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Bounded Rationality 

Boundedly rational players have limited: 

• computational power 

• foresight 
• knowledge of the game they’re playing 

• willingness to play complicated strategies... 

A literature at the intersection of economics and psychology 

incorporates limitations of human cognition into strategic games 

(Rubinstein 1998). 
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Example: Modeling Limited Foresight 

Consider a stage game G that is repeated J times, but players can 

only see K < J stages ahead. One approach to equilibrium: 

Definition (Limited Foresight Equilibrium) 

An equilibrium is a profile of strategies (f ∗)i∈N such that for i 

every history h after which player i has to move, f ∗ is somei 

strategy that maximizes the sum of the payoffs in the K horizon 

given the other players’ strategies. 

Player i only takes the first step of this optimal strategy and 

recomputes at every turn. 
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Example: Strategies as Machines 

The goal is to reduce complex decisionmaking to simple heuristics. 

Definition (Machine strategies) 

A machine for player i in an infinitely repeated game G is a 

four-tuple: 

• Qi is a finite set of states 
0• q is the initial statei 

• fi (Qi ) = Ai is an output function that assigns an action to 

every state 

• τ(Qi , Aj ) is a transition function that assigns a state to every 

pair of a current state and an action of the other player 

5



     

          

     

    

         
 

     
    

  

 

 

Strategies as Machines: Grim Trigger 

The grim trigger strategy can be conveyed as a machine: 

Qi = {qC , qD }
0 q = qCi 

fi (qC ) = C and fi (qD ) = D ( 
qC (q, aj ) = (qC , C )

τi (q, aj ) = 
qD otherwise 

Rubinstein, Ariel. Figure 8.1 from Modeling Bounded Rationality. MIT Press, 1997. © MIT Press. All rights reserved. This content is excluded from our 
Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/. 
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Strategies as Machines: Finite Punishment Strategies 

The machine below corresponds to the strategy: play C as long as 

other player plays C ; if other player defects, play D for three 

periods, then revert to C no matter what. 

Rubinstein, Ariel. Figure 8.1 from Modeling Bounded Rationality. MIT Press, 1997. © MIT Press. All rights reserved. This content is excluded from our Creative Commons 
license. For more information, see https://ocw.mit.edu/help/faq-fair-use/. 

Further reading: Ariel Rubinstein, Modeling Bounded Rationality 

(1998). 
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Mechanism Design 

Can we design mechanisms that get people to reveal their 

preferences and achieve good outcomes, taking into account their 

strategic incentives? 

An extraordinarily rich and influential literature has created 

mechanisms for: 

• matching buyers to products (e.g. auctions) 

• matching organ donors to organ recipients 

• matching job applicants to jobs (e.g. medical residents to 

hospitals) 

These “mechanisms” are often relatively simple algorithms. 
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The Top Trading Cycle (TTC) Algorithm 

Suppose we have n individuals, each assigned to a house; agents 

need not prefer their own house to all others. 

© Source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, 
see https://ocw.mit.edu/help/faq-fair-use/. 
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The Top Trading Cycle (TTC) Algorithm 

Preference orderings are given by: 

Agent 1: 1, 2, 3, 4 

Agent 2: 1, 3, 4, 2 

Agent 3: 1, 4, 3, 2 

Agent 4: 1, 2, 3, 4 

© Source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see 
https://ocw.mit.edu/help/faq-fair-use/. 
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What are desirable properties of an allocation mechanism? 

The TTC algorithm has the desirable property that it is 

Dominant-Strategy Incentive Compatible (DSIC). 

Definition (Dominant-Strategy Incentive Compatible) 

A mechanism is DSIC if truthful behavior is always a dominant 

strategy for every player and if truthful players always obtain 

nonnegative utility. 

Having no incentive to “game the system” — to be rewarded for 

revealing your true preferences — seems a desirable property. But 

a mechanism that never reassigns anything is also DSIC ! 
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What are desirable properties of an allocation mechanism? 

In addition to creating incentives for truthful revelation, we want 

to design mechanisms that capture all gains from trade. 

Definition (Blocking coalition) 

Consider an assignment of one distinct house to each agent. A 

subset of agents forms a blocking coalition for this assignment if 

they can internally reallocate their original houses to make some 

member better off while making no member worse off. 

