willingness to work hard! 

• Required readings: Listed on syllabus for each topic 
• Take notes on readings, read slow. Skip no equation. 
• Try to do the reading before class; things will make much more sense. 

• 7 Homework assignments (50% of final grade) 

• Posted on Wednesday and due at 1:00 the following Tuesday (before start 

of class) 
• You are strongly encouraged to use LATEX 

• Working in groups is encouraged, so long as you write up your work on 
your own and list your collaborators 

• Take a solo effort first 

• Final problem set (40% of final grade) 

• Participation (10% of final grade) 
• Can be earned through participation in lecture and weekly recitations. 
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Other Logistics 

• Lectures: I strongly recommend but do not require synchronous 

attendance. 

• Lectures will be recorded and uploaded to the class website within 

24 hours of class. 

• Recitations: Fridays (TBD) with the TA 

• Attendance is strongly encouraged! 
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Books 

• Required textbook: 

• Robert Gibbons. Game Theory for Applied Economists. Princeton 

University Press. 

• Optional books: 

• McCarty and Meirowitz. Political Game Theory 

• Torsten Persson and Guido Tabellini. Political Economics: 

Explaining Economic Policy. The MIT Press. 

• Martin J. Osborne. An Introduction to Game Theory. Oxford Univ. 

• Drew Fudenberg and Jean Tirole Game Theory. The MIT Press. 

• Mas-Colell, Whinston, and Green (MWG) Microeconomic Theory. 
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Reading 

These slides will focus on the following readings: 

• McCarty and Meirowitz, Chapter 1 

• Definition of Rationality 
• Rational Choice on a Finite Set 
• Rational Choice on a Non-finite Set 
• Utility Representations 

• Mas-Colell, Whinston, and Green, Chapter 1 

• A Formal Model of Choice (Sections 1.C and 1.D) 
• (But read all of Chapter 1 for a concise second presentation of 

the McCarty & Meirowitz material.) 
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A Working Definition of Rationality 

Today, we are going to learn important building blocks of formal 

theory. Let’s start with the definition of “rationality.” 

In classical terms, rationality lies in 

1 

2 

Preferences (we will study this in terms of “binary relation”: 

%, �, ∼) 
Actions (A = {a1, · · · , ak }) 

Understanding rationality in actions is easy: do what is optimal 

given “constraints” where we will define constraints later. 

Put simply: 

17Rationality in actions is the purposeful pursuit of goals.



The Theory of Choice: A Formal Foundation 

How can we formally define rational preferences? 

1 Confronted with any two options, x and y , a person can 
determine whether he prefers x to y , y to x , or neither. 

• Such preferences are complete. 

2 Confronted with three options x , y and z , if a person prefers 
x to y and y to z , then she must prefer x to z . 

• Preferences satisfying this property are transitive. 
• Sounds reasonable? Well... 

• Individual Choice: apple � banana & banana � orange & 

orange � apple? 

• Social Choice: What happens if we do pairwise majority 

voting? Person 1 (A � B � C), Person 2 (B � C � A), 

Person 3 (C � A � B ) → You will see A � B � C � A 

This is known as the Condorcet Paradox (group 

decision-making is very dificult!) 
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Finite Sets of Actions and Outcomes 

• To start, we will have a finite set of actions A = {a1, . . . , ak }. 

• A leader involved in a international crisis might face the 

following set of alternatives: 

A = {invade, negotiate, do nothing} 

• A voter might choose among: 

A = {vote Democrat, vote Republican, abstain} 
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Complete Information 

We say there is complete information when actors are sufficiently 

knowledgeable that they can predict perfectly the consequences of 

each action. 

• Denote outcomes by the set X = {x1, . . . , xn}. 

• E.g. X = {win major concession and lose troops, win minor 

concession, status quo}. 

• Complete information in a choice setting implies each action 

a ∈ A maps directly onto one and only one x ∈ X . 

• Formally, there exists a function f : A → X that maps each 

action a ∈ A into a specific outcome x ∈ X 
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Preferences 

We define R as a weak preference relation that will help us build 

up our theory of choice. 

• We define R (or %) where the notation, xi Rxj (or xi % xj ) 

means that the outcome xj is not preferred to xi . We will say 

when we see xi Rxj , xi is “weakly” preferred to xj . 

• Formally, suppose we have a set X . R ⊆ X × X includes all 

the ordered pairs (x , y) such that if (x , y) ∈ R then xRy . 

