Lecture 28. December 1, 2005
Homework. Problem Set 8 Part I: (a) and (b).
Practice Problems. Course Reader: 6A-1, 6A-2.

1. Indeterminate forms. Expressions of the form $0 / 0, \infty / \infty, 0 \times \infty, \infty-\infty, 0^{\infty}$ and ∞^{0} are called indeterminate forms. To be precise, none of these expressions is defined in mathematics. However, if a naive limit computation $\lim _{x \rightarrow a} F(x)$ leads to an indeterminate form, it often happens that a more careful computation using calculus eliminates the indeterminate form.

Example. Let b be any real number. Compute the limit as x approaches 0 of $F(x)=(b+1 / x)-1 / x$, $x \neq 0$. If we evaluate this limit in a naive manner, we get,

$$
\lim _{x \rightarrow 0} F(x)=\lim _{x \rightarrow 0}\left(b+\frac{1}{x}\right)-\left(\frac{1}{x}\right) "=" \lim _{x \rightarrow 0} b+\frac{1}{x}-\lim _{x \rightarrow 0} \frac{1}{x}=\infty-\infty
$$

This is an indeterminate form. In other words, the computation of the limit failed to give any useful information. The reason is that the general formula,

$$
\lim _{x \rightarrow a}[g(x)+h(x)]=\lim _{x \rightarrow a} g(x)-\lim _{x \rightarrow a} h(x),
$$

only holds if all three limits are defined, which they are not in our case.
Of course $F(x)$ is simply the constant function with value b. Therefore,

$$
\lim _{x \rightarrow 0} F(x)=\lim _{x \rightarrow 0} b=b
$$

Thus, a more careful computation proves the limit exists and gives its value.
2. The Mean Value Theorem revisited. Recall the Mean Value Theorem: If $f(x)$ is continuous on $[a, b]$ and differentiable on (a, b), then for some c strictly between a and b,

$$
f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}
$$

Thus, given two such functions $f(x)$ and $g(x)$ such that $g(b)-g(a)$ is nonzero, there exist two values c_{1} and c_{2} strictly between a and b such that,

$$
\frac{f^{\prime}\left(c_{1}\right)}{g^{\prime}\left(c_{2}\right)}=\frac{(f(b)-f(a)) /(b-a)}{(g(b)-g(a)) /(b-a)}=\frac{f(b)-f(a)}{g(b)-g(a)}
$$

Is there a single value $c=c_{1}=c_{2}$ where this equality holds?
The answer is yes. Form the function

$$
F(x)=(f(b)-f(a))(g(x)-g(a))-(g(b)-g(a))(f(x)-f(a)) .
$$

Since $f(x)$ and $g(x)$ are continuous on $[a, b]$, also $F(x)$ is continuous on $[a, b]$. Since $f(x)$ and $g(x)$ are differentiable on (a, b), also $F(x)$ is differentiable on (a, b). Moreover,

$$
F(a)=F(b)=0 .
$$

Thus, by the Mean Value Theorem, there exists a value c strictly between a and b such that $F^{\prime}(c)=0$. By a straightforward computation,

$$
F^{\prime}(c)=(f(b)-f(a)) g^{\prime}(c)-(g(b)-g(a)) f^{\prime}(c)
$$

This proves the Generalized Mean Value Theorem. The main consequence of the Generalized Mean Value Theorem is the following result.
Proposition. Let $f(x)$ and $g(x)$ be continuous functions on $[a, b]$ that are differentiable on (a, b). If $g^{\prime}(x)$ is nonzero on (a, b), then $g(x)-g(a)$ is nonzero for all $a<x<b$ so that the expression,

$$
\frac{f(x)-f(a)}{g(x)-g(a)}
$$

is defined. The right-handed limit,

$$
\lim _{x \rightarrow a^{+}} \frac{f(x)-f(a)}{g(x)-g(a)}
$$

exists if and only if the right-handed limit,

$$
\lim _{x \rightarrow a^{+}} \frac{f^{\prime}(x)}{g^{\prime}(x)}
$$

exists. If both limits exist, they are equal,

$$
\lim _{x \rightarrow a^{+}} \frac{f(x)-f(a)}{g(x)-g(a)}=\lim _{x \rightarrow a^{+}} \frac{f^{\prime}(x)}{g^{\prime}(x)}
$$

A similar result holds for left-handed limits. The proof follows by applying the Generalized Mean Value Theorem to the interval $[a, x]$ to replace $(f(x)-f(a)) /(g(x)-g(a))$ by $f^{\prime}(c) / g^{\prime}(c)$. Then x approaches a as c approaches a.
3. L'Hospital's rule. The most important case of the proposition is L'Hospital's rule. This is exactly the case when $f(a)=g(a)=0$. In this case, a naive computation would give,

$$
\lim _{x \rightarrow a^{+}} \frac{f(x)}{g(x)} "=" \frac{f(a)}{g(a)}=\frac{0}{0},
$$

which is an indeterminate form. Again, the problem is that the general formula,

$$
\lim _{x \rightarrow a^{+}} \frac{f(x)}{g(x)}=\frac{\lim _{x \rightarrow a^{+}} f(x)}{\lim _{x \rightarrow a^{+}} g(x)}
$$

only holds if all three limits are defined, and the limit $\lim _{x \rightarrow a^{+}} g(x)$ is nonzero. Since the limit is zero, the formula does not hold.

