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Where We Are 

• In the last lecture, we learned about Nash equilibrium: what it

means and how to solve for it

• We focused on equilibrium in pure strategies, meaning actions

were mapped to certain outcomes

• We will now consider mixed strategies: probabilistic play

• But first, we have to develop a notion of preferences over

uncertain outcomes: expected utility theory
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Reading 

These slides will focus on the following readings: 

• Choice Under Uncertainty

• These slides should contain all the information you need to
know. However, if you wish for more technical detail, see
McCarty and Meirowitz, Chapter 3.1.

• Mixed Strategy Nash Equilibrium

• Gibbons, 1.3A
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Choice Under Uncertainty 

So far we have been talking about preferences over certain 

alternatives. 

Let’s think about preferences over what might be called “risky” 

alternatives. 

It is not difficult to imagine a world where decisionmakers make 

choices that lead to chances of different outcomes. 
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Choice Under Uncertainty 

• Agents understand that outcomes are generated 

probabilistically from their choices: different actions increase 

or decrease the likelihood of particular outcomes. 

• Recall the earlier example: 

A = {send in troops, try negotiations, do nothing} 

X = {win large concessions, win small concessions, status quo} 

• The agents might believe that large concessions are more 

likely when the troops are deployed than when negotiations 

are initiated. 
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Choice Under Uncertainty 

There are two key elements of this decision problem: 

1 Beliefs that we model as probability distributions or “lotteries” 

over outcomes associated with each action. 

2 Payoffs associated with each outcome. 
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Simple Lotteries 

• Let X be a set of outcomes with elements {x1, x2, . . . xn}. 

• Throughout this section, we will assume common knowledge 

of the probabilities of outcomes associated with each action. 

• This knowledge could come from repeated observation, e.g., 

“Over the many times I’ve flipped a quarter in my life, it has 

come up heads roughly half of the time.” 
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Simple Lotteries 

The basic building block of expected utility is the lottery. 

Definition 

A simple lottery L is a list L = (p1, . . . , pn) with 0 ≤ pk ≤ 1 and 

p1 + p2 + p3 + . . . + pn = 1. Pn(Compact notation: = 1.)k=1 pk 
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Example of a Simple Lottery 

Simple lotteries come in many forms: lotteries that assign positive 

probabilities to all outcomes, lotteries that assign positive 

probability to only some outcomes, and degenerate lotteries. 

Example 

Let X = {1, 2, 3, 4, 5, 6}. 

• All positive probabilities: a fair six-sided die� �
111111L = , , , , ,6 6 6 6 6 6 

• Some positive probabilities: a die with only even numbers � � 
L = 0, 1 

3 , 0, 
1 
3 , 0, 

1 
3 

• Degenerate lottery: a loaded die that always comes up 6 

L = (0, 0, 0, 0, 0, 1) 
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Compound Lotteries 

• In a simple lottery, the outcomes that result are certain. 

• This need not be the case generally. 

• In fact, we may think about compound lotteries where the 

lottery outcome is another lottery. 

Example (War) 

• Lottery over winning and losing. 

• If lose, lose. If win, a lottery over winning and losing the 

peace. 
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Formalizing the Idea of Compound Lotteries 

Definition 
m mGiven M simple lotteries Lm = (p1 , . . . p ), m = 1, . . . M andnPM0 ≤ αm ≤ 1 with αm = 1, the compound lotteryi=1 

L = (L1, . . . , LM ; α1, . . . , αm) is the risky alternative that yields 

the simple lottery Lm with probability αm. 
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Compound Lotteries 

• In fact, you might think that there is an infinite hierarchy of 

such compound lotteries, making life very difficult for us when 

thinking about preferences with uncertainty. 

