18.01 Calculus

Lecture 18. October 25, 2005
Homework. Problem Set 5 Part I: (c).
Practice Problems. Course Reader: 3G-1, 3G-2, 3G-4, 3G-5.

1. Approximating Riemann integrals. Often, there is no simpler expression for the antiderivative than the expression given by the Fundamental Theorem of Calculus. In such cases, the simplest method to compute a Riemann integral is to use the definition. However, this is not necessarily the most efficient method. Often trapezoids or segments under a parabola give a better approximation to the Riemann integral than do vertical strips.
2. The trapezoid rule. The problem is to find an approximation of the Riemann integral,

$$
I=\int_{a}^{b} y d x
$$

for a function $y(x)$ defined on the interval $[a, b]$. Choose a partition of the interval $[a, b]$ into n equal subintervals. The points of this partition are,

$$
x_{k}=a+\frac{(b-a) k}{n}, \quad \Delta x_{k}=\frac{b-a}{n} .
$$

The values of these points are,

$$
y_{k}=f\left(x_{k}\right) .
$$

The Riemann sum using always the left endpoint is,

$$
I_{l}=\sum_{k=1}^{n} y_{k-1} \Delta x_{k}
$$

The Riemann sum using always the right endpoint is,

$$
I_{r}=\sum_{k=1}^{n} y_{k} \Delta x_{k}
$$

The average of the two is,

$$
I_{\text {trap }}=\sum_{k=1}^{n} \frac{y_{k-1}+y_{k}}{2} \Delta x_{k}
$$

This is usually a better approximation than either of the two approximations individually. Part of the reason is that the term $\left(y_{k-1}+y_{k}\right) \Delta x_{k} / 2$ is the area of the trapezoid containing the points $\left(x_{k-1}, 0\right),\left(x_{k-1}, y_{k-1}\right),\left(x_{k}, 0\right)$ and $\left(x_{k}, y_{k}\right)$. In particular, if the graph of $y=f(x)$ is a line, this trapezoid is precisely the region between the graph and the x-axis over the interval $\left[x_{k-1}, x_{k}\right]$. Thus, the approximation above gives the exact integral for linear integrands.
Writing out the sum gives,

$$
I_{\text {trap }}=\frac{b-a}{2 n}\left(\left(y_{0}+y_{1}\right)+\left(y_{1}+y_{2}\right)+\left(y_{2}+y_{3}\right)+\cdots+\left(y_{n-2}+y_{n-1}\right)+\left(y_{n-1}+y_{n}\right)\right)
$$

Gathering like terms, this reduces to,

$$
I_{\text {trap }}=(b-a)\left(y_{0}+2 y_{1}+2 y_{2}+\cdots+2 y_{n-1}+y_{n}\right) / 2 n
$$

3. Simpson's rule. Again partition the interval $[a, b]$ into n equal subintervals. For reasons that will become apparent, n must be even. So let $n=2 m$ where m is a positive integer. Again define,

$$
x_{k}=a+\frac{(b-a) k}{n}=a+\frac{(b-a) k}{2 m}, \Delta x_{k}=\frac{b-a}{n}=\frac{b-a}{2 m} .
$$

Pair off the intervals as $\left(\left[x_{0}, x_{1}\right],\left[x_{1}, x_{2}\right]\right),\left(\left[x_{2}, x_{3}\right],\left[x_{3}, x_{4}\right]\right)$, etc. Thus the $l^{\text {th }}$ pair of intervals is,

$$
\left(\left[x_{2 l-2}, x_{2 l-1}\right],\left[x_{2 l-1}, x_{2 l}\right]\right)
$$

The idea is to approximate the area of the graph over the pair of intervals by the area under the unique parabola containing the 3 points $\left(x_{2 l-2}, y_{2 l-2}\right),\left(x_{2 l-1}, y_{2 l-1}\right),\left(x_{2 l}, y_{2 l}\right)$. For notation's sake, denote $2 l-1$ by k. Thus the 3 points are $\left(x_{k-1}, y_{k-1}\right),\left(x_{k}, y_{k}\right)$, and $\left(x_{k+1}, y_{k+1}\right)$ (this is slightly more symmetric).
The first problem is to find the equation of this parabola. Since the parabola contains the point $\left(x_{k}, y_{k}\right)$, it has the equation,

$$
y=A\left(x-x_{k}\right)^{2}+B\left(x-x_{k}\right)+y_{k}
$$

Plugging in $x=x_{k-1}$ and $x=x_{k+1}$, and using that $x_{k+1}-x_{k}=x_{k}-x_{k-1}$ equals Δx,

$$
\begin{aligned}
& y_{k+1}=A(\Delta x)^{2}+B(\Delta x)+y_{k} \\
& y_{k-1}=A(\Delta x)^{2}-B(\Delta x)+y_{k}
\end{aligned}
$$