• Note that R is similar to the binary relation ≥ that operates 

on the real numbers R. 
21



Strict Preference and Indifference 

We can build further preference relations up from the weak 

preference relation R: strict preference (P or �) and indifference 

(I or ∼). 

Definition 

For any x , y ∈ X , xPy (x is strictly preferred to y) if and only if 

xRy and not yRx . Alternatively, xIy (x is indifferent to y) if and 

only if xRy and yRx . 
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An Example 

Suppose we have a set X = {a, b, c} such that R ⊆ X × X , where 

the ordered pair (a, b) means a is weakly preferred to b. That is, 

(a, b) ⇐⇒ a % b 

• Take R = {(a, a), (b, a), (b, b), (c , b), (b, c), (a, c)}. 

• What is P ⊆ X × X ? 

• What is I ⊆ X × X ? 

P = {(b, a), (a, c)}, I = {(a, a), (b, b), (c , b), (b, c)} 
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Rational Preferences 

We now place further restrictions on R that guarantee that one 

can make a meaningful and well-defined “best” choice given one’s 

preferences. This is our basic notion of rationality. 

Formally, a best choice is in the maximal set. 

Definition 

Given a set X and weak preference relation R on X , the maximal 

set M(R, X ) ⊂ X is defined as follows: 

M(R, X ) = {x ∈ X : xRy ∀ y ∈ X } 

We seek conditions that guarantee that this maximal set has at 

least one element. 24



Rational Preferences: Completeness 

The first thing that might derail us is if R is silent about how to 

compare two members of X . That is why we need completeness. 

Definition 

A binary relation is complete if, given a set of alternatives and a 

selection x , y ∈ {a, b, c , d , . . .}, either x is at least as good as y 

or y is at least as good as x , or both. 

Completeness means simply that the agent can compare any two 

(possibly non-unique) alternatives. 

25



Rational Preferences: Transitivity (and its weaker cousins) 

Definition 

A binary relation R on X is 

1 

2 

3 

Transitive if for all x , y , z ∈ X if xRy and yRz then xRz 

Quasi-transitive if for all x , y , z ∈ X if xPy and yPz then xPz 

Acyclic if for all {x , y , z , ..., a, b} ∈ X if xPy and yPz ... and 

aPb then xRb. 

Note the subtle differences among these definitions. 
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Sugar 

Transitivity may seem innocuous, but it is an assumption that 

might be violated even by very reasonable preferences. 

An example that does not satisfy transitivity: 

• Indifferent between 7g and 8g of sugar 

• Indifferent between 8g and 9g of sugar 

• Strictly prefer 9g to 7g of sugar 

Can you formally show the violation of transitivity? 

• Write these in terms of R: 7I 8 =⇒ 7R8 and 8R7, 

8I 9 =⇒ 8R9 and 9R8, 9P7 =⇒ 9R7 but not 7R9 

• Transitivity violation: 7R8 and 8R9 should imply 7R9 

• Quasi-transitivity and acyclicity: we are ok. 
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Beer 

Another example: 

• Suppose X is a set of 1000 different bottles of beer. Beer b1 has 
had one drop of beer replaced with one drop of plain water, b2 has 
had two drops replaced, and so on to b1000. 

• Unless one is a master brewer, b1Ib2 and b2Ib3, . . . and b999Ib1000. 
Because xIy implies xRy (by the definition of I ), then 
b1000Rb999 . . . Rb2Rb1. Transitivity implies b1000Rb1. 

• But clearly, b1Pb1000. 

The assumption of acyclicity does not suffer from this problem: 

• Acyclic if xPy and yPz . . . and aPb implies xRb for all 
{x , y , z , . . . , a, b} ∈ X . 

However, the stronger assumption of transitivity greatly simplifies 

many of the results that are coming, so we will stick with it. 
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An Example 

Returning to our example of 

R = {(a, a), (b, a), (b, b), (c , b), (b, c), (a, c)} 

1 

2 

Is R complete? 

No, because we don’t know about (c,c) 

Is R transitive? 

No, because (c,b), and (b,c) doesn’t imply (c,c) although 

(b,a), and (a,c) does imply (b,c) 
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It all comes together: Weak Orderings 

Putting together our definition of rationality: 

Definition 

Given a set X , a weak ordering (a.k.a, rational weak preference 

relation) is a binary relation that is complete and transitive. 