• However, for every compound lottery, we can calculate a 

corresponding reduced lottery that is a simple lottery. 
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Reducing Compound Lotteries 

Suppose there are three possible outcomes: X = {win, lose, draw} 

; L1 = (1, 0, 0) 

[ 1 
3
] 

�
331[ ]1 

3
/LA L2 = , ,4 8 8 

[ 1 
3
] 

## �
331L3 = 4 , 8 , 

11 

8 

1
� 

15
Reduced lottery = , ,2 4 4 



� 

� 

� 

Reducing Compound Lotteries 

�
11L1 , 0= 

[ 1 
2
] 

;; ,2 2 

LB 

[ 1 
2
] 

## �
1 1L3 , 0,= 2 

11 

2 

1
� 

Reduced lottery = 2 , , 44 
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Reducing Compound Lotteries 

Since we care about preferences over outcomes, we treat these two 

lotteries (LA and LB ) as having equal value. 
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Utility Representations of Lotteries 

As before, we seek a simple numeric representation of preferences 

over lotteries. We call this expected utility. 

Definition (von Neumann–Morgenstern Utility Function) 

The expected utility of a lottery L is given by: 

nX 
EU(L) = p1u(x1) + p2u(x2) + ... + pnu(xn) = pk u(xk ) 

k=1 
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Axioms of Expected Utility 

Under what conditions can preferences over lotteries be 

represented by expected utility functions? 

We need four axioms: 

1 

2 

3 

4 

Reduction of compound lotteries 

Our old friends the rationality axioms (completeness and 

transitivity) 

Continuity 

Independence 

Let’s go through these one by one. 
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Axiom 1: Reduction of Compound Lotteries 

Axiom 

All that matters for preferences is the reduced lottery. 

We do not care about the paths traveled to get there. 
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Axiom 2: Transitivity and Completeness 

Let’s consider the set of simple lotteries L over certain outcomes 

in some set X . We can impose our old weak preference relation R 

on L, and further demand: 

Axiom 

Individuals have complete and transitive preferences over L. 
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Axiom 3: Continuity 

Axiom 

The preference relation R on L is continuous. 

Intuition for continuous preferences: 

• If pRq, then there are neighborhoods B(p) and B(q) such 

that for all p0 ∈ B(p) and q0 ∈ B(q), p0Rq0 

• Stable preference orderings with very small perturbations 

For example, if a trip to Hawaii is preferred to staying home for 

vacation, then a lottery between having a great trip to Hawaii and 

an arbitrarily small probability of a plane crash is still better than 

staying home. 
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Axiom 4: Independence 

Axiom 

The preference relation R on L satisfies the independence axiom. 

Definition 

The preference relation R on L satisfies the independence 

axiom if and only if for all L, L0 , L00 ∈ L and α ∈ (0, 1), we have 

L � L0 if and only if αL + (1 − α)L00 � αL0 + (1 − α)L00 . 

In words, if we mix each of two lotteries with a third one, then the 

preference ordering of the two resulting mixtures is independent of 

the particular third lottery used. 
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Axiom 4: Independence 

Uncontroversial Example: 

• I weakly prefer an entire apple pie to a dozen chocolate chip 

cookies 

• Therefore I must weakly prefer a slice of pie (equal to 1/12 of 

the pie) with a glass of milk to one cookie with a glass of milk 

Controversial Example: 

• I weakly prefer salami to peanut butter 

• Therefore I must weakly prefer a salami and jelly sandwich to 

a peanut butter and jelly sandwich 

(This axiom gets violated by interactions between objects.) 
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Theorem: von Neumann–Morgenstern 

1 

Theorem (von Neumann–Morgenstern) 

If Axioms 1-4 hold, then there exists a function u(x) such that: 

nX 
EU(Li ) = pik u(xk ) 

k=1 

where Li is the lottery over outcomes induced by action i 

2 Li RLj if and only if EU(Li ) ≥ EU(Lj ). 
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Example 

• Suppose there are 3 possible outcomes: receiving 0, 1, or 5 

dollars. 

• Let’s assume you prefer more money to less. � � � � 
• Say prefer the lottery 1 

2 , 0, 
1 
2 to 0, 13 

4 , 4 . 

• What utility function can represent these preferences? 

• Here’s one that will do: u(0) = 0, u(1) = 1, and u(5) = 4 

1 1 3 1 · 0 + · 4 ≥ · 1 + · 4 
2 2 4 4 

• u(x) = x will also do just fine. 
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A Pure Strategy Nash Equilibrium Does Not Always Exist 

In the “Matching Pennies” game, Alice and Bob choose which side 

of their coin to display, H or T . If they match, Alice wins; if they 

don’t match, Bob wins. 

