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Where We Are/Where We Are Headed 

• We have developed a notion of dynamic games of complete 

information in which players make multiple, sequential moves 

• We will now consider a special form of such games: repeated 

games, in which players repeat the same game structure again 

and again 

• We will study finitely and infinitely repeated games 
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Reading 

These slides will focus on the following readings: 

• Finitely Repeated Games 

• Gibbons, 2.3A 

• Infinitely Repeated Games 

• Gibbons, 2.3B 

3



Finitely Repeated Games 

Infinitely Repeated Games 

Discounting and Definitions 

The Grim Trigger Strategy 

Tit-for-Tat Strategy 

Intermediate Punishment Strategies 

Folk Theorem 

Examples 

Example 1: Bargaining Model of War 

Example 2: Rubinstein Bargaining 

Example 3: Bargaining Under a Closed Rule 

4



Repeated Games 

• The most interesting conceptual issue in repeated games is 

the extent to which repetition creates the opportunity to 

sustain more behavior (as Nash equilibria) than is possible in 

single-shot games. 

• The set of Nash equilibria is much larger in repeated games 

than the corresponding static versions. 

• Repeated games have a different problem: the proliferation of 
equilibria is so great that generating precise predictions 
becomes difficult. 
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Some Details 

Definition (Stage Game) 

Let G = {A1, ..., An; u1, ..., un} denote a static game of complete 

information in which players 1 through n simultaneously choose 

actions a1 through an from the action spaces A1 through An, 

respectively, and payoffs are u1(a1, ..., an) through un(a1, ..., an). 

The game G will be called the stage game of a repeated game. 

Given a stage game G , let G (T ) denote the finitely repeated 

game in which G is played T times, with the outcomes of all 

preceding plays observed before the next play begins. The payoffs 

for G (T ) are simply the sum of the payoffs from the T stage 

games. 
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Some Details 

As before: 

• A history is a sequence of play defining a path through the 

game tree, which is also a record of prior actions and stage 

game outcomes for all previous interactions. 

• A strategy is a complete, contingent plan that tells the player 

what to do in every situation, that is, at every possible history. 

• The equilibrium path is the sequence of outcomes determined 

in each stage game that results from the interaction of the 

players’ equilibrium strategies at each moment in time. 
7



An Example: Subgame Perfect Nash Equilibria 

1 / 2 L M R 

T 8, 8 0, 0 1, 9∗ 

M 0, 0 5∗ , 5∗ 0, 0 

B 9∗ , 1 0, 0 3∗ , 3∗ 

• If this game is played once there are two Nash equilibria: 

(M, M) and (B, R) 

• Although the strategy profile (T , L) provides the highest 

aggregate payoff, it is not a Nash equilibrium; Player 1 

unilaterally defects to B and Player 2 unilaterally defects to 

R. 

• What happens if this game is played twice with players caring 

about their combined two-period payoffs? Can players ever 

get the (T , L) payoff? 
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Subgame Perfect Nash Equilibria 

1 / 2 L M R 

T 8, 8 0, 0 1, 9∗ 

M 0, 0 5∗ , 5∗ 0, 0 

B 9∗ , 1 0, 0 3∗ , 3∗ 

• Consider the following strategies: 
• Player 1: Play T in period 1; if Player 2 plays L in period 1 play M 

in period 2; otherwise play B in period 2. 

• Player 2: Play L in period 1; if Player 1 plays T in period 1 play M 

in period 2; otherwise play R in period 2. 

• Both players’ equilibrium payoff is 8 + 5 = 13. (Check that there is 
no deviation that leaves either player better off.) In fact, these 
strategies constitute a subgame perfect Nash equilibrium. 

• Because (M, M) and (B, R) are Nash equilibria of the one-shot 

game, playing them in the proper subgames is consistent with 

subgame perfection. 
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The Repeated Prisoner’s Dilemma 

• One of the most studied games is the repeated prisoner’s 

dilemma. 

• Consider an application focused on trade policy. 

• Suppose the world economy performs better when all nations 

agree to free trade, but that individual countries prefer to 

protect their domestic economy. 

• Given this tension, how are free trade regimes sustained? 

• One answer is that free trade can be supported as an 

equilibrium in a repeated game where a trade war begins 

whenever a major country defects from the trade agreement. 
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Free Trade 

Free Trade Game 

US / EU Free Trade Protect 

Free Trade 10, 10 1, 12∗ 

Protect 12∗ , 1 4∗ , 4∗ 

• Obviously, if the game is played once, the unique Nash 

equilibrium is the strategy profile (Protect, Protect). 
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Free Trade 

If it is played twice, then the strategy sets for each player are: 

{FFF,FFP,FPT,FPP,PFF,PFP,PPF,PPP} 

where FFP means “play Free Trade in period 1 and play Free 

Trade in period 2 if the other country plays Free Trade in period 

1, otherwise play Protect.” 