Summing the two sides gives,

$$
y_{k+1}+y_{k-1}=2 A(\Delta x)^{2}+2 y_{k} .
$$

Solving for A gives,

$$
A=\frac{1}{2(\Delta x)^{2}}\left(y_{k-1}-2 y_{k}+y_{k+1}\right)
$$

Similarly, taking the difference of the two sides gives,

$$
y_{k+1}-y_{k-1}=2 B(\Delta x)
$$

Solving for B gives,

$$
B=\frac{1}{2(\Delta x)}\left(y_{k+1}-y_{k-1}\right)
$$

Thus, the equation of the parabola passing through $\left(x_{k-1}, y_{k-1}\right),\left(x_{k}, y_{k}\right)$ and $\left(x_{k+1}, y_{k+1}\right)$ is,

$$
\begin{gathered}
y=A\left(x-x_{k}\right)^{2}+B\left(x-x_{k}\right)^{2}+y_{k} \\
A=\left(y_{k-1}-2 y_{k}+y_{k+1}\right) / 2(\Delta x)^{2} \\
B=\left(y_{k+1}-y_{k-1}\right) / 2(\Delta x)
\end{gathered}
$$

The next problem is to compute the area under the parabola from $x=x_{k-1}$ to $x=x_{k+1}$. This is a straightforward application of the Fundamental Theorem of Calculus,

$$
\int_{x_{k-1}}^{x_{k+1}} A\left(x-x_{k}\right)^{2}+B\left(x-x_{k}\right)+y_{k} d x=\left(\frac{A}{3}\left(x-x_{k}\right)^{3}+\frac{B}{2}\left(x-x_{k}\right)^{2}+\left.y_{k}\left(x-x_{k}\right)\right|_{x_{k-1}} ^{x_{k+1}}\right.
$$

Plugging in and using that $x_{k+1}-x_{k}=x_{k}-x_{k-1}$ equals Δx, this is,

$$
\frac{2 A}{3}(\Delta x)^{3}+2 y_{k}(\Delta x)
$$

Substituting in the formula for A and simplifying, this is,

$$
\frac{\Delta x}{3}\left(y_{k-1}-2 y_{k}+y_{k+1}\right)+\frac{\Delta x}{3}\left(6 y_{k}\right)=\frac{\Delta x}{3}\left(y_{k-1}+4 y_{k}+y_{k+1}\right) .
$$

Back-substituting $2 l-1$ for k and $(b-a) / 2 m$ for Δx, the approximate area for the pair of intervals $\left[x_{2 l-2}, x_{2 l-2}\right]$ and $\left[x_{2 l-1}, x_{2 l}\right]$ is,

$$
\Delta I_{l}=\frac{b-a}{6 m}\left(y_{2 l-2}+4 y_{2 l-1}+y_{2 l}\right)
$$

Finally, summing this contribution over each choice of l gives the Simpson's rule approximation,

$$
I_{\text {Simpson }}=\frac{b-a}{6 m} \sum_{l=1}^{m}\left(y_{2 l-2}+4 y_{2 l-1}+y_{2 l}\right)
$$

Writing out the sum gives,

$$
\begin{aligned}
& I_{\text {Simpson }}=\frac{b-a}{6 m}\left(\left(y_{0}+4 y_{1}+y_{2}\right)+\left(y_{2}+4 y_{3}+y_{4}\right)+\left(y_{4}+4 y_{5}+y_{6}\right)+\right. \\
& \left.\quad \cdots+\left(y_{2 m-4}+4 y_{2 m-3}+y_{2 m-2}\right)+\left(y_{2 m-2}+4 y_{2 m-1}+y_{2 m}\right)\right) .
\end{aligned}
$$

Gathering like terms, $I_{\text {Simpson }}$ reduces to,

$$
(b-a)\left(y_{0}+4 y_{1}+2 y_{2}+4 y_{3}+2 y_{4}+4 y_{5}+2 y_{6}+\cdots+4 y_{2 m-3}+2 y_{2 m-2}+4 y_{2 m-1}+y_{2 m}\right) / 6 m
$$

Example. Approximate $\ln (2)$ using a partition into 4 equal subintervals with the Trapezoid Rule and with Simpson's Rule.
The value $\ln (2)$ equals the Riemann integral,

$$
\int_{1}^{2} \frac{1}{x} d x
$$

The points of the partition are $x_{0}=4 / 4, x_{1}=5 / 4, x_{2}=6 / 4, x_{3}=7 / 4$ and $x_{4}=8 / 4$. The corresponding values are $y_{0}=4 / 4, y_{1}=4 / 5, y_{2}=4 / 6, y_{3}=4 / 7, y_{4}=4 / 8$. Thus the Trapezoid Rule gives,

$$
I_{\text {trap }}=\frac{b-a}{2 n}\left(y_{0}+2 y_{1}+2 y_{2}+2 y_{3}+y_{4}\right)=\frac{1}{8}\left(\frac{4}{4}+2 \frac{4}{5}+2 \frac{4}{6}+2 \frac{4}{7}+\frac{4}{8}\right)=\frac{1171}{1680} \approx 0.6970
$$