Definition (Core allocation) 

A core allocation is an assignment with no blocking coalitions. 

TTC is optimal in the sense that it is both DSIC and that it 

produces the unique core allocation. 
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Stable Matching and Kidney Exchange 

The problem: matching kidney donors to patients. 

© Source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see 
https://ocw.mit.edu/help/faq-fair-use/. 
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Stable Matching and Kidney Exchange 

Can we apply the TTC algorithm here? Maybe. 

A good case for the TTC algorithm: 

Roughgarden, Tim. Twenty Lectures on Algorithmic Game Theory. Cambridge University Press, 2016. © Cambridge University Press. All rights reserved. This 
content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/. 

A bad case for the TTC algorithm: 

Roughgarden, Tim. Twenty Lectures on Algorithmic Game Theory. Cambridge University Press, 2016. © Cambridge University Press. All rights reserved. This 
content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/. 
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Stable Matching and Kidney Exchange 

Let M be a perfect matching assigning each v ∈ V to one w ∈ W . 
v ∈ V and w ∈ W form a blocking pair if they are not matched in M, v 
prefers w to her match in M, and w prefers v to her match in M. 
A perfect matching is stable if it has no blocking pairs. 

© Source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more 
information, see https://ocw.mit.edu/help/faq-fair-use/. 
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The Deferred Acceptance Algorithm 

© Source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see 
https://ocw.mit.edu/help/faq-fair-use/. 
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The Deferred Acceptance Algorithm 

The Deferred Acceptance Algorithm has remarkable properties: 

1 Existence of a Stable Matching: For every collection of 
preference lists for the applicants and hospitals, there exists at least 
one stable matching. 

2 Fast Computation of a Stable Matching: The algorithm 
completes with a stable matching after at most n2 iterations, where 
n is the number of vertices on each side. 

3 Applicant-Optimality: While there are potentially numerous stable 
matchings, the deferred acceptance algorithm matches every 
applicant to her most preferred option of all stable matchings. 

4 Truthful Reporting for the Applicant: The applicant (v) is never 
strictly better off reporting falsely than truthfully, though the 
hospital (w) might be. 18



  

        

        

        

      

 

Further Reading 

Roger B. Myerson, “Perspectives on Mechanism Design in 

Economic Theory,” The American Economic Review 98(3), 2008. 

Tim Roughgarden, Twenty Lectures on Algorithmic Game Theory, 

New York: Cambridge University Press, 2016. 
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Evolutionary Game Theory 

Evolutionary game theory focuses on populations that repeatedly play 
games rather than individuals. 

Consider a symmetric two-player game G in normal form with a finite 
strategy set S = {s1, ..., sn}. P 
An individual of type τ uses a mixed strategy τ = i qi si , with all qi ≥ 0P 
and i qi = 1. 

A population as a whole uses strategy si with probability pi ; theP 
population state is σ = i pi si . 

Thus an individual’s expected payoff from playing strategy si against a 
population of type σ is given by: 

nX 
u(si , σ) = u(si , sj )pj 

j=1 21



   

             

           

     

     

            

                

             

              

             

           

        
 

Evolutionary Stable Populations 

Now suppose, in a population with state σ, we replace a fraction � 

of the population with individuals of type τ . Then the new 

population state is given by: 

(1 − �)σ + �τ 

We say that a population state is evolutionarily stable if for every 

τ 6= σ there is a number �0 > 0 such that if 0 < � < �0 then: 

u(σ, (1 − �)σ + �τ) > u(τ, (1 − �)σ + �τ ) 

This means that if a population of type σ is invaded by a small 

number of individuals of any other type τ , then individuals of type 

σ will have a better payoff against a random member of the 

mixed population than individuals of type τ . 
22



   

 

            

           

   

 

Evolutionary Stable Populations 

Theorem 

If (σ, σ) is a pure strategy Nash equilibrium of a symmetric 

two-player game, then σ is an evolutionarily stable state of the 

corresponding evolutionary game. 
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Example: Stag Hunt 

Stag Hunt 

1 / 2 Stag Hare 

Stag 2,2 0,1 

Hare 1,0 1,1 

There are two symmetric pure strategy equilibria, Stag, Stag and 

Hare, Hare. Accordingly, both pure populations of stag hunters 

and hare hunters are evolutionarily stable. (Why?) 