• Note that a complete, contingent plan conditions strategies 

on prior histories. 
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Normal Form 

Two-Period Free Trade Game 

US / EU FFF FFP FPF FPP PFF PFP PPF PPP 

FFF 20,20 20,20 11,22 11,22 11,22 11,22 2,24 2,24 

FFP 20,20 20,20 11,22 11,22 13,13 13,13 5,16 5,16 

FPF 22,11 22,11 14,14 14,14 11,22 11,22 2,24 2,24 

FPP 22,11 22,11 14,14 14,14 13,13 13,13 5,16 5,16 

PFF 22,11 13,13 22,11 13,13 14,14 5,16 14,14 5,16 

PFP 22,11 13,13 22,11 13,13 16,5 8,8 16,5 8,8 

PPF 24,2 16,5 24,2 16,5 14,14 5,16 14,14 5,16 

PPP 24,2 16,5 24,2 16,5 16,5 8,8 16,5 8,8 
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Nash Equilibria 

Unlike the first example, repeating the game once does not achieve 

cooperation, as (PPP , PPP) is the only Nash equilibrium. 

This result can be generalized to any finite number of periods: 

• In the last period, each country protects. 

• This is known in the penultimate period. Thus, each country has an 
incentive to protect in this period as well. 

• This process unravels until each country is protecting in every 
period. 

Why could we induce first-period cooperation in first example? 

• Because first-period behavior helps coordinate between multiple 
equilibria in the second period. 
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Nash Equilibria 

In the first example, the good equilibrium is used as a reward 

whereas the bad equilibrium is used as a punishment. 

Because the Prisoner’s Dilemma has only one Nash equilibrium, it 

is impossible to encourage cooperation with the promise of 

coordinating on a good equilibrium or the threat of coordinating on 

a bad equilibrium. 

We can generalize this result: 

Proposition 

If the stage game G has a unique Nash equilibrium then, for any 

finite T , the repeated game G (T ) has a unique subgame-perfect 

outcome: the Nash equilibrium of G is played in every stage. 
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Payoffs in Repeated Games: Discounting 

If we discount our payoffs, that means payoffs received today are 

more valuable than payoffs received in the future. 

© Source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/. 

Why? 

• Impatience, inflation, death, game form may change, preferences 
may change, game may end... 
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Simple Payoffs 

So if the payoffs to the stage game on the equilibrium path are 

π1, π2, π3 . . ., then the present value of this infinite series of payoffs 

is: 
∞X 

ui (si , s−i ) = π1 + δπ2 + δ2π3 + . . . = δt−1πt 
t=1 

Since the discount factor satisfies 0 ≤ δ < 1, this is a convergent 

geometric series (see next slide). 

We will show that: 
∞X π 

δt−1π = 
1 − δ 

t=1 
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A Quick Convergence Proof 

y = π + δπ + δ2π . . . 

y = π + δ(π + δπ + δ2π . . . ) 

y = π + δy 

y − δy = π 

y(1 − δ) = π 
π 

y = 
1 − δ 
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Some Other Useful Information 

• The continuation value is the payoff stream starting from 

some time τ onward and is given by: 

∞X π 
δt π = δτ 

1 − δ 
t=τ 

• Given the discount factor δ, the average payoff of the infinite 

sequence of payoffs π1, π2, π3, . . . is: 

∞X 
(1 − δ) δt−1πt 

t=1 

Since the average payoff is just a rescaling of the present 

value, maximizing the two quantities is equivalent. 
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Other Preliminaries 

We are now ready to restate our familiar notions of strategies, 

Nash equilibrium, subgames, and subgame perfection in the 

context of infinitely repeated games. 

But first, let’s define an infinitely repeated game. 

Definition 

Given a stage game G , let G (∞, δ) denote the infinitely repeated 

game in which G is repeated forever and the players share the 

discount factor δ. For each t, the outcomes of the t − 1 

preceding plays of the stage game are observed before the tth 

stage begins. Each player’s payoff in G (∞, δ) is the present value 

of the player’s payoffs from the infinite sequence of stage games. 

22



Strategies in Infinitely Repeated Games 

Strategies are exactly the same as in finitely repeated games: 

Definition 

In the infinitely repeated game G (∞, δ), a player’s strategy 

specifies the action the player will take in each stage, for each 

possible history of play through the previous stage. 

This is an infinite number of strategies for us to consider! 

We won’t have to enumerate them all. Rather, we will consider 

strategy types in our analysis. 
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Nash Equilibrium in Infinitely Repeated Games 

Our general notion of Nash equilibrium also remains the same: 

given the other players are playing their best response in every 

period, player i has no incentive to unilaterally deviate from their 

strategy in any period. 
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Subgames and Subgame Perfection 

Definition 

In the infinitely repeated game G (∞, δ), each subgame beginning 

at stage t + 1 is identical to the original game G (∞, δ). As in 

the finite-horizon case, there are as many subgames beginning at 

stage t + 1 of G (∞, δ) as there are possible histories of play 

through stage t. 

