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Where We Are/Where We Are Headed 

• Recall that we have been focused thus far on games of 
complete information: where players know everything about 
the game, including all players, actions available to them, and 
associated payoffs 

• In games of imperfect information, we allowed for players not 
to always know how all players have acted in the past 

• But what if we relaxed other forms of knowledge? 

• Other players’ payoffs 
• Allowing players to be differentially informed 
• Allowing players to learn about the game as they play 
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Reading 

These slides will focus on the following readings: 

• Static Games 

• Gibbons, Chapter 3 
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Bayesian Games 

A Bayesian Game in Normal Form 

Bayes’ Rule 

Examples 

Example 1: Jury Voting 

Example 2: Public Goods and Incomplete Information 

Example 3: Electoral Competition Under Uncertainty 

Example 4: Rationalist Explanations for War (Fearon 1995) 

4



Remember the Normal Form 

In games of complete information, we had: 

• set of N players 

• a set of actions for each player: Ai 

• a game form that maps action profiles into outcomes 

• utilities over outcomes for each player 

All of these components — players, actions available to all players, 

all associated payoffs, and game form — were known to all players. 

• The only thing that might be unknown in games of complete 
information is how players have acted in the past (imperfect 
information). 
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Motivation for Bayesian Games 

What if we want to think about situations where actors don’t know 

everything or where some actors know more or different things 

than others? This motivates Bayesian Games! 

• In war, leaders may not know their opponents’ political costs for 
fighting or their military strength 

• Potential challengers in elections don’t know the quality of 
incumbents 

• Leaders may not know the willingness of the public to pay for a new 
public library and therefore don’t know if they should provide it 

• Participants in auctions may not know other people’s valuations of 
the item 

• Lobbies and interest groups might know more about their policy 
areas than politicians or the public 
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Bayesian Games 

A Bayesian Game in Normal Form 

Bayes’ Rule 

Examples 

Example 1: Jury Voting 

Example 2: Public Goods and Incomplete Information 

Example 3: Electoral Competition Under Uncertainty 
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A Bayesian Game in Normal Form (The Harsanyi Model) 

A Bayesian game in normal form is: 

• a set of players: {1, . . . , n} 

• a set of action spaces for each player: A1, . . . , An 

• a set of type spaces for each player: T1, . . . , Tn 

• a player’s type ti ∈ Ti is known privately to her but not 
necessarily to other players 

• payoffs that are determined by the players’ types and, as 

before, their actions: ui (a1, . . . , an; t1, . . . , tn) 

• for each player, beliefs about the other players’ types: 

pi (t−i |ti ) 

Together, these components constitute a Bayesian game: 

G = {A1, . . . , An; T1, . . . , Tn; p1, . . . , pn; u1, . . . , un} 
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Intuition for a Bayesian Game 

Think of the process of playing this game as: 

• Players lack specific knowledge about the world; instead, they 

have perceptions or preconceived notions that we call beliefs 

• Each player gets a signal about something (about another 

player’s type, about the state of the world) 

• Players update their beliefs with this new information using 

Bayes’ Rule 

• Then they choose the action that maximizes their expected 

utility given their best guess about the game they’re playing 
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Intuition for a Bayesian Game 

Harsanyi (1967) suggests a useful way of understanding a game of 

incomplete information as a game of imperfect information with a 

fictitious player who moves first called Nature: 

1 

2 

3 

4 

Nature draws a type vector (t1, . . . , tn) for all players 

For each i , Nature reveals ti to some players (usually including 

i) and sends a signal to others 

Players choose actions ai simultaneously 

Payoffs are realized: ui (a1, . . . , an; ti ) for all i 

Not all players are able to observe Nature’s first move, making this 

a game of imperfect information whereby players do not know the 

complete history of play. 
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Strategies in Bayesian Games 

• A strategy is a contingent plan that tells the player what to 

do for every possible type Nature might draw. 

• Thus, in a Bayesian Nash equilibrium, each player-type (not 

player!) chooses a strategy that maximizes her expected 

utility given the strategies of all the other player-types and the 

probability distribution over the types. 

• Why do we need to consider strategies for a type that will 
never be realized? That is, once Nature has drawn a type and 
revealed it to some player i , why does it matter what he 
would have done had he been some other type? 