We are now ready for our first big result: 

Theorem 

If X is a finite set and R is a weak ordering, then M(R, X ) 6= ∅. 
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Proof. 

By induction on the size of A. 

Obviously if A is a singleton, then by completeness its only element 
is maximal. 

1 

2 For the induction step, let A be of cardinality n + 1 and let x ∈ A. 
The set A − x is of cardinality n and has a maximal element by 
assumption. Call that element y . 

3 There are three possibilities: yRx , xRy , or both. (There are no 
other options by completeness.) 

• If yRx , then y ∈ M(R, X ) 
• If xRy , then by transitivity, xRz ∀z ∈ A − x and thus 

x ∈ M(R, X ) 

Both could be true (A can have more than one maximal element). 
But either way, A has at least one maximal element. 

4 By the induction theorem, M(R, X ) is not empty. 
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Note 

Note that we can derive alternative theories of choice without the 

completeness assumption and/or with weaker cousins of 

transitivity; it’s just a bit harder. (See Austen-Smith and Banks 

1999) 
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What if X is a set with the order of the continuum? 

Some choice sets are not finite, and it is important to understand 

how rational preferences are defined in such an environment. 

What could go wrong? 

Example 1 

Let X = (0, 1) and let R on R1 be equivalent to ≥ so that 

xRy iff x ≥ y . Then, the set M(R, X ) is empty. 

Why? Because (0, 1) has no maximal element. (We wouldn’t have 

this problem with [0, 1].) 

This is a hint that we’ll need X to be closed. 
35



What if X is a set with the order of the continuum? 

Some choice sets are not finite, and it is important to understand how 
rational preferences are defined in such an environment. 

What could go wrong? 

Example 2 

Let X = [0, 1] and define R on R1 as follows: 

• xRy if x , y ≤ 

• xRy if x , y > 

1 
2

1 
2 

and x ≥ y 

and x ≤ y 

• xRy if x > 1 
2 and y ≤ 1 

2 

Then, the set M(R, X ) is empty. 

Now, the set X is okay but the problem is with R (Prove to yourself that 
you cannot find a maximum in this set.) So we need to put some 
conditions on both X and R to move forward. 
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Interlude: Where we are 

Building choice theory from the ground up: 

• We’ve formally defined what it means to “prefer” one alternative 
over another, building up from the weak preference relation (R) 

• We’ve formally defined what it means to make a “best choice” from 
a choice set (the maximal set M(R, X )) 

• We’ve put conditions on R that assure that the actor can always 
make a best choice: transitivity and completeness 

• This is our working definition of rationality. 
• We have proven that a best choice always exists under these 

conditions (formally, M(R, X ) is non-empty). 

We are now trying to extend this logic to sets in continuous space: 

• e.g. how much money or effort to optimally invest in something 
• We need conditions on both X (closed, bounded) and R (complete, 

transitive, and lower continuous) to assure that M(R, X ) is 
non-empty. 37



Conditions on X : X is closed 

Definition 
An open ball of radius ε > 0 and center x ∈ X is denoted 

B(x , ε) = {y ∈ X : ||x − y || < ε}
where ||x − y || is the Euclidean norm in an n-dimensional space: 

||x − y || = 
nX 

vuut (x i − y i )2 

i=1 

Definition 

A set A ⊂ Rn is open if for every x ∈ A there is some ε > 0 such that 

B(x , ε) ⊂ A. 

Definition 

A set A ⊂ Rn is closed if its complement B = Rn\A is an open set. 
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Conditions on X : X is bounded 

Definition 

A set A ⊂ Rn is bounded if there exists a finite number b such 

that for every x ∈ A it is the case that ||x − 0|| < b where 0 is 

the vector (0, ..., 0). 

This is most intuitive in R1 . Consider the set (−∞, 0] ∪ [1, ∞): 

0 1 

This set is unbounded because there does not exist a b such that 

x < b ∀ x ∈ A. 
39



Putting it together: compact sets 

Definition 

A set A ⊂ Rn is compact if it is closed and bounded. 
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Conditions on R: Continuity 

Having put some conditions on the choice set X , we will now put 

one further condition on the binary relation R. 