Definition 

A Nash equilibrium is subgame-perfect if the players’ strategies 

constitute a Nash equilibrium in every subgame. 
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The One-Shot Deviation Principle 

But how do we check every subgame in an infinitely repeated 

game? Here we are helped by the one-shot deviation principle. 

It turns out that to find an SPNE, it suffices to compare playing 

your equilibrium strategy to any one-shot deviations of the form: 

• Playing your equilibrium strategy up to period t − 1 

• Deviating to something else in period t 

• Returning to your equilibrium strategy in period t + 1 

This allows us to consider the finite types of subgames where we 

might end up, and one-shot deviations at some arbitrary period t. 
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The One-Shot Deviation Principle 

Definition (One-shot deviation principle) 

A strategy profile of an extensive-form game is a subgame-perfect 

equilibrium (SPE) if and only if there is no profitable one-shot 

deviation for any player in any subgame. 

In an infinite horizon game where the discount factor is less than 1, 

a strategy profile is a subgame perfect equilibrium if and only if it 

satisfies the one-shot deviation principle. 

Note: More broadly, Nash equilibria have no profitable one-shot 

deviations on their equilibrium paths, but may have profitable 

one-shot deviations off their equilibrium paths. 
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Back to PD: The Grim Trigger 

• Consider the following strategy: “Play free trade in every 

period until the other country protects. If the other country 

protects, then protect forever after.” 

• This is known as the grim trigger strategy, because any failure 

to cooperate leads to the non-cooperative equilibrium in all 

future periods. 

• Does (grim trigger, grim trigger) constitute a Nash 
equilibrium? Does it constitute a subgame perfect Nash 
equilibrium? 

• The answer to both questions is yes, under some conditions. 
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Nash Equilibrium: Infinitely Repeated PD 

Free Trade Game 

US / EU Free Trade Protect 

Free Trade 10, 10 1, 12 

Protect 12, 1 4, 4 

To show that (grim trigger, grim trigger) is a Nash equilibrium, we 

must show that neither player has a profitable deviation along the 

equilibrium path. 

• If each country plays grim trigger, both receive 10 in every 

period 

• If both countries discount the future at a common factor of δ, 
10the total utility of this strategy is 1−δ 
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Nash Equilibrium: Infinitely Repeated PD 

Now let’s try to formulate the strongest possible alternative 

strategy for US, given EU is playing grim trigger. 

• Suppose the US defects in some period t. 

• Since EU is playing grim trigger, they protect forever starting 

in t + 1. 

• Then the US should also protect forever starting in t + 1. 

• Thus we consider the strategies: 

1 2 3 . . . t t + 1 t + 2 . . . 

US F F F . . . P P P . . . 

EU F F F . . . F P P . . . 

Note: this is not a one-shot deviation; we’re not yet solving 

for SPNE. (What would a one-shot deviation look like for the 

US?) 31



Nash Equilibrium: Infinitely Repeated PD 

• This strategy yields for the US a payoff of 12 in the first 

defection period (t) and a stream of 4 forever after 

• The US is better off playing grim trigger if and only if: 

10 δ4 ≥ 12 + 
1 − δ 1 − δ 

10 ≥ 12(1 − δ) + 4δ 

8δ ≥ 2 

1 
δ ≥ 

4 

• Thus, as long as the players are sufficiently patient (δ is 

sufficiently large), both players playing the grim trigger 

strategy is a Nash equilibrium. 32



Generalized Prisoner’s Dilemma 

Generalized Prisoner’s Dilemma 

1 / 2 Cooperate Don’t cooperate 

Cooperate a, a d , c 

Don’t cooperate c , d b, b 

where c > a > b > d . Using exactly the same arguments, the grim 
a δbtrigger strategy is a Nash equilibrium if and only if 1−δ ≥ c + 1−δ . 

Rearranging yields the condition: 

c − a 
δ ≥ . 

c − b 
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Generalized Prisoner’s Dilemma 

Thus, cooperation is harder to sustain (requires a higher discount 

factor) when: 

1 

2 

c is large relative to a and b 

a and b are roughly equal. 

34



Generalized Prisoner’s Dilemma: SPNE 

We have derived the condition on δ under which (grim trigger, 

grim trigger) is a Nash equilibrium. But is it an SPNE? 

We now have to check every subgame, including ones off the 

equilibrium path. Fortunately, we only have to check one-shot 

deviations. 

Only one additional type of subgame is relevant to us: one in which 

Player 1 has defected at time t − 1, which is off the equilibrium 

path. Then both players playing grim trigger would dictate: 

1 2 . . . t − 1 t t + 1 t + 2 . . . 

Player 1 C C . . . D C D D . . . 

Player 2 C C . . . C D D D . . . 
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Generalized Prisoner’s Dilemma: SPNE 

Is defecting forever a credible threat for Player 2? 

• Her payoffs (starting from period t) from sticking to grim 

trigger are: 

δb 
c + δb + δ2b + δ3b · · · = c + 

1 − δ 

• But what if she just turned a blind eye to Player 1’s defection 

and cooperated in period t instead? 

1 2 . . . t − 1 t t + 1 t + 2 . . . 