• Because the others don’t know his type, but what they do 
depends on it, and what player i does in turn depends on that 
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Bayesian Nash Equilibrium 

Because strategies are now functions of types, evaluation of best 

responses is somewhat complicated. 

Definition 

In the static Bayesian game 

G = {A1, . . . , An; T1, . . . , Tn; p1, . . . , pn; u1, . . . , un}, the 
∗ ∗ ∗strategies s = (s1 , . . . , s ) are a pure-strategy Bayesian Nashn 

equilibrium if for each player i and for each of i ’s types ti ∈ Ti , 
∗ si (ti ) solves: 

X 
∗ ∗ ∗ ∗ max ui (s1 (t1), . . . , si−1(ti−1), ai , si+1(ti+1), . . . , sn (tn); t)pi (t−i |ti ) 

ai ∈Ai 
t−i ∈T−i 
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Bayesian Games 

A Bayesian Game in Normal Form 

Bayes’ Rule 

Examples 

Example 1: Jury Voting 

Example 2: Public Goods and Incomplete Information 

Example 3: Electoral Competition Under Uncertainty 

Example 4: Rationalist Explanations for War (Fearon 1995) 

13



Bayes’ Rule 

What does it mean to be rational when you don’t have complete 

information about the world? 

• Making the best guess you can based on (1) what you observe 

and (2) your preexisting beliefs. 

Bayes’ Rule formalizes rational updating. 

This is nothing more than an extension of the basic rules of 

probability theory, which we will now review. 
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Conditional Probability 

What is the probability that two die sum to 3? 

• Before the die are cast, the event (call it A) occurs with 

probability 2 (1,2; 2,1). 36 

Now suppose the first die comes up a 1, call this event B. What is 

the conditional probability that the two die sum to 3, given the 

first die came up 1? 

• Consider the reduced sample space: 

• Only one of these outcomes gives us 3, so Pr(A|B) = 1/6. 
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Conditional Probability 

The conditional probability that some event A will happen, given 

that we know some event B happened, is defined as: 

Pr(A ∩ B)
Pr(A|B) = 

Pr(B) 

Similarly, 
Pr(B ∩ A)

Pr(B |A) = 
Pr(A) 

where Pr(B ∩ A) = Pr(A ∩ B). 

In the die example, 

1/36 1 
Pr(A|B) = = 

1/6 6 
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Total Probability 

• A and A0 are mutually exclusive if when one happens the 

other cannot, e.g. head and tails on a coin flip 

• We also say that some events, like heads and tails of a coin 

flip, are exhaustive if either one or the other must happen and 

no other event is possible 

• A partition of all possible events is a collection of events that 

is both mutually exclusive and exhaustive 
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Law of Total Probability 

Let A1, A2, · · · , An be disjoint events that form a partition of the sample 
space and assume P(Ai ) > 0 for all i . Then for any event B we have: 

Pr(B) = Pr(A1 ∩ B) + · · · + Pr(An ∩ B) 

= Pr(A1)Pr(B|A1) + · · · + Pr(An)Pr(B |An) 

where the second line comes from the definition of conditional probability. 
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Inverting Conditional Probability: Bayes’ Rule 

Bayes’ rule tells us how to go between Pr(A|B) and Pr(B|A). It states: 

Pr(A)Pr(B|A)
Pr(A|B) = 

Pr(B) 

We can derive this quite easily starting from the definition of conditional 
probability: 

Pr(A ∩ B) Pr(B ∩ A) Pr(A)Pr(B|A)
Pr(A|B) = = = 

Pr(B) Pr(B) Pr(B) 

We can expand the denominator using the law of total probability: 

Pr(A)Pr(B|A)
Pr(A|B) = 

Pr(A1)Pr(B|A1) + · · · + Pr(An)Pr(B|An) 
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Example: Nuclear Alarm 
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Example: Nuclear Alarm 

• Suppose the alarm system at the nuclear plant is not 

completely reliable. 

• If something is wrong, the probability the alarm goes off is 

.99. 

• On the other hand, the alarm goes off with probability .01 on 

days when nothing is wrong. 

• The historical record shows that the nuclear reactor has 

something wrong with it, for real, 1 out of 100 days. 

• If the alarm just went off, what is the probability that 

something is actually wrong? 
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Example 

So for our problem we have: 

• Let A be the event that something is wrong with the reactor. 