There is additionally a mixed strategy equilibrium of the game 

where both players play stag half the time and hare half the time, 

but this is not an evolutionarily stable population. 
24



  

            

 
                 

             

 
  

 

              
          

       

             

           

     

          
 

Evolutionary Dynamics 

We can think about the rate of growth of a successful invader. P 
As before, let σ = i pi si for strategies i = 1, ..., n be the population 
state, but let us now regard the population state as changing with time: X 

σ(t) = pi (t)si 
i 

It is reasonable to expect that if u(si , σ) > u(σ, σ) then individuals 
playing si should have an above-average number of offspring, so 
pi (t + 1) > pi (t). 

In fact if we assume that the rate of growth is proportional to 
u(si , σ) − u(σ, σ) then we obtain the replicator system: 

ṗi = (u(si , σ) − u(σ, σ))pi 

The replicator system is a differential equation on Rn . 
25



     

        

        

       

        

    

       

 

 

Contributions of Evolutionary Game Theory 

Thus evolutionary game theory helps us think about: 

• How social norms are maintained and challenged over time; 

which norms are resilient and which are vulnerable 

• How traits that do not appear individually rational might 

survive in populations (e.g. altruism) 

Further Reading: Jorgen Weibull, Evolutionary Game Theory 

(1995) 
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Agent-Based Modeling 

Some seemingly complex phenomena are simply aggregations of 

simple individual-level behavior. Take bird flocking. 

A lifelike simulation can be built by following three simple rules. 
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Agent-Based Modeling: Birds Flocking 

Rule 1: Separation. Steer to avoid crowding local flockmates. 

Kim, Yohan, Jay Falletta, and Scott Kelly. "Traffic Is Complex, But Modelling Using Deceptively Simple Rules Can Help Unravel What’s Going On." The 
Conversation. June 7, 2018. © The Conversation US, Inc.. License CC BY-ND. All rights reserved. This content is excluded from our Creative Commons 
license. For more information, see https://ocw.mit.edu/help/faq-fair-use/. 29
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Agent-Based Modeling: Birds Flocking 

Rule 2: Alignment. Steer in the same direction of travel as local 

flockmates. 

Kim, Yohan, Jay Falletta, and Scott Kelly. "Traffic Is Complex, But Modelling Using Deceptively Simple Rules Can Help Unravel What’s Going On." The

 Conversation. June 7, 2018. © The Conversation US, Inc.. License CC BY-ND. All rights reserved. This content is excluded from our Creative Commons 
license. For more information, see https://ocw.mit.edu/help/faq-fair-use/. 
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Agent-Based Modeling: Birds Flocking 

Rule 3: Cohesion. Steer to the average position of local 

flockmates. 

Kim, Yohan, Jay Falletta, and Scott Kelly. "Traffic Is Complex, But Modelling Using Deceptively Simple Rules Can Help Unravel What’s Going On." The 
Conversation. June 7, 2018. © The Conversation US, Inc.. License CC BY-ND. All rights reserved. This content is excluded from our Creative Commons 
license. For more information, see https://ocw.mit.edu/help/faq-fair-use/. 
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Agent-Based Modeling: Applications 

If individual behavior approximately follows simple rules, one needs 

only to write down those rules and let computational systems do 

the work. Applications abound: 

• Ecological systems (flight, migration, cooperation, 

communication, predation) 

• Traffic congestion 

• Disease transmission 

• Financial markets 

• Climate change 

Further Reading: Uri Wilensky and William Rand, An Introduction to 
Agent-Based Modeling: Modeling Natural, Social, and Engineered 
Complex Systems with NetLogo, Cambridge: The MIT Press, 2015. 32



 
 

 

MIT OpenCourseWare 
https://ocw.mit.edu 

17.810 / 17.811 Game Theory  
Spring 2021 

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms. 

https://ocw.mit.edu/
https://ocw.mit.edu/terms

	Bounded Rationality
	Algorithmic Game Theory
	Evolutionary Game Theory
	Agent-Based Modeling