Player 1 C C . . . D C C C . . . 

Player 2 C C . . . C C C C . . . 

aThis would yield the payoff stream 1−δ . 
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Generalized Prisoner’s Dilemma: SPNE 

Player 2 is better off sticking to grim trigger if and only if: 

δb a 
c + ≥ 

1 − δ 1 − δ 
c(1 − δ) + δb ≥ a 

δ(b − c) ≥ a − c 
a − c 

δ ≤ 
b − c 

Where we have flipped the inequality because b − c < 0. 

Thus, (grim trigger, grim trigger) is subgame perfect under the 
c−aknife-edge condition δ = c−b , since the previously derived 

condition for Nash equilibrium also has to hold. 
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Tit-for-Tat Strategies 

• The grim trigger strategy is not the only equilibrium of the 

infinitely repeated prisoner’s dilemma that sustains the 

cooperative outcome. 

• The grim trigger equilibrium may be undesirable because 

cooperation disappears forever following a single defection. 

• It is not robust to mistakes by the players. 
• Following a breakdown of cooperation the players cannot 

renegotiate to return to the cooperative phase, something they 
clearly have an incentive to do. 

• An alternative Nash equilibrium is based on “tit-for-tat” 

strategies of the form: “cooperate in the first period; then, in 

any subsequent period, play the action that the other player 

chose in the previous period.” 

39



Tit-for-Tat Strategies: Subgame Perfection 

There are two types of subgames to consider: 

1 A subgame where, following cooperation in the previous 
period, both players are expected to cooperate in the future. 
This is the cooperation phase. 

• We compare the utility of tit-for-tat to the utility of a unilateral, 

one-period deviation to not cooperating, then returning to 

tit-for-tat. 

2 A subgame following cooperation by one player and defection 
by the other. This is the punishment phase. 

• We compare the utility of tit-for-tat to the utility of not punishing 

and cooperating in the period immediately following defection, then 

returning to tit-for-tat. 
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Tit-for-Tat Strategies: Subgame Perfection 

1 The cooperation phase. Consider Player 1: 
a• Following tit-for-tat yields the present value utility .1−δ 

• A one-shot defection in the cooperation phase (while Player 2 
adheres to tit-for-tat) looks like: 

1 2 . . . t − 1 t t + 1 t + 2 t + 3 . . . 
Player 1 C C . . . C D C D C . . . 
Player 2 C C . . . C C D C D . . . 

This payoff stream yields the present value utility: 

c + δd + δ2 c + δ3d + δ4 c + δ5d . . . 

= c + δd + δ2(c + δd) + δ4(c + δd) . . . 

c + δd 
= 

1 − δ2 
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Tit-for-Tat Strategies: Subgame Perfection 

(Referring back to the generalized payoff matrix:) 

Generalized Prisoner’s Dilemma 

1 / 2 Cooperate Don’t cooperate 

Cooperate a, a d , c 

Don’t cooperate c , d b, b 

where c > a > b > d . 

Thus, tit-for-tat is an SPNE if and only if: 

a c + δd ≥ 
1 − δ 1 − δ2 

Rearranging allows us to express this as a condition on the 

discount rate. 
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Tit-for-Tat Strategies 

a c + δd ≥ 
1 − δ 1 − δ2 

c + δd 
a ≥ 

1 + δ 
(1 + δ)a ≥ c + δd 

δa − δd ≥ c − a 
c − a 

δ ≥ 
a − d 
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Subgame Perfection 

2 The punishment phase. Again consider it from Player 1’s 
point of view: 

• After Player 2 has defected, both players playing tit-for-tat 
looks like: 

1 2 . . . t − 1 t t + 1 t + 2 t + 3 . . . 
Player 1 C C . . . C D C D C . . . 
Player 2 C C . . . D C D C D . . . 

c+δdWhich, as above, yields the payoff stream 1−δ2 . 

Alternatively, Player 1 could cooperate in period t and get a in 

every period. Player 1 prefers to play tit-for-tat as long as: 

c + δd a c − a ≥ → δ ≤ 
1 − δ2 1 − δ a − d 
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Subgame Perfection 

Thus, tit-for-tat is only a subgame perfect Nash equilibrium if: 

1 

2 

c−aδ ≥ a−d , and 
c−aδ ≤ a−d 

c−aThis is satisfied when δ = a−d , a very knife-edge condition. 
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Subgame Perfect Tit for Tat (“Adjusted Tit-for-Tat”) 

An alternative version of tit-for-tat avoids the problem of oscillation in 
the punishment phase. Milgrom, North and Weingast (1990) argue for 
the strategy: 

• Start out playing Cooperate 

• Always play Cooperate at time t unless these two conditions both 
hold: 

1 The other player defected in t − 1 
2 You cooperated in t − 2 

This strategy punishes defection but rewards punishment for defection, 
allowing players to get back to a cooperative equilibrium. 