• Let B be the event that the alarm goes off. We are told: 

Pr(B|A) = .99 

Pr(B|¬A) = .01 

Pr(A) = .01 

Pr(A|B) =? 
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What to do? 

Panic 
© Gracie Films / 20th Television. All rights reserved. This content is excluded from our 
Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/. 
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Calculate the Posterior Probability 

With A being the event that something is wrong with the reactor 

and B the event that the alarm goes off, we apply Bayes’ rule: 

Pr(A)Pr(B |A)
Pr(A|B) = 

Pr(A)Pr(B|A) + Pr(¬A)Pr(B|¬A) 

Pr(A) = .01 

Pr(B |A) = .99 

Pr(¬A) = 1 − Pr(A) = .99 

Pr(B|¬A) = .01 

Thus we have: 

(.01)(.99) 1 
Pr(A|B) = = 

(.01)(.99) + (.99)(.01) 2 
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Some More Intuition 

• Consider 10000 reactor days. On how many days will there be 

trouble? .01 × 10000 = 100 

• On how many of those troubled days will the alarm actually 

go off? .99 × 100 = 99 

• On the other hand, there are 9900 days with no trouble. On 

how many of those days will there be a false alarm? 

.01 × 9900 = 99 

• So how likely is it that an alarm day is a trouble day? 50/50 
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Bayes’ Rule in Medicine 

Kremer, William. "Do Doctors Understand Test Results?" BBC News Service. July 7, 2014. © BBC. All rights reserved. This content is excluded from our Creative 
Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/. 

https://www.bbc.com/news/magazine-28166019 
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Example: Politician Types 

© Hedgeye Risk Management. All rights reserved. This content is excluded from our Creative Commons 
license. For more information, see https://ocw.mit.edu/help/faq-fair-use/. 

• Suppose there is an incumbent politician who can be of two 

types (good or bad) 

• Good incumbents generate low inflation with probability 2/3 

• Bad incumbents generate low inflation with probability 1/5 

• Ex ante the probability of a good incumbent is 3/4 

What is the likelihood the incumbent is good if we observe low 

inflation? 
27
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Example: Politician Types 

Good, low 

Good, high 
Type 

Bad, low 

Bad, high 

2 
3 

1 
3

1 
5 

4 
5 

3 
4 

1 
4 
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Example: Politician Types 

Let A1 be the event that the incumbent is good, A2 be the event the 
incumbent is bad, and L be low inflation. Then Bayes’ rule tells us: 

Pr(L|good) Pr(good)
Pr(good |L) = 

Pr(L|good) Pr(good) + Pr(L|bad) Pr(bad) 

• Pr(good) = 3/4 

• Pr(bad) = 1/4 

• Pr(L|good) = 2/3 

• Pr(L|bad) = 1/5 

So we have: 

2/3 × 3/4 10 
Pr(good |L) = = 

112/3 × 3/4 + 1/5 × 1/4 
29 29 



Bayesian Games 

A Bayesian Game in Normal Form 

Bayes’ Rule 

Examples 

Example 1: Jury Voting 

Example 2: Public Goods and Incomplete Information 

Example 3: Electoral Competition Under Uncertainty 

Example 4: Rationalist Explanations for War (Fearon 1995) 
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Example 4: Rationalist Explanations for War (Fearon 1995) 

31



Application: Jury Voting 

• Suppose that three jurors N = {1, 2, 3} collectively choose an 

outcome x ∈ {c , a}. 

• The jurors simultaneously cast ballots vi ∈ Si = {c , a}, and 

the outcome is chosen by majority rule. 

• Each juror is uncertain whether or not the defendant is guilty, 

G , or innocent, I . So the set of state variables is Ω = {G , I }. 

1• Each juror assigns prior probability π > to state G .2 
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2 

Application: Jury Voting 

• The jurors each receive one unit of utility when the jury as a whole 
matches its verdict to the state of the world, and zero otherwise: 

• If the defendant is guilty, the jurors receive one unit of utility 
from convicting and zero from acquitting. 

• If the defendant is innocent, the jurors receive one unit from 
acquitting and zero from convicting. 

• Before voting, each juror receives an independent, private signal 
about the defendant’s guilt, θi ∈ {0, 1}. 

• The signal is informative, so that a juror is more likely to receive the 
signal θi = 1 when the defendant is guilty than when the defendant 
is innocent. 