First, we need a few more definitions: 

Definition 

Given a binary relation R on Rn: 

• The strict upper contour set of a point x ∈ Rn is 

P(x) ≡ {y ∈ Rn : yPx}. 
• The strict lower contour set of a point x ∈ Rn is 

P−1(x) ≡ {y ∈ Rn : yPx}. 
• The level set of a point x ∈ Rn is 

I (x) ≡ {y ∈ Rn : yRx and xRy}. 
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Conditions on R: Continuity 

We now define “continuity” for a binary relation: 

Definition 

A binary relation R on Rn is: 

• upper continuous if for all x ∈ Rn , P(x) is open 

• lower continuous if for all x ∈ Rn , P−1(x) is open 

• continuous if it is both upper and lower continuous 
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Conditions on R: Continuity 

Let’s see why this rules out the bad behavior in Example 2 above. 

0 1 
2 

Let X = [0, 1] and define R on R1 as follows: 

• xRy if x , y ≤ 

• xRy if x , y > 

1 
2

1 
2 

and x ≥ y 

and x ≤ y 

• xRy if x > 1 
2 and y ≤ 1 

2 
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Conditions on R: Continuity 

Let’s see why this rules out the bad behavior in Example 2 above. 

0 1 
2 

Let X = [0, 1] and define R on R1 as follows: 

• xRy if x , y ≤ 

• xRy if x , y > 

1 
2

1 
2 

and x ≥ y 

and x ≤ y 

• xRy if x > 1 
2 and y ≤ 1 

2 
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Conditions on R: Continuity 

Let’s see why this rules out the bad behavior in Example 2 above. 

0 1 
2 

Let X = [0, 1] and define R on R1 as follows: 

• xRy if x , y ≤ 

• xRy if x , y > 

1 
2

1 
2 

and x ≥ y 

and x ≤ y 

• xRy if x > 1 1and y ≤2 2 
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Conditions on R: Continuity 

Let’s see why this rules out the bad behavior in Example 2 above. 

0 1 
2 

Let X = [0, 1] and define R on R1 as follows: 

• xRy if x , y ≤ 

• xRy if x , y > 

1 
2

1 
2 

and x ≥ y 

and x ≤ y 

• xRy if x > 1 
2 and y ≤ 1 

2 

46

1 



Conditions on R: Continuity 

Let’s see why this rules out the bad behavior in Example 2 above. 

• When preferences are complete, any point y that is very close 

to x is either in P(x), P−1(x), or I (x). 

• When preferences are continuous, y ∈ P(x) or y ∈ P−1(x) 

implies that points sufficiently close to y will also be in the 

same set. 

• We can state the violation in the example as a violation of 

lower continuity. The violation occurs just to the right of 1 :2 � � � � � � 
1 1 1 

P−1 + ε = −∞, ∪ + ε, 1 
2 2 2 

which is not an open set. 47



Putting it all together 

We are now ready to state the sufficient conditions for a 

non-empty maximal set in continuous space. 

Theorem 

If X ⊂ Rn is non-empty and compact (closed and bounded), and 

R on Rn is complete, transitive, and lower continuous, then 

M(R, X ) 6= 0. 

Note: these conditions are sufficient but not necessary, meaning we can still 

have a nonempty maximal set if these conditions are violated. But, they 

guarantee a nonempty maximal set. 

Generally, violations of compactness of X require stronger assumptions on R, 

while violations of continuity require more structure on X . 
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Uniqueness 

It would be helpful to know if M(R, X ) has a unique element. 

When the choice set is finite, we can typically guarantee 

uniqueness by assuming strict preference (no indifference). 

When the choice set is finite, we need convexity on both the set X 

and the binary relation R. 

49



Convex Sets 

Definition 

X ⊂ Rn is convex if for any x , y ∈ X , the point λx + (1 − λ)y is 

also in X for every λ ∈ [0, 1]. 

50
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Convex Preferences 

Definition 

Preference R on the convex set X is strictly convex if for any 

distinct points x , y ∈ X if xRy then [λx + (1 − λ)y ]Py for any 

λ ∈ (0, 1). 

Convex preferences have the property that if the agent prefers x to 

y , she also prefers convex combinations of x and y to y . 

Strictly convex preferences go one step further: if the agent is only 

indifferent between x and y , she still prefers the convex 

combination of x and y to either of x or y . 

• Diminishing returns, or a taste for variety 
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Uniqueness of an optimal choice 

We are now ready to state the conditions for uniqueness of an 

optimal choice, and to prove that this is so. 

Theorem 

If X is convex and R on X is strictly convex, then if M(R, X ) is 

non-empty, it contains a single element. 
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Proof by Contradiction 

Proof. 