1 2 · · · t − 2 t − 1 t t + 1 · · · 
C C · · · C C D C · · · 
C C · · · C D C C · · · 46



Subgame Perfect Tit for Tat (“Adjusted Tit-for-Tat”) 

Again, need to check two subgames: cooperation and punishment phase. 

1 In a cooperation phase the condition under which a player continues 
to cooperate is: 

a δ2a ≥ c + δd + 
1 − δ 1 − δ 

2 In a punishment phase, we have to check that the defector wants to 
return to cooperating rather than defect another period: 

δa δ2a 
d + ≥ b + δd + 

1 − δ 1 − δ 

and that the punisher is better off punishing: 

δa a 
c + ≥ 

1 − δ 1 − δ 

(which is true by definition, c > a) 
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Intermediate Punishment Strategies 

• The grim trigger and tit-for-tat strategies represent just two 

of the possible strategies that sustain cooperative outcomes. 

• These strategies can be generalized to include strategies that 

involve punishment phases of intermediate length. 
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Two Examples 

1 

2 

Similar to grim trigger: Cooperate until your opponent defects. If 
your opponent defects, do not cooperate for the next k periods but 
then return to cooperation; if you defect, do not cooperate for the 
next k periods but then return to cooperation. Once you have 
returned to cooperation, cooperate until a defection occurs. 

Similar to tit-for-tat: Cooperate until your opponent defects. If your 
opponent defects, do not cooperate for k periods. If she cooperates 
in any of the k periods, return to cooperation, ending the 
punishment phase. If she fails to cooperate in any period of the 
punishment phase, then the punishment phase starts over i.e. don’t 
cooperate for k more periods. If your own failure to cooperate 
caused the punishment phase then cooperate during the punishment 
phase. 
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Strategy 1 

• The payoff stream from defecting from mutual cooperation 

(and then defecting while you’re being punished) consists of 

the one-period gain from defecting, b for k periods, and an 

infinite stream of a beginning k + 1 periods in the future. 

• Recall that the present value of an infinite payoff stream of π 

beginning at a future time τ is: 

δτ π 
1 − δ 

• Thus the utility of defecting after cooperation is: 

δ − δk+1 δk+1 

c + b + a. 
1 − δ 1 − δ 
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Strategy 1 

• Consequently, sustaining cooperation requires that: 

δ − δk+1 δk+1 a ≥ c + b + a 
1 − δ 1 − δ 1 − δ 

Multiplying through by 1 − δ yields the condition: � � � � 
k+1 k+1 a 1 − δ ≥ (1 − δ) c + δ − δ b 

• We cannot generate a closed form for the critical value of δ, but we can 

rewrite this expression as: 

c − a 
+ δk+1 a − b 

δ > . 
c − b c − b 

• The first term on the right side is the critical value for the grim trigger 

strategy, and second term is positive for any k. Thus it is harder to 

sustain cooperation with a finite punishment phase. But if players make 

mistakes, this equilibrium may be preferred to the grim trigger. 
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Strategy 2 

• A defection from the cooperation phase generates a payoff 

consisting of a one period benefit c , a punishment payoff of d 

for k periods, and a return to cooperative payoffs a at the end 

of the punishment. 

δ−δk+1 δk+1
• Summing these up generates c + d + a.1−δ 1−δ 

• This payoff is lower than the payoff from defection in the 
δ2a ) by δ

2−δk+1 
tit-for-tat equilibrium (c + δd + (a − d).1−δ 1−δ 

Thus, increasing the length of the punishment phase decreases 

the incentive to defect from the cooperative phase. 
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The Folk Theorem 

• A common theme of these examples is that so long as the 

agents are sufficiently patient, outcomes that are not Nash 

equilibria in static games may be Nash equilibria or subgame 

perfect equilibria of infinitely repeated games. 

• In fact, any feasible payoff vector to an infinitely repeated 

game that satisfies individual rationality can be sustained as a 

SPNE so long as agents are sufficiently patient. 

• This result has been around a long time in many different 

forms, so it’s called a Folk theorem. 
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Individually Rational Payoffs 

Definition 

The payoff vector v = (v1, .., vi , ..., vn) is individually rational if 

vi ≥ mins−i {maxsi ui (si , s−i )} for each i ∈ N. 

The value mins−i {maxsi ui (si , s−i )} is the minimum stage game 

utility that player i attains from any strategy profile in which she 

plays a best response to s−i . This value is identified by letting 

players −i select s−i , so as to minimize the utility to i of playing a 

best response to s−i . 
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Feasibility 

Definition (1) 

The payoff vector v = (v1, .., vi , ..., vn) is feasible if there is some 

pure strategy profile s such that for each i ∈ N, 

ui (s) = (1 − δi )vi . 

Recall that (1 − δ)vi can be understood as the discounted average 

of a stream of payoffs from a repeated game. 