Example 

Bob 

Alice H 

T 

H T 

1,-1 -1,1 

-1,1 1,-1 

• If pennies match, Bob wants to deviate 

• If pennies don’t match, Alice wants to deviate 
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“Random” Strategies 

• Let’s think about stochastic equilibria where players mix 

probabilistically over their pure strategies. 

• To give some intuition for mixed strategies, think about Rock, 

Paper, Scissors. What is the best way to play this game? 
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Mixed Strategies 

We will call these probabilistic or “random” strategies mixed 

strategies. 

Definition 

In the normal form game G = {S1, ..., Sn; u1, ..., un}, suppose 

Si = {si1, ..., siK }. Then a mixed strategy for player i is a 

probability distribution pi = (pi1, .., piK ), where 0 ≤ pik ≤ 1 for 

k = 1, ..., K and pi1 + ... + piK = 1. 
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Nash Equilibrium in Mixed Strategies 

We now define the concept of Nash equilibrium in mixed 

strategies: 

Definition 

In the normal form game G = {S1, ..., Sn; u1, ..., un}, the mixed 
∗ ∗strategies {p1 , ..., p } are a Nash equilibrium if and only if eachn 

player’s mixed strategy is a best response to the other players’ 
∗mixed strategies, that is, given p−i : 

∗ ∗ ∗ EU(pi , p−i ) ≥ EU(p̂i , p−i ) 

for all i , where p̂i is any other possible mixed strategy for player i . 
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Back to Matching Pennies 

Now we will show that matching pennies has a MSNE where each 

player randomizes 1/2, 1/2 over heads and tails. 

1. Suppose Bob mixes and plays heads with probability 1/2 and tails 
with probability 1/2. 

2. We have to show that doing the same is a best response for Alice 
(the reverse will follow by symmetry). 

3. Let’s write down Alice’s utility function for a mixed strategy where 
she plays heads with probability p and tails with probability 1 − p: 

EUA = Pr(H, H)uA(H, H) + Pr(H, T )uA(H, T ) + 

Pr(T , H)uA(T , H) + Pr(T , T )uA(T , T )� � � � � � � � 
1 1 1 1 

= p(1) + p(−1) + (1 − p)(−1) + (1 − p)(1)
2 2 2 2 
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Back to Matching Pennies 

1 
2 .4. What p maximizes this utility function? Any p at all, including � � 

115. We have shown that Bob playing makes Alice indifferent,2 2 

between any choice of p. By the symmetry of the game, the same is� � 
11true for Bob: Alice playing makes Bob indifferent between ,2 2 

any mixed strategy. � � 
116. The intersection of their best responses is where Bob plays � � 

,2 2 
11and Alice plays . This is the MSNE.,2 2 

Let’s see this graphically. 
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Back to Matching Pennies: Best Response 

Alice plays heads with probability p and Bob plays heads with 

probability q. 

EuA(H) = q(1) + (1 − q)(−1) 
EuA(T ) = q(−1) + (1 − q)(1) 

EuA(H) ≤ EuA(T ) if q ≤ 1 
2 

EuA(H) ≥ EuA(T ) if q ≥ 1 
2 

1 

1p 

EuB (H) = p(−1) + (1 − p)(1) 

EuB (T ) = p(1) + (1 − p)(−1) 
EuB (H) ≤ EuB (T ) if p ≥ 1 

2 
EuB (H) ≥ EuB (T ) if p ≤ 1 

2 

2 

0 
1 12 
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Best Responses and the Linearity of Expected Payoffs 

Recall that: 

Definition 

A best response is the set of strategies that player i can play to 

maximize her payoff, given the strategy of the other players in 

the game (−i). 