• To keep things simple, 
• Pr(θi = 1 | ω = G ) = Pr(θi = 0 | ω = I ) = p > 
• Pr(θi = 0 | ω = G ) = Pr(θi = 1 | ω = I ) = 1 − p < 1 

1 
2 
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Application: Jury Voting 

After receiving her signal, voter i selects her vote v (θi ) to 

maximize the probability of a correct decision. 

• Recall that each player-type should choose a strategy. 

• Suppose that each voter uses the sincere strategy, vi (1) = c 

and vi (0) = a. 

• Sincere strategies constitute a Bayesian Nash equilibrium only 

if voter 1 uses this strategy when she believes that voters 2 

and 3 also use it. 

• We will now see if there is a Bayesian Nash equilibrium in 

which all voters play the sincere strategies vi (1) = c and 

vi (0) = a. 
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Application: Jury Voting 

• Generically, voter 1’s expected utility of convict is: 

Pr(θ2 

Pr(θ2 

Pr(θ2 

Pr(θ2 

• By similar logic, the expected utility of voting to acquit is: 

Pr(θ2 

Pr(θ2 

Pr(θ2 

Pr(θ2 

• In all other cases, voter 1 gets 0 utility. 

= 1 and θ3 

= 0 and θ3 

= 1 and θ3 

= 0 and θ3 

= 1 and θ3 

= 0 and θ3 

= 0 and θ3 

= 1 and θ3 

= 0 and ω = G | θ1) + 

= 1 and ω = G | θ1) + 

= 1 and ω = G | θ1) + 

= 0 and ω = I | θ1) 

= 0 and ω = I | θ1) + 

= 1 and ω = I | θ1) + 

= 0 and ω = I | θ1) + 

= 1 and ω = G | θ1) 
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Application: Jury Voting 

• The last two terms of each sum are the same and cancel out 

when comparing the utilities. 

• Accordingly, voting to convict is a best response if and only if: 

Pr(θ2 = 1 and θ3 = 0 and ω = G | θ1) + Pr(θ2 = 0 and θ3 = 1 and ω = G | θ1) ≥ 

Pr(θ2 = 1 and θ3 = 0 and ω = I | θ1) + Pr(θ2 = 0 and θ3 = 1 and ω = I | θ1) 

• We want to check that voting to convict is a best response 

when θ1 = 1 and that voting to acquit is a best response 

when θ1 = 0. 
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Application: Jury Voting 

First let’s check that voting to convict is a best response for juror 

1 when θ1 = 1. Let’s compute: 

Pr(θ2 = 1 and θ3 = 0 and ω = G | θ1 = 1) 

which is the same as: 

Pr(θ2 = 0 and θ3 = 1 and ω = G | θ1 = 1) 

(why?) 
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Application: Jury Voting 

Pr(θ2 = 0 and θ3 = 1 and ω = G | θ1 = 1)| {z } | {z } 
A B 

Recall Bayes’ Rule: 

Pr(B |A)Pr(A)
Pr(A|B) = 

Pr(B) 

Going piece by piece, 

Pr(B |A) = Pr(θ1 = 1 | θ2 = 0 and θ3 = 1 and ω = G ) 

= Pr(θ1 = 1 | ω = G ) = p 

by the independence of voters’ signals. 
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Application: Jury Voting 

Pr(θ2 = 0 and θ3 = 1 and ω = G | θ1 = 1)| {z } | {z } 
A B 

Recall Bayes’ Rule: 

Pr(B |A)Pr(A)
Pr(A|B) = 

Pr(B) 

Going piece by piece, 

Pr(A) = Pr(θ2 = 0 and θ3 = 1 and ω = G ) 

= Pr(ω = G ) ∗ Pr(θ2 = 0 | ω = G ) ∗ Pr(θ3 = 1 | ω = G ) 

= π(1 − p)(p) 

39
by the LTP and again the independence of voters’ signals. 