Alternatively, we call the payoffs in some stage game G feasible if 

they are a convex combination (i.e. a weighted average) of the 

pure-strategy payoffs of G (where the weights are non-negative 

and sum to one). We call this the convex hull of the pure-strategy 

payoffs. 
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V

Individual Rationality ∩ Feasibility 

(3,3) 

(1,1) 

(0,4) 

(4,0) 

IR ∩ V 

c d 

c 3,3 0,4 

d 4,0 1,1 
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The Folk Theorem 

Theorem 

For every feasible and individually rational payoff vector v there is 

a vector of discount rates δ0 (i.e. one δ0 for each player) suchi 

that the payoff vector v occurs in a Nash equilibrium of the 

repeated game if δi ≥ δ0 for all i .i 
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Bargaining Theory 

• If political science is the study of “who gets what, when and 

how” then bargaining theory lies at its foundation. 

• Legislators and executives bargain over budgets and new 

legislation. 

• States bargain to reach new international agreements and to 

settle crises (e.g. refugee resettlement, climate accords...). 

• Political parties bargain over coalition governments. 

. . . 
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Bargaining Model of War 

Two states are in conflict over a unit good. 

• Divisible: an area of territory or an allocation of resources. 

• Country 1 presents country 2 with a proposal to share the 

resource (x , 1 − x). 

• Country 2 can accept this offer (leading to peace) or reject 

this offer (leading to war). 
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War in the Bargaining Model of War 

The expected payoff to war depends on the probability that a 

country will win, the utility of victory and defeat, and the 

inefficiencies of fighting. 

(Normalized) payoffs for war: 

• victory = 1 

• defeat = 0 

• cost of war ci > 0 

• pi , probability of i winning: p2 = 1 − p1 

• ui (xi ) is increasing and weakly concave (weakly risk-averse) 

Expected utility of war to state i : 

pi (1) + (1 − pi )(0) − ci . 
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Extensive Form of One-Period Bargaining 

1 

x 
2 

Accept Reject 

u1(x) 
u2(1 − x) 

p − c1 

1 − p − c2 
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Nash Equilibria of the Bargaining Game 

What are the Nash equilibria of the one-shot bargaining game? 

Anything goes. 

• Pick any cutoff strategy for Player 2 (i.e., accept if x ≥ x̂  and 

reject otherwise) 

• Have Player 1 propose the cutoff value. 

• This is an equilibrium. 
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Complete Information Equilibrium: Bargaining and War 

Proposition 

In the unique subgame perfect equilibrium of this game the 

probability of war is zero. 
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Proof 

• In the final stage Player 2 will accept any offer such that: 

u2(1 − x) ≥ 1 − p − c2. 

• In the first stage country 1 chooses among all the x . 

• It knows that for any x , it gets 

1 

2 

either u1(x) if Player 2 accepts 
or p − c1 if rejects 

• Of all the possible offers, one that makes Player 1’s payoff largest is: 

u2(1 − x) = 1 − p − c2 

−1 x = 1 − u (1 − p − c2)2 

or with linear utility in shares x = p + c2 

• This offer is always accepted and there is no war in equilibrium. 
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Things to Observe from Bargaining 

• A conflict of interest is not sufficient for conflict. 

• All else equal, stronger countries (higher p) get better deals 

• When preferences are known and “fixed” bargaining produces 

efficient outcomes (Coase theorem) 

• Bargaining power is a function of payoffs to war and the 

process by which agreements are reached. 
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What About Infinite-Horizon Bargaining Models? 

• But there are many questions one might have: 

1 What if Player 2 got to make a counter-offer instead of 
rejecting? 

2 What if players have varying degrees of patience when it comes 
to long, drawn-out bargaining? 

3 Does bargaining ever end exogenously and if not, what will 
agreements look like? 
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Rubinstein Bargaining 

• Suppose that two players try to decide how to divide $1. 

• The players take turns making offers so that Player 1 proposes 

in periods 0, 2, 4, etc. and Player 2 makes proposals in the 

other periods. 

• The game continues (possibly infinitely) until a proposal is 

accepted by the other player. 

• In each period that she is the proposer, Player 1 makes an 

offer (x1, x2) where x1 is Player 1’s share and x2 is Player 2’s 

share where x1 + x2 ≤ 1. 

• If Player 2 accepts, the game ends and the dollar is divided 

accordingly. 
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Rubinstein Bargaining 

• If Player 2 rejects, then she gets to make an offer (x1, x2) with 

x1 + x2 ≤ 1, and the game continues if Player 1 rejects. 

• To simplify matters, assume both players have linear utility 

functions u1(x1, x2) = x1 and u2(x1, x2) = x2. 

• Each player has a discount factor δi ; players value proposal 

(x1, x2) accepted t periods in the future at (δ1 
t x1, δ2 

t x2). 

• A strategy has to consist of (1) the offers you accept when 

the other player proposes, and (2) the offers you make when 

you are the proposer. 
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Subgame Perfect Equilibria 

• Rubinstein shows that there is a unique SPNE to this game 

based on playing the following strategies in every period: � � 
1 Player 1 proposes 1−δ2 δ2(1−δ1) ,1−δ1 δ2 1−δ1δ2 

and accepts Player 2’s 

offer if and only if x1 ≥ δ1(1−δ2 ) .1−δ1δ2 � � 
2 Player 2 proposes δ1(1−δ2) 1−δ1 ,1−δ1 δ2 1−δ1δ2 

and accepts Player 1’s 

offer if and only if x2 ≥ δ2(1−δ1 ) .1−δ1δ2 

• Prove that these strategies constitute a subgame perfect Nash 

equilibrium to the alternating offers bargaining game. 
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Computing the Equilibrium 

• Let v1 and v2 be the utilities of Player 1 and 2 for subgames 

in which they are the proposer. 