Like in PSNE, in MSNE players are always playing a best response. 
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Best Responses and the Linearity of Expected Payoffs 

Example (Outcome Probabilities in Matching Pennies) 

Bob 

H(q) T(1-q) 

Alice H(p) 

T(1-p) 

pq p(1-q) 

(1-p)q (1-p)(1-q) 

Alice’s expected utility from a mixed strategy profile p is: 

pquA(H, H) + p(1 − q)uA(H, T ) + (1 − p)quA(T , H) + (1 − p)(1 − q)uA(T , T ) 

which can be written: 

p[quA(H, H) + (1 − q)uA(H, T )] + (1 − p)[quA(T , H) + (1 − q)uA(T , T )]. 
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Best Responses and the Linearity of Expected Payoffs 

p[quA(H, H) + (1 − q)uA(H, T )] + (1 − p)[quA(T , H) + (1 − q)uA(T , T )] 

Notice that the term in the first bracket is Alice’s expected payoff 

when she uses the pure strategy H and the term in the second 

bracket is her expected payoff when she uses the pure strategy T . 

• That is, Alice’s expected payoff to a mixed strategy profile is a 

weighted average of her pure strategy payoffs, given s−i . 

Expected utility is linear in p. 

• Linearity implies either a pure strategy or any mixture. 

• Equilibrium in mixed strategies requires both players to be 

indifferent between the pure strategies that they mix over. 
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Back to “Bach or Stravinsky” 

There may be MSNE in games where PSNE also exist. 

Example 

Bob 

Alice Mountain 

Lake 

Mountain Lake 

2,1 0,0 

0,0 1,2 

What are the pure strategy Nash equilibria? 

• (Mountain, Mountain) 

• (Lake, Lake) 40



Back to “Bach or Stravinsky” 

There is an additional equilibrium here. To see it, first construct 

Alice’s best response function. 

• Let Bob play Mountain with probability q. 

• Remembering that we need to find Alice’s best response, we 

must write down the expected utility of each pure strategy: 

EUA(M) = 2 · q + 0 · (1 − q) = 2q 

EUA(L) = 0 · q + (1 − q) · 1 = 1 − q 
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Back to “Bach or Stravinsky” 

• So if 2q > 1 − q, Alice’s best response is Mountain, while if 

2q < 1 − q, then her best response is Lake. 

• If 2q = 1 − q then both Mountain and Lake (and any mixture 

of the two) are best responses. 

Thus we have for Alice: ⎧ ⎪ {0} if q <⎨ 
BA(q) = {p : 0 ≤ p ≤ 1} if q = (1)⎪⎩ {1} if q > . 

1 
3
1 
3
1 
3 
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Back to “Bach or Stravinsky” 

Now consider Bob. Suppose that Alice plays Mountain with 

probability p. Like for Alice, Bob’s best response will depend on 

Alice’s choice of p. Thus we need Bob’s expected utilities: 

EUB (M) = 1 · p + 0 · (1 − p) = p 

EUB (L) = 0 · p + (1 − p) · 2 = 2 − 2p 

Thus we have for Bob: ⎧ ⎪ {0} if p <⎨ 
BB (p) = {q : 0 ≤ q ≤ 1} if p = ⎪⎩ {1} if p > . 

2 
3
2 
3
2 
3 
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� 

Back to “Bach or Stravinsky” 

These best response functions overlap at p = 2 
3 and q = 1 

3 . 

We write this MSNE as (Alice: Mountain, Lake; Bob: Mountain, 

Lake) 

Thus, BoS has three equilibria: �
12 21(Mountain, Mountain); (Lake, Lake); ;, , .3 3 3 3 
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What Is a Public Good? 

• What is a public good? 

• A public good is a good that, once provided, everyone can 
consume 

• Non-rival and non-excludable 
• Why does it seem so hard personally and politically to get 

public goods provided? Free riding. 

• Examples: Clean public space, institutions, lighthouses, the 

search engine 
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The Reporting of Crime Game 

• A crime is observed by a group of n people. 

• Each person would like to see the crime reported and values 

the reporting at some utility v . 

• Reporting is costly, but the cost c is smaller than the 

reporting value: v > c > 0. 

• Each player can choose to call or not call. 

• If the crime is reported and they don’t call they get a payoff v . 

• If it is not reported they get a payoff 0, and if they report the 

crime, they get a payoff v − c . 
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Pure Strategy Nash Equilibria 

• There are many (n) pure strategy Nash equilibria to this game 

(what are they?) 