For Simpson's Rule, because n equals 4, m equals 2. Thus,

$$
I_{\text {Simpson }}=\frac{b-a}{6 m}\left(y_{0}+4 y_{1}+2 y_{2}+4 y_{3}+y_{4}\right)=\frac{1}{12}\left(\frac{4}{4}+4 \frac{4}{5}+2 \frac{4}{6}+4 \frac{4}{7}+\frac{4}{8}\right)=\frac{1747}{2520} \approx 0.6933
$$

According to a calculator, the true value is,

$$
\ln (2)=0.6931 \pm 10^{-4}
$$

Note that trapezoids overestimate the area, because $1 / x$ is concave up. The approximating parabolas cross the graph of $y=1 / x$, thus the underestimation to the left of $\left(x_{k}, y_{k}\right)$ somewhat cancels the overestimation to the right of $\left(x_{k}, y_{k}\right)$, explaining the better approximation.
4. One review problem. This is a related rates review problem for Exam 3. A particle moves with constant speed 3 on the parabola $y=x^{2}$. The particle is moving away from the origin. What is the rate-of-change of the distance from the origin to the particle when the distance equals $2 \sqrt{5}$?
The independent variable is time, t. The dependent variables are the x-coordinate of the particle, $x(t)$, the y-coordinate of the particle, $y(t)$, and the distance $L(t)$ from the particle to $(0,0)$. The constant is the speed $s=3$ of the particle. The constraints are that the point moves on the parabola,

$$
y=x^{2},
$$

and the Pythagorean theorem,

$$
L^{2}=x^{2}+y^{2}
$$

Also, since the speed is constant,

$$
s^{2}=\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}
$$

This plays the role of the "known rate-of-change" in a typical related rates problem.
It is simplest to relate the dependent variables y and L to x. The first step is to determine x at the moment when L equals $2 \sqrt{5}$. Plugging $y=x^{2}$ into the equation for L^{2} gives,

$$
L^{2}=x^{2}+y^{2}=x^{2}+\left(x^{2}\right)^{2}=x^{2}+x^{4}
$$

At the instant when L equals $2 \sqrt{5}, L^{2}$ equals 20 . Thus, at that moment,

$$
x^{4}+x^{2}=20
$$

This factors as,

$$
\left(x^{2}-4\right)\left(x^{2}+5\right)=0
$$

Since x^{2} is nonnegative, the solution is $x^{2}=4$. Assuming the particle is in the first quadrant (this is not specified in the problem), x is positive. The other choice leads to a symmetric problem and the same final answer. So, at the moment when L equals $2 \sqrt{5}, x$ equals 2 .
The next step is to determine the "known rate-of-change", $d x / d t$ at the moment when L equals $2 \sqrt{5}$. Implicitly differentiating the equation $y=x^{2}$ gives,

$$
\frac{d y}{d t}=2 x \frac{d x}{d t}
$$

Substituting this into the equation for s^{2} gives,

$$
s^{2}=\left(\frac{d x}{d t}\right)^{2}+\left(2 x \frac{d x}{d t}\right)^{2}=\left(1+4 x^{2}\right)\left(\frac{d x}{d t}\right)^{2}
$$

Since s is known to be 3 , and x is known to be 2 , this equation can be solved for $d x / d t$,

$$
\left(\frac{d x}{d t}\right)^{2}=\frac{3^{2}}{1+4(2)^{2}}=\frac{9}{17}
$$

Since the particle is in the first quadrant and moving away from the origin, $d x / d t$ is positive. So, at the moment when L equals $2 \sqrt{5}, d x / d t$ equals $3 / \sqrt{17}$.
The final step is to compute $d L / d t$ at the moment when L equals $2 \sqrt{5}$. Implicitly differentiating the equation,

$$
L^{2}=x^{2}+x^{4}
$$

gives,

$$
2 L \frac{d L}{d t}=\left(2 x+4 x^{3}\right) \frac{d x}{d t} .
$$

Plugging in for L, x and $d x / d t$ gives,

$$
2(2 \sqrt{5}) \frac{d L}{d t}=\left(2(2)+4(2)^{3}\right) \frac{3}{\sqrt{17}}
$$

Solving gives,

$$
\frac{d L}{d t}=27 / \sqrt{85}
$$

at the moment when L equals $2 \sqrt{5}$.