Application: Jury Voting 

Pr(θ2 = 0 and θ3 = 1 and ω = G | θ1 = 1)| {z } | {z } 
A B 

Recall Bayes’ Rule: 

Pr(B |A)Pr(A)
Pr(A|B) = 

Pr(B) 

Going piece by piece, 

Pr(B) = Pr(θ1 = 1) 

= Pr(θ1 = 1 | ω = G )Pr(ω = G ) + Pr(θ1 = 1 | ω = I )Pr(ω = I ) 

= pπ + (1 − p)(1 − π) 

by the LTP. 40



Application: Jury Voting 

Putting it together, 

πp2(1 − p)
Pr(θ2 = 0 and θ3 = 1 and ω = G | θ1 = 1) = 

πp + (1 − π)(1 − p) 

Exercise: Verify that, by similar logic: 

Pr(θ2 = 1 and θ3 = 0 and ω = I | θ1 = 1) 

= Pr(θ3 = 1 and θ2 = 0 and ω = I | θ1 = 1) 

(1 − π) p (1 − p)2 

= 
πp + (1 − π)(1 − p) 
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Application: Jury Voting 

• Thus, vi (1) = c is optimal for juror 1 if: 

πp2 (1 − p) (1 − π)p(1 − p)2 

2 ≥ 2 
πp + (1 − π)(1 − p) πp + (1 − π)(1 − p) 

• After simplifying and rearranging, this inequality becomes: 

πp2(1 − p) 1 ≥ 
πp2(1 − p) + (1 − π)p(1 − p)2 2 

• The left-hand side is simply the conditional probability of guilt 

given two signals of θ = 1 and one signal of θ = 0. 

• Agent 1 wants to vote to convict if she believes that the 
defendant is more likely to be guilty than innocent after 
conditioning on her signal and the belief that she is pivotal. 
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Application: Jury Voting 

• Similarly, the requirement for a vote of innocence conditional on a 
signal of 0 is: 

πp(1 − p)2 1 ≤ 
πp(1 − p)2 + (1 − π)p2(1 − p) 2 

• The upshot is that truthful behavior among jurors requires: 

2πp 2π(1 − p)≥ 1 ≥ 
πp + (1 − π)(1 − p) π(1 − p) + (1 − π)p 

• We can reduce this messy thing with the help of Wolfram Alpha, 
which tells us: 

π 1 
π ≤ p ≤ for < π < 1 

2π − 1 2 

• We simply require π ≤ p. The signal has to be good relative to the 
probability of guilt. 43
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Application: Public Goods and Incomplete Information 

• Let’s consider a public good provision game similar to the 

crime reporting game that we have studied before 

• A version of the Palfrey-Rosenthal contribution game in which 

potential contributors are uncertain about the contribution 

costs of other players 

• Every agent receives a utility of 1 if at least k agents 

contribute and 0 otherwise 

• Agent i pays a cost ci to contribute where ci is distributed 

uniformly on [0, 1] 

• Each agent learns her own cost, but remains uncertain about 

the other players’ costs 
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The case of k = 1 

• Consider the case where the good is provided for everyone if at least 
one person contributes (k = 1) 

• Let’s focus on symmetric equilibria where all players play a cutpoint 
strategy in which agent i contributes if and only if ci < cbn where cbn 

is an equilibrium cutpoint for the game with n players 

• If everyone else also plays this cutpoint strategy, player i ’s utility 
from contributing is 1 − ci 

• If she does not contribute, she receives 1 if there is at least one 
contributor and 0 otherwise 
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The case of k = 1 

• Because c is distributed uniformly on [0, 1], each player contributes 
with probability: 

ĉn − 0 
Pr(ci ≤ ĉn) = = ĉn

1 − 0 

where we have simply used the CDF of the uniform distribution. 

• Thus the probability that none of the other players contributes is 
]n−1[1 − cbn 

• Agent i ’s utility from not contributing is: 

Pr(no one contributes) ∗ 0 + Pr(someone else contributes) ∗ 1 

]n−1 = 1 − [1 − cbn 

• Accordingly, agent i contributes so long as: 

]n−1 ]n−11 − ci ≥ 1 − [1 − cbn =⇒ [1 − cbn ≥ ci 
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The case of k = 1 

• Because an agent with cost cbn must be indifferent over her 

choices, a Bayesian Nash equilibrium requires: 

[1 − cbn]n−1 = cbn 

• This equilibrium condition implies: 

ln(cbn) 
n − 1 = 

ln (1 − cbn) 
Note that as n grows large, ĉn must get smaller (closer to 0) 

to make the equality hold. Thus, familiarly, a player’s 

probability of making a contribution decreases with group 

size. (This is our classic free-riding result.) 
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The case of k = 1 

• However, it is also the case that the probability that no agent 
contributes, [1 − cbn]n , converges to 0 as n grows large 