Suppose that X is convex, R is strictly convex, and two distinct 

choices, x and y , are both in M(R, X ). 

For some arbitrary λ ∈ (0, 1) the point [λx + (1 − λ)y ] is also in 

X , since X is convex. 

This point, λx + (1 − λy), is preferred to y since R is strictly 

convex. 

But this contradicts the assumption that y ∈ M(R, X ). 
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What We Have Established 

To summarize, we now know the following about rational choice on 

a continuum: 

• When the choice set X is compact (closed and bounded) and 

a weak ordering (a complete and transitive weak preference 

relation R) is lower continuous, a “rational” choice exists (the 

set M(R, X ) is non-empty). 

• Further, when X is convex and R is strictly convex, any 

optimal choice is unique. 
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From the Binary Relation to the Utility Function 

• The model of choice used so far is based on the use of a binary 

relation, but in general these can be hard to work with. 

• Numbers, on the other hand, are easier to work with. 

• So if we associate a number with each outcome, then we can 

just use the ≥ operator to compare alternatives. 

• We would like to represent preferences using a utility function 

such that: 

u(x) ≥ u(y) ⇒ xRy 

u(x) > u(y) ⇒ xPy 

u(x) = u(y) ⇒ xIy . 
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From Lists to Numbers: The “Utility Representation” 

Sometimes a choice problem can be naturally represented by a 

numerical statement: 

I weakly prefer x to y if u(x) ≥ u(y). 

Example: If the set X is types of politicians, the statement “I 

prefer politicians who produce lower taxes” can be expressed by 

u(x), where x is a tax rate. 

Even if a preference relation does not involve “numbers,” we are 

interested in a numerical representation because it’s easier to work 

with. 
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Utility Representations and Utility Functions 

Definition 

We say a function u : X → R1 represents R if for all x and y in 

X , xRy iff u(x) ≥ u(y). Such a u(x) is a utility function. 

From here it can be easily shown that u(x) > u(y) iff xPy , and 

that u(x) = u(y) iff xIy . 
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Things to note about utility representations 

1 

2 

3 

There are many different functions that can represent the 
same preference relation 

• Take u(x) = x . The functions log(u(x)), α + β(u(x)), eu(x) 

can be used to represent the same preference relation 

Utility functions are ordinal, meaning they can only be used to 
rank alternatives 

• They cannot tell us how much one prefers something to 
something else: the value u(x) − u(y) has no directly 
interpretable meaning 

• In general, comparing utilities across agents is not a meaningful 
exercise (the problem of interpersonal utility comparisons) 

A preference relation can be represented by a utility function 

only if it is rational (complete and transitive) 
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Characterizing optimal choice using a utility function 

Theorem 

If the function u(·) is a utility representation of R on X , then 

M(R, X ) = arg maxx∈X {u(x)} 

arg maxx∈X {u(x)} is the value of x that yields the highest value of 

u(x), or, put simply, the maximizer. 
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Characterizing optimal choice using a utility function 

Note: a good way to prove equality of the sets X and Y is to show 

that X ⊂ Y and Y ⊂ X . We will take this strategy here. 

Proof. 

1 First let’s show that M(R, X ) ⊂ arg maxx∈X {u(x)}
• Assume u(·) represents R on X and that some x 0 is in M(R, X ) 
• This implies that x 0Ry for all y in X 
• This implies that u(x 0) ≥ u(y) for all y in X 

=⇒ x 0 ∈ arg maxx∈X {u(x)} 
2 Now let’s show that arg maxx∈X {u(x)} ⊂ M(R, X ) 

• Assume u(·) represents R on X and that some x 0 is in 
arg maxx∈X {u(x)}

• This implies that u(x 0) ≥ u(y) for all y in X 
• This implies that x 0Ry for all y ∈ X =⇒ x 0 ∈ M(R, X ) 
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Existence of a maximizer 

For finite sets: 

• If R is complete and transitive, we know that M(R, X ) is 

non-empty, and by the proof we just did we know a maximizer 

must therefore also exist. 

For non-finite sets: 

• We need our old condition of compactness on X , and, not 

surprisingly, continuity of the utility function 
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Continuity of functions 

Definition 

We say a function f : X → R1 is continuous if for every x ∈ X 

the following is true: For every ε > 0 there exists some δ > 0 

such that if ||x − y || < δ then |f (x) − f (y)| < ε. 