• Given that the postulated strategies are the same in every 

period, these values are independent of t. 

• These are continuation values because they also reflect the 

utility of rejecting a proposal and moving to the next subgame. 
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Computing the Equilibrium 

• Consider a subgame where Player 1 is the proposer. 

• She must offer Player 2 at least δ2v2, Player 2’s discounted 
continuation value. 

• She keeps the rest for herself: x1 = 1 − δ2v2. Because this offer is 
accepted, x1 is exactly Player 1’s continuation value: 
v1 = x1 = 1 − δ2v2. 

• Consider a subgame where Player 2 is the proposer. She must offer 
at least δ1v1 so that v2 = 1 − δ1v1. 

• Now we simply solve this system of equations: 

v1 = 1 − δ2v2 and v2 = 1 − δ1v1 

→ v2 = 1 − δ1(1 − δ2v2) 

v2(1 − δ1δ2) = 1 − δ1 

1 − δ1 
v2 = 

1 − δ1δ2 
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Computing the Equilibrium 

Solving for v1, � � 

v1 = 1 − δ2 
1 − δ1 

1 − δ1δ2 

δ2 − δ1δ2 
v1 = 1 − 

1 − δ1δ2 

1 − δ2 
v1 = 

1 − δ1δ2 

Thus we have: 

1 − δ2 1 − δ1 
v1 = and v2 = . 

1 − δ1δ2 1 − δ1δ2 

Plugging in these values yields the SPNE above: 

• Player 1 proposes (v1, 1 − v1) and accepts if x1 ≥ δ1v1 

• Player 2 proposes (v2, 1 − v2) and accepts if x2 ≥ δ2v2 77



Implications 

• The model suggests a very simple path of play: in period zero,� � 
1−δ2 δ2(1−δ1)Player 1 proposes , , Player 2 accepts, and the1−δ1δ2 1−δ1δ2 

game ends. 

• Because the whole dollar is allocated and there is no delay, 

the subgame perfect Nash equilibrium is efficient. 

• If both players have the same discount factor, there is a first 
1−δ δ(1−δ)mover advantage because > . Intuitively, because 
1−δ2 1−δ2 

Player 2 discounts the future, Player 1 only needs to offer her 

a fraction of what she gets for being the proposer next period. 

Because both players are identical, Player 2 is getting only a 

fraction of what Player 1 gets. 
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Implications 

• We can also compute a comparative static: how do 
equilibrium outcomes change as a function of key parameters 
of interest? 

• How does your equilibrium offer change as a function of your 
discount factor? Your opponent’s discount factor? 

• To answer this question, simply take the first derivative of the 
equilibrium outcome with respect to the parameter of interest. � � 
∂ 1 − δ2 (1 − δ1δ2)(0) − (1 − δ2)(−δ2) δ2 − δ2 

2 = = 
∂δ1 1 − δ1δ2 (1 − δ1δ2)2 (1 − δ1δ2)2 

This is positive, so Player 1 extracts a bigger share of the 

dollar the more patient she is. 
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Implications 

What about Player 1’s equilibrium share with respect to Player 2’s 
discount rate? � � 
∂ 1 − δ2 (1 − δ1δ2)(−1) − (1 − δ2)(−δ1) δ1 − 1 

= = 
∂δ2 1 − δ1δ2 (1 − δ1δ2)2 (1 − δ1δ2)2 

This is negative, so Player 1 extracts a smaller share of the dollar 

the more patient Player 2 is. 

1If δ1 = δ2 = δ, then both players’ shares converge to 2 as δ 

converges to 1. As both players become perfectly patient, they are 

less willing to accept offers that are less than what they can get as 

the proposer next period. In the limit, they demand exactly what 

they expect to get next period. 
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Majority Rule Bargaining Under A Closed Rule 

• A key feature of the Rubinstein model is that unanimous 

consent is required to reach an agreement on the allocation. 

• This rules out a number of important political settings where 

only a simple or supermajority is required for agreement. 

• Baron and Ferejohn (1989) have extended Rubinstein’s model 

to simple majority rule with more than two bargainers. 

• Suppose that there are N (odd) players bargaining and any 

proposal requires n = (N + 1)/2 votes. 

• Instead of assuming alternating offers, Baron and Ferejohn 

consider a bargaining protocol with a random recognition rule. 

• According to this protocol, in each period, every player is 

chosen to make a proposal with an equal probability (1/N). 
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Majority Rule Bargaining Under A Closed Rule 

• We focus on bargaining under a closed rule where the 
proposer makes a take-it-leave-it offer for the current 
legislative session. 