• All are asymmetric, where one person calls and all the others 

don’t. 

• One might then ask, how do the players coordinate on such 

an equilibrium? 

• Since there is nothing about our game that makes 

coordination natural, maybe we don’t like these asymmetric 

equilibria. 

Therefore we might wonder: are there any symmetric mixed 

strategy Nash equilibria? 48



Finding a Symmetric Mixed Strategy Nash Equilibrium 

For each person, the payoff to calling is fixed at v − c > 0. 

The expected utility of not calling equals: 

0 · Pr(no one calls) + v · Pr(at least one person calls) 

Setting these two equal to each other, where p is the probability 

that some person calls, we get: � � 
v − c = v · 1 − (1 − p)n−1 

c ⇐⇒ = (1 − p)n−1 

v � �1/(n−1)c ⇐⇒ p = 1 − 
v 
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Mixed Strategy Nash Equilibrium 

• So there is a symmetric NE to this game where each person 

)1/(n−1)calls with probability p = 1 − ( c . v 

• What happens as n increases? The police are less likely to be 
notified. 

Pr(no one calls) = Pr(i doesn’t call) · Pr(No one else calls either) 

The probability any given person calls decreases in n and the 

probability no one else calls is just (1 − p)n−1 = c/v (see 

previous slide), which doesn’t depend on n. 

Public goods provision becomes harder as n increases (free riding). 
(https://en.wikipedia.org/wiki/Murder_of_Kitty_Genovese) 
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Defense against Terrorism 

• Antiterrorism is fundamentally a problem of too many 

potential targets and not enough guards. 

• Let’s think about two players, Terrorist and Government. 

• There are two targets, and each player has two resource units 

to allocate. 

• If the terrorist allocates more resources to attacking a target 

than the government allocated to defending it, the terrorist 

has a successful attack. 

• Otherwise, the attack is defeated. 

• The terrorist hopes to successfully attack at least one target. 

• The government successfully defends the country only if no 

attack is successful. 52



Matrix Game 

Each player has 3 strategies: one resource to each target, two 

resources on target A, and two resources on target B. 

Example 

Government 
1:1 2:0 0:2 

Terrorist 1:1 
2:0 
0:2 

0,1 1,0 1,0 
1,0 0,1 1,0 
1,0 1,0 0,1 

No pure strategy Nash equilibrium. 
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Matrix Game: Government’s Expected Utility 

Example 

Government 
1:1 2:0 0:2 
(q1) (q2) (1 − q1 − q2) 

Terrorist 1:1 (p1) 
2:0 (p2) 
0:2 (1 − p1 − p2) 

0,1 1,0 1,0 
1,0 0,1 1,0 
1,0 1,0 0,1 

54

For a mixture (p1, p2, 1 − p1 − p2), MSNE implies: 

E [uG (1 : 1)] = (p1 ∗ 1) + (p2 ∗ 0) + ((1 − p1 − p2) ∗ 0) = p1 

= E [uG (2 : 0)] = p2 

= E [uG (0 : 2)] = 1 − p1 − p2 

Solving the system of equations p1 = p2 = 1 − p1 − p2, p = (1/3, 1/3, 1/3). 



                     

Matrix Game: Terrorist’s Expected Utility 

Example 

Government 
1:1 2:0 0:2 
(q1) (q2) (1 − q1 − q2) 

Terrorist 1:1 (p1) 
2:0 (p2) 
0:2 (1 − p1 − p2) 

0,1 1,0 1,0 
1,0 0,1 1,0 
1,0 1,0 0,1 

55

For a mixture (q1, q2, 1 − q1 − q2), MSNE implies: 

E [uT (1 : 1)] = (q1 ∗ 0) + (q2 ∗ 1) + (1 − q1 − q2 ∗ 1) = 1 − q1 

= E [uT (2 : 0)] = q1 + (1 − q1 − q2) = 1 − q2 

= E [uT (0 : 2)] = q1 + q2 

Solving the system of equations 1 − q1 = 1 − q2 = q1 + q2, q = (1/3, 1/3, 1/3). 
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