Informally, a continuous function is one you can draw without 

lifting your pencil. Substantively, a continuous utility function 

produces close utilities for close outcomes. 
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Existence of a maximizer for non-finite sets 

Theorem 

If X ⊂ Rn is compact and u : X → R1 is continuous, then a 

maximizer exists. 

This result is known as the Weierstrass Theorem. 

If we further assume differentiability, we can use the basic tools of 

calculus to characterize our optimal choices. (Stay tuned.) 
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Satiable vs. non-satiable preferences 

• In most economic applications, outcomes are money (income, 
wealth, profits) or commodities (widgets, cookies, beer). 

• In these cases it is sensible to assume that larger outcomes are 
always preferred to smaller ones: non-satiable preferences. 

• In politics agents often have a most preferred outcome that is 
neither zero nor infinite: satiable preferences. 

• A voter might want enough taxation to fund a generous social 
safety net but not so much that she is left with no income 

• She might prefer restrictions on carbon emissions that don’t go 
so far as to ban automobiles 

• Logic of diminishing returns vs. logic of trade-offs 

• Formally, an agent has satiable preferences if M(R, X ) contains 
elements interior to the outcome space X , or when the maximizer of 
u(x) is in the interior of X . 
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Satiable vs. non-satiable preferences 

McCarty, Nolan, and Adam Meirowitz. Political Game Theory: An Introduction. Cambridge University Press, 2007. © Cambridge University Press. All 
rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/. 
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The Spatial Model 

• The most common application of satiable preferences is the 

spatial model that represents policy outcomes as points in Rd 

• It is generally assumed that voters have single-peaked and 
symmetric preferences 

• Single-peaked preferences mean that the agent has a single 
policy that maximizes her utility. We call this policy the 
agent’s ideal point. 

• Symmetric preferences decline at the same rate in every 
direction moving away from the agent’s ideal point. 
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One-dimensional models 

If the policy space is one-dimensional, then single-peaked, 

symmetric preferences are represented by utility functions of the 

form: 

ui (x) = h(−|x − zi |) 

where zi is agent i ’s ideal point and h is an increasing function. 

The two most popular examples are 

• Linear utility: ui (x) = −|x − zi |. 
• Quadratic utility: ui (x) = −(x − zi )2 . 
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Linear and quadratic utility functions 

McCarty, Nolan, and Adam Meirowitz. Political Game Theory: An Introduction. Cambridge University Press, 2007. © Cambridge University Press. 
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Multidimensional models 

In outcome spaces with more than one dimension, distances are 

usually given by the Euclidian norm, 

kx − yk = 

vuut 
n 

(x 
j=1 

X 
j − y j )2 

Thus a symmetric, single-peaked utility function takes the form: 

ui (x) = h(−kx − zi k) 

It is difficult to visualize functions over many dimensions, but for 

two dimensions: 
70



Multidimensional models 

University Press. All rights reserved. This content is excluded from our Creative Commons license. For more information, see 
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Observable choice and preferences 

• Preferences describe decisionmakers’ tastes, but they are not 

observable 

• Choices are observable, e.g., votes on bills, or what you had 

for lunch 

• So far, we have taken preferences as our primitive feature 
• Note that all our assumptions about rationality were developed 

on this unobservable object 

• But we can also start with actions and see what we can infer 
about preferences from there. This approach has some 
distinct advantages: 

• It leaves room for more general forms of individual behavior 
• It makes assumptions about directly observable objects 
• It bases individual decisionmaking not on a process of 

introspection but on an entirely behavioral foundation 
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A model of choice 

To infer preferences from choices, we’ll need a model of choice. 

We’ll formally represent choice behavior with a choice structure 

(B, C (·)), which consists of two ingredients: 

1 

2 

A set of budget sets B 

A choice rule C (·) 
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A model of choice 

Definition 

B is a family of subsets of X that represents all the choice 

problems that an individual might face. 

• Every element of B is a budget set B which is a subset of X 

• However, B need not include every possible subset of X 

Example: 

• X = {x , y , z} 
• B = {{x , y}, {x , y , z}} 
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A model of choice 

Definition 

A choice rule C (·) is a correspondence that assigns every budget 

set B ∈ B a nonempty set of chosen elements, C (B) ⊂ B. 

Intuitively, C (·) is the rule someone uses in deciding what they do 

for every set of possible alternatives they might face. 