• The proposer in each period makes an offer (x1, x2, . . . , xN ) 
such that xi is the share for player i .P 

• Feasibility requires that xi ≤ 1. 
• If this proposal is rejected, the session ends, discounting 

occurs, and a new proposer is randomly chosen at the 
beginning of the next session. 

• To simplify, we assume that each player has the same discount 
factor δ. 

• This game has lots of subgame perfect equilibria. In fact for 

large enough N and δ, there is a SPNE that can support any 

feasible division of the dollar. 
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Majority Rule Bargaining Under A Closed Rule 

• These strategies require, however, that each player know the 

whole (possibly infinite) history of the game in order to know 

which actions are consistent with the prescribed punishment 

• Following Baron and Ferejohn, we analyze only stationary 
equilibria, meaning those in which: 

A proposer proposes the same division every time she is 
recognized regardless of the history of the game. 
Voters vote only on the basis of the current proposal and 
expectations about future proposals, not on prior histories. 

1 

2 

• Does there exist an equilibrium with this property? 
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Majority Rule Bargaining Under A Closed Rule 

• Let vi be the continuation value (i.e. the discounted expected 

utility from playing the rest of the game) for player i . 

• We focus on symmetric equilibria (in which every player is 

playing the same strategy), so that vi = v for all i . 

• Any voter who gets xi ≥ δv votes in favor of the proposal, 

whereas any voter who receives less than δv votes against it. 

• Given these voting strategies, an optimal proposer must 
propose: 

• δv to n − 1 other players 
• 0 to the rest of the other players 
• the remainder, z = 1 − (n − 1)δv to himself 
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Majority Rule Bargaining Under A Closed Rule 

• In this class of stationary symmetric equilibria, the proposer 

chooses her coalition partners randomly. 

• The continuation value is then: � � � � � � 
1 n − 1 N − n 

v = z + δv + 0 
N N N| {z } | {z } | {z } 

being proposer being in winning coalition being left out 

• Substituting for z and simplifying yields: 

1 − (n − 1)δv (n − 1)δv 1 
v = + = 

N N N 

• The continuation value is a proportional share of the dollar. 
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Majority Rule Bargaining Under A Closed Rule 

Finally, given our solution for v , we have to compute the 

proposer’s share and make sure it makes the proposer better off 

than punting (i.e. making a proposal that won’t be accepted) to 

get to the next period. 

Recalling that z = 1 − (n − 1)δv and plugging in v = 1/N, � � 
δ 

z = 1 − (n − 1) 
N 

Let’s put n in terms of N to make the analysis clearer: � �� � 
N + 1 δ (N − 1)δ 

z = 1 − − 1 = 1 − 
2 N 2N 
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Majority Rule Bargaining Under A Closed Rule 

For z to be optimal for the proposer, we must check that: 

(N − 1)δ δ 
1 − ≥ 

2N N 
2δ + (N − 1)δ 

1 ≥ 
2N 

2N ≥ δ(N + 1) 

(2 − δ)N ≥ δ 
δ 

N ≥ 
2 − δ 

The right-hand side is maximized at 1 when δ = 1. Thus, this 

condition is always satisfied for more than one player. 
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Some Takeaways 

• Because v is also the expected utility of the game, this result 

implies that bargaining is efficient because the sum of player 

utilities is maximized. 

• We can compute a measure of proposal power: the difference 

between the utility of being the proposer (z) and the 

discounted continuation value (δv): 

(N − 1)δ δ (N + 1)δ 
π = z − δv = 1 − − = 1 − 

2N N 2N 

Comparative statics: How does proposal power vary with δ 

and N? 

89



Comparative Statics 

Proposal power decreases as players become more patient: 

∂π N + 1 
= − 

∂δ 2N 

What about as N grows large? � � � � 
∂π 2Nδ − δ(N + 1)(2) δ δ 

= − = − − = 
∂N 4N2 2N2 2N2 

Since this is positive, proposal power grows as the size of the 

legislature increases. 
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Supermajority Rule (Try this at home) 

• Now assume that k > n votes are required. 

• Repeating the steps above, you can easily derive the proposer’s 
share as: 

z = 1 − (k − 1)δv 

and the continuation values as: 

z k − 1 
v = + δv 

N N 

1• Algebra reveals that once again v = N 

= 1 − δ(k−1)• The proposer’s equilibrium share is now lowered to z N 

= 1 − δ(n−1)(from z ). Thus, going from majority to supermajority N 

rule mitigates the proposer’s advantage. 
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Implications for Institutional Design 

• Proposal power: can be interpreted as committee membership 

→ how does the game change when proposal power is 

non-random? 

• What features control proposal power? 

• Bigger legislature → more proposal power 
• Supermajoritarian rules → less proposal power 
• Probability of being recognized is another lever 

• Do we want to increase or decrease proposal power from a 
normative standpoint? 

• More unequal offers may be less fair 
• But, high payoffs to committee membership may incentivize 

good policy 
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