• This is because: 
[1 − cbn]n = [1 − cbn]n−1 (1 − cbn) = cbn(1 − cbn) 0 

• So in this model, although the probability that any particular 

agent contributes vanishes as n gets large, the probability of 

public good provision (1 − [1 − cbn]n) converges to 1 

• Compare this result against the result we had with complete 

information, where we found that the probability no one else 

calls did not depend on n 
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Electoral Competition Under Uncertainty 

• We now return to the Hotelling-Downs model of candidate 

competition with positioning on the real line 

• Recall that with complete information, this gave us the 

median voter theorem: candidates position at the median 

voter’s ideal point regardless of their own preference 

• We now consider an extension: candidates have ideal points 0 
(Democrat) and 1 (Republican) as before, but they don’t 
know the location of the median voter — only that it is 
distributed uniformly on [0,1] 

• Median voter’s location is a random variable ω, with F (ω) = ω 
on [0, 1] 

• Candidates’ preferences are common knowledge 
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Electoral Competition Under Uncertainty 

Assume policy-motivated candidates with quadratic utilities: 

2 u1(x) = −x 

u2(x) = −(x − 1)2 

Given two platforms s1 < s2, candidate 1 wins if the median is 
s1+s2closer to s1 than s2. This is true if the median is less than 2 . 

Thus the probability that candidate 1 wins is given by: � � 
s1 + s2 s1 + s2

Pr(1 wins) = Pr ω < = 
2 2 
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Electoral Competition Under Uncertainty 

Let’s look for an equilibrium in which s1 < s2 (why does this make sense?) 

Writing down their expected utilities: � � � � 
s1 + s2 2 s1 + s2 2EU1(s1, s2) = (−s1 ) + 1 − (−s2 )2 2� � � � 

s1 + s2 s1 + s2
EU2(s1, s2) = (−(s1 − 1)2) + 1 − (−(s2 − 1)2)

2 2 

So player 1 chooses s1 to optimize: �� � � � � 
s1 + s2 2 s1 + s2 2 max (−s1 ) + 1 − (−s2 ) s1 2 2� �

3 2 2 3s s1 s2 s1s s1 2 2 2 = max − − − s2 + + 
s1 2 2 2 2 

2 23s s
Yielding the FOC: − 1 − s1s2 + 2 = 02 2 
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Electoral Competition Under Uncertainty 

2 2 � �3s1 s2 s1 s2− − s1s2 + = 0 → (−3s1 + s2) + = 0 
2 2 2 2 

s2→ s1 = or s1 = −s2
3 

Since we are constrained on [0,1], the only solution is: 

s2∗ s1 (s2) = 
3 

Repeat the same exercise for player 2 (check this) and you get: 

2 s1∗ s2 (s1) = + 
3 3 

Solving this system of equations, the unique solution is: 

1 3∗ ∗ s = and s = 1 24 4 
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Electoral Competition Under Uncertainty 

Thus uncertainty about the median voter’s location gives us 

divergence of candidate platforms! 

• The candidates take a gamble that the median voter will be on 

their side and that they’ll get policy closer to their ideal point. 
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Why do states go to war? 

• Note that in nearly every model of conflict over a divisible 
resource that we’ve studied thus far, there was no fighting in 
equilibrium 

• War is costly. 
• With complete information, rational actors who know their 

relative strength and the costs of war can usually bargain into 
a better outcome 

• Why, then, do wars ever occur? 

• We might consider three types of argument: 
1 

2 

3 

Leaders are irrational. 
Leaders are rational but do not pay the costs of war. 
Leaders make rational miscalculations due to incomplete 
information. 

• Let’s focus on this third (neorealist) perspective. 
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A Toy Model 

• Consider two states, A and B, with competing claims over a 

territory 

• Let x ∈ [0, 1] be the share controlled by A and 1 − x be the 

share controlled by B 

• The state that wins gets the whole territory but both states 

pay costs of war cA and cB 

• Let p ∈ [0, 1] be the probability that A wins if they go to war 

• Consider simple linear utilities: uA(x) = x and 

uB (1 − x) = 1 − x 

58



A Toy Model 

Fearon, James D. Figure 1 from “Rationalist Explanations for War.” International Organization 49, no. 3 (1995): 379–414. © MIT Press. All rights reserved. This 
content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/. 