Example: 

• X = {x , y , z} 
• B = {{x , y}, {x , y , z}} 
• C1({x , y}) = {x} and C1({x , y , z}) = {x} 
• C2({x , y}) = {x} and C2({x , y , z}) = {x , y} 
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The Weak Axiom of Revealed Preference 

As before, we seek a refinement on this choice structure to make 

sure an individual’s choices are consistent. 

Definition 

The choice structure (B, C (·)) satisfies the weak axiom of 

revealed preference if the following property holds: 

If for some B ∈ B with x , y ∈ B we have x ∈ C (B), then for any 

B 0 ∈ B with x , y ∈ B 0 and y ∈ C (B 0), we must also have 

x ∈ C (B 0). 

Put simply: if x is ever chosen when y is available, then there 

can’t be any budget sets where the choice rule picks y but not x . 
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The Weak Axiom of Revealed Preference 

Example: Do the following choice structures satisfy the weak 

axiom of revealed preference? 

Again, let X = {x , y , z} and B = {{x , y}, {x , y , z}}. 

1 C1({x , y}) = {x} and C1({x , y , z}) = {x} 
2 C2({x , y}) = {x} and C2({x , y , z}) = {x , y} 

(1): yes, (2): no 
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The relationship between preference relations and choice rules 

The weak axiom restricts choice behavior in a way that parallels 

the use of the rationality assumption for preference relations. This 

raises the question: what is the connection between the two 

approaches? 

Specifically, we might ask two questions: 

1 

2 

If a decisionmaker has a rational preference ordering R, do her 

decisions necessarily satisfy the weak axiom? 

If a decisionmaker’s behavior satisfies the weak axiom, is there 

necessarily a rational preference relation that is consistent 

with these choices? 

The answers are (1) yes, and (2) maybe. Let’s see. 
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Rational R implies choice structure satisfying the weak axiom 

Suppose an individual has a rational preference relation R on X . 

Her preference-maximizing behavior is given by: 

C ∗ (B, R) = {x ∈ B : x % y for every y ∈ B} 

Theorem 

Suppose that R is a rational preference relation. Then the choice 

structure generated by R, (B, C ∗(·, R)), satisfies the weak axiom. 
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Rational R implies choice structure satisfying the weak axiom 

Proof. 

Take some B ∈ B with x , y ∈ B. Suppose x ∈ C ∗(B, R). Then it 

must be the case that xRy . 

Now take some B 0 ∈ B with x , y ∈ B 0 and suppose 

y ∈ C ∗(B 0 , R). Then yRz for all z ∈ B 0 . 

Since we know that xRy , then by transitivity xRz ∀ z ∈ B 0 . So 

x ∈ C ∗(B 0 , R). This is precisely the conclusion that the weak 

axiom demands. 

We’ve shown that if behavior is generated by rational preferences, 

then it satisfies the consistency requirements embodied in the weak 

axiom. What about going the other way? 
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Does choice structure satisfying weak axiom imply rational R? 

We’ll need to define a concept along the way: 

Definition 

Given a choice structure (B, C (·)), we say that the rational 

preference relation R rationalizes C (·) relative to B if: 

C (B) = C ∗ (B , R) ∀ B ∈ B 

Recalling that: 

C ∗ (B, R) = {x ∈ B : x % y for every y ∈ B} 

Thus we derive preferences from behavior and not the other way 

around. 
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Does choice structure satisfying weak axiom imply rational R? 

Example: 

• X = {x , y , z}
• B = {{x , y}, {y , z}, {x , z}}
• C ({x , y}) = {x}, C ({y , z}) = {y}, and C ({x , z}) = {z} 

First verify that this satisfies the weak axiom (it does). 

Nevertheless, we cannot have a rational preference relation that 

rationalizes these choices: 

• To rationalize C ({x , y}) = {x} we need xPy 

• To rationalize C ({y , z}) = {y} we need yPz 

• Transitivity demands xPz , which contradicts the choice 

behavior. 
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Does choice structure satisfying weak axiom imply rational R? 

The more budget sets there are in B, the more the weak axiom 

restricts choice behavior. 

• Note that the fact that {x , y , z} was not in B in the previous 
example was crucial! 

We can rule out such violations with an additional restriction on B. 

Theorem 

If (B, C (·)) is a choice structure such that: 

the weak axiom is satisfied 

B includes all subsets of X of up to three elements 

then there is a rational preference relation that rationalizes C (·) 
relative to B. 

1 

2 
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