However, if $f^{\prime}(x)$ and $g^{\prime}(x)$ exist, and if $g^{\prime}(x)$ is nonzero, then the proposition has the following consequence, known as L'Hospital's rule,

$$
\lim _{x \rightarrow a^{+}} f(x) / g(x)=\lim _{x \rightarrow a^{+}} f^{\prime}(x) / g^{\prime}(x)
$$

Examples.

$$
\begin{gathered}
\lim _{x \rightarrow 0} \frac{\sinh (x)}{\sin (x)}=\lim _{x \rightarrow 0} \frac{\cosh (x)}{\cos (x)}=\frac{1}{1}=1 . \\
\lim _{x \rightarrow 2} \frac{4 x^{3}-32}{x^{2}-x-2}=\lim _{x \rightarrow 2} \frac{12 x^{2}}{2 x-1}=\frac{12 \cdot 4}{2 \cdot 2-1}=\frac{48}{3}=16 . \\
\lim _{x \rightarrow 0} \frac{1-\cos (x)}{x^{2}}=\lim _{x \rightarrow 0} \sin (x) 2 x=\lim _{x \rightarrow 0} \cos (x) 2=1 / 2 .
\end{gathered}
$$

4. L'Hospital's rule for other indeterminate forms. L'Hospital's rule can be used to compute limits that naively lead to indeterminate forms other than $0 / 0$. For instance, if

$$
\lim _{x \rightarrow a^{+}} f(x)=\lim _{x \rightarrow a^{+}} g(x)=\infty
$$

then the naive computation gives,

$$
\lim _{x \rightarrow a^{+}} \frac{f(x)}{g(x)} "=" \frac{\infty}{\infty} .
$$

Now observe that,

$$
\lim _{x \rightarrow a^{+}}(1 / f(x))=\lim _{x \rightarrow a^{+}}(1 / g(x))=0 .
$$

Therefore, if both $g(x)$ and $g^{\prime}(x)$ are nonzero on (a, b), then L'Hospital's rule gives,

$$
\lim _{x \rightarrow a^{+}} \frac{(1 / f(x))}{(1 / g(x))}=\lim _{x \rightarrow a^{+}} \frac{(1 / f(x))^{\prime}}{(1 / g(x))^{\prime}}=\lim _{x \rightarrow a^{+}} \frac{-f^{\prime}(x) / f(x)^{2}}{-g^{\prime}(x) / g(x)^{2}}
$$

Assuming that the limits,

$$
\lim _{x \rightarrow a^{+}} \frac{f(x)}{g(x)}, \text { and } \lim _{x \rightarrow a^{+}} \frac{f^{\prime}(x)}{g^{\prime}(x)}
$$

are defined and nonzero, the formula above can be re-written as,

$$
\left(\lim _{x \rightarrow a^{+}} \frac{f(x)}{g(x)}\right)^{-1}=\left(\lim _{x \rightarrow a^{+}} \frac{f^{\prime}(x)}{g^{\prime}(x)}\right) \cdot\left(\lim _{x \rightarrow a^{+}} \frac{f(x)}{g(x)}\right)^{-2}
$$

Solving gives,

$$
\lim _{x \rightarrow a^{+}} f(x) / g(x)=\lim _{x \rightarrow a^{+}} f^{\prime}(x) / g^{\prime}(x)
$$

if both limits are defined and nonzero. In fact, a better result is true (with a more subtle proof): if the second limit is defined, then the first limit is defined and the 2 are equal (whether or not they are zero).
Example.

$$
\lim _{x \rightarrow \pi / 2^{+}} \frac{\ln (x-\pi / 2)}{\sec (x)}=\lim _{x \rightarrow \pi / 2^{+}} \frac{1 /(x-\pi / 2)}{\sec (x) \tan (x)}=\cdots=0
$$

By similar arguments, other indeterminate forms can also be reduced to L'Hospital's rule. Also, limits of the form,

$$
\lim _{x \rightarrow \infty} F(x)
$$

giving indeterminate forms can often be reduced to L'Hospital's rule. The moral is that the formula,

$$
\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)},
$$

is almost always true if $f(a) / g(a)$ is an indeterminate form. But a certain amount of care should be used, since occasionally this fails.