The expected utilities of war are: 

EUA(war) = p(1) + (1 − p)(0) − cA = p − cA 

EUB (war) = p(0) + (1 − p)(1) − cB = 1 − p − cB 

Both states strictly prefer a negotiated settlement in the interval 

(p − cA, p + cB ) to fighting. 
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A Toy Model 

• A concrete example: players bargaining over $100. 

• They can come to an agreement or they can play a costly 

lottery: 50/50 chance of winning, $20 to play 

• Choosing the lottery has expected value $30 

(.5 ∗ 100 + .5 ∗ 0 − 20) 

• Thus any agreement between ($31, $69) and ($69, $31) is 
mutually beneficial (assuming money is divisible into $1 

increments) 

• Risk aversion or discounting will increase this range even 

further 
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War Due to Private Information 

We consider three rationalist explanations for war relating to 

players’ private information: 

1 

2 

Disagreements about relative power (p) 

Miscalculation about opponent’s willingness to fight (cA and 

cB ) 

3 Incentives to misrepresent private information (p, cA, cB ) 

during the bargaining process 

61



(1) Disagreements About Relative Power 

• Staying with the $100 example, suppose both players believe 
that they will win with probability 0.8. Then each will have an 
expected utility of playing the costly lottery (war) of 
0.8 ∗ 100 + 0.2 ∗ 0 − 20 = 60 

• Then there is no division of the $100 that both will accept! 

• Is this truly a rationalist explanation? How can rational states 
come to hold conflicting views? 

• Mutual optimism, emotional commitments, nationalism 
• Same information → different conclusions 
• Different information → different conclusions 

• Harsanyi: Two rational agents presented with the same 

information should reach the same conclusions. So only the 

third is a fully rationalist account. 
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(2) Opponent’s Willingness to Fight 

• Recall that willingness to fight is determined by the bargaining 

range, (p − cA, p + cB ) 

• We have considered states holding different beliefs about p, 

but beliefs about cA and cB also affect this bargaining range 

• Suppose A gets to propose an allocation. It will propose 

p + cB , the largest share to A that makes B indifferent 

between compromise and war 

• But what if A doesn’t know exactly what cB is? 

• As in the electoral competition game, A’s uncertainty about 

the location of B’s indifference point creates incentives to 

reach for a bigger power grab 

• But if A overreaches → war 
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(2) Opponent’s Willingness to Fight 

• Historical examples abound: 

• Germany miscalculated Russian/British willingness to fight in 
1914 

• Japan miscalculated U.S. willingness to engage in long conflict 
over South Pacific in 1941 

• U.S. miscalculated China’s willingness to defend North Korea 

• Again we ask: are such explanations truly rationalist? 

• Going to war when there was a nonempty bargaining range is 
an inefficient outcome that both parties have incentives to 
avoid → why not simply communicate private information in 
that case? 

• Thus a fully rationalist explanation has to explain why leaders 
chose not to faithfully communicate their private information 
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(3) Incentives to Misrepresent in Bargaining 

• While states have an incentive to reach agreement, they also 

have an incentive to misrepresent their private information if 

it helps them get a better bargain 

• Consider a simple adaptation where, before bargaining, B gets 

to make an announcement f , which can be any statement 

that’s informative about its power and/or costs 

• It can be shown that if this announcement does not change 
anyone’s payoffs, it does not change equilibrium outcomes 

• B has an incentive to communicate information to increase its 
share of the territory 

• Knowing this, A ignores B’s message completely 

• (Note, however, that sometimes cheap talk can matter in 

bargaining.) 65



(3) Incentives to Misrepresent in Bargaining 

Now what if we made the signal f costly to send? 

• e.g. building weapons, mobilizing troops, signing alliance treaties, 
supporting troops in a foreign land, creating domestic political costs 
that would be paid if the announcement is false (“audience costs”) 

To be effective, the signal has to be costly such that a state with 

less resolve or capability may not wish to send it. 

• Actions that generate a higher risk of war, such as troop 
mobilizations or belligerent rhetoric before a domestic audience, 
satisfy this requirement 

• Thus the benefit of communication is offset by some real risk of war 

Other considerations: reputational effects, armed conflict as signal 

(for both strong and weak states) 
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Other Rationalist Explanations? 

Fearon also offers some additional rationalist explanations for war 

beyond informational ones: 

• Commitment problems 

• Indivisible resources 
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