Lecture 3. September 13, 2005
Homework. Problem Set 1 Part I: (i) and (j).
Practice Problems. Course Reader: 1E-1, 1E-3, 1E-5.

1. Another derivative. Use the 3 -step method to compute the derivative of $f(x)=1 / \sqrt{3 x+1}$ is,

$$
f^{\prime}(x)=-3(3 x+1)^{-3 / 2} / 2
$$

Upshot: Computing derivatives by the definition is too much work to be practical. We need general methods to simplify computations.
2. The binomial theorem. For a positive integer n, the factorial,

$$
n!=n \times(n-1) \times(n-2) \times \cdots \times 3 \times 2 \times 1
$$

is the number of ways of arranging n distinct objects in a line. For two positive integers n and k, the binomial coefficient,

$$
\binom{n}{k}=\frac{n!}{k!(n-k)!}=\frac{n(n-1) \cdots(n-k+2)(n-k+1)}{k(k-1) \cdots 3 \cdot 2 \cdot 1},
$$

is the number of ways to choose a subset of k elements from a collection of n elements. A fundamental fact about binomial coefficients is the following,

$$
\binom{n}{k-1}+\binom{n}{k}=\binom{n+1}{k} .
$$

This is known as Pascal's formula. This link is to a webpage produced by MathWorld, part of Wolfram Research.

The Binomial Theorem says that for every positive integer n and every pair of numbers a and b, $(a+b)^{n}$ equals,

$$
a^{n}+n a^{n-1} b+\cdots+\binom{n}{k} a^{n-k} b^{k}+\cdots+n a b^{n-1}+b^{n} .
$$

This is proved by mathematical induction. First, the result is very easy when $n=1$; it just says that $(a+b)^{1}$ equals $a^{1}+b^{1}$. Next, make the induction hypothesis that the theorem is true for the integer n. The goal is to deduce the theorem for $n+1$,

$$
(a+b)^{n+1}=a^{n+1}+(n+1) a^{n} b+\cdots+\binom{n+1}{k} a^{n+1-k} b^{k}+\cdots+(n+1) a b^{n}+b^{n+1}
$$

By the definition of the $(n+1)^{\text {st }}$ power of a number,

$$
(a+b)^{n+1}=(a+b) \times(a+b)^{n}
$$

By the induction hypothesis, the second factor can be replaced,

$$
(a+b)(a+b)^{n}=(a+b)\left(a^{n}+\cdots+\binom{n}{k} a^{n-k} b^{k}+\cdots+b^{n}\right)
$$

Multiplying each term in the second factor first by a and then by b gives,

$$
\begin{aligned}
& a^{n+1}+n a^{n} b+\ldots+\binom{n}{k} a^{n+1-k} b^{k}+\binom{n}{k+1} a^{n-k} b^{k+1}+\ldots+a b^{n} \\
& +a^{n} b+\ldots+\binom{n}{k-1} a^{n+1-k} b^{k}+\binom{n}{k} a^{n-k} b^{k+1}+\ldots+n a b^{n}+b^{n+1}
\end{aligned}
$$

Summing in columns gives,

$$
a^{n+1}+(n+1) a^{n} b+\ldots+\left(\binom{n}{k}+\binom{n}{k-1}\right) a^{n+1-k} b^{k}+\left(\binom{n}{k+1}+\binom{n}{k}\right) a^{n-k} b^{k+1}+\ldots+(1+n) a b^{n}
$$

Using Pascal's formula, this simplifies to,

$$
a^{n+1}+(n+1) a^{n} b+\ldots+\binom{n+1}{k} a^{n+1-k} b^{k}+\binom{n+1}{k+1} a^{n-k} b^{k+1}+\ldots+(n+1) a b^{n}+b^{n+1}
$$

This proves the theorem for $n+1$, assuming the theorem for n.
Since we proved the theorem for $n=1$, and since we also proved that for each integer n, the theorem for n implies the theorem for $n+1$, the theorem holds for every integer.
3. The derivative of x^{n}. Let $f(x)=x^{n}$ where n is a positive integer. For every a and every h, the binomial theorem gives,

$$
f(a+h)=(a+h)^{n}=a^{n}+n a^{n-1} h+\cdots+\binom{n}{k} a^{n-k} h^{k}+\cdots+h^{n}
$$

Thus, $f(a+h)-f(a)$ equals,

$$
(a+h)^{n}-a^{n}=n a^{n-1} h+\cdots+\binom{n}{k} a^{n-k} h^{k}+\cdots+h^{n}
$$

Thus the difference quotient is,

$$
\frac{f(a+h)-f(a)}{h}=n a^{n-1}+\binom{n}{2} a^{n-2} h+\cdots+\binom{n}{k} a^{n-k} h^{k-1}+\cdots+h^{n-1} .
$$

Every summand except the first is divisible by h. The limit of such a term as $h \rightarrow 0$ is 0 . Thus,

$$
\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}=n a^{n-1}+0+\cdots+0=n a^{n-1}
$$

So $f^{\prime}(x)$ equals $n x^{n-1}$.
3. Linearity. For differentiable functions $f(x)$ and $g(x)$ and for constants b and $c, b f(x)+c g(x)$ is differentiable and,

$$
(b f(x)+c g(x))^{\prime}=b f^{\prime}(x)+c g^{\prime}(x) .
$$

This is often called linearity of the derivative.
4. The Leibniz rule/Product rule. For differentiable functions $f(x)$ and $g(x)$, the product $f(x) g(x)$ is differentiable and,

$$
(f(x) g(x))^{\prime}=f^{\prime}(x) g(x)+f(x) g^{\prime}(x) .
$$

The crucial observation in proving this is rewriting the increment of $f(x) g(x)$ from a to $a+h$ as,
$f(a+h) g(a+h)-f(a) g(a)=f(a+h)[g(a+h)-g(a)]+f(a+h) g(a)-f(a) g(a)=f(a+h)[g(a+h)-g(a)]+[f(a+h)$
5. The quotient rule. Let $f(x)$ and $g(x)$ be differentiable functions. If $g(a)$ is nonzero, the quotient function $f(x) / g(x)$ is defined and differentiable at a, and,

$$
(f(x) / g(x))^{\prime}=\left[f^{\prime}(x) g(x)-f(x) g^{\prime}(x)\right] / g(x)^{2} .
$$

One way to deduce this formula is to set $q(x)=f(x) / g(x)$ so that $f(x)=q(x) g(x)$, and the apply the Leibniz formula to get,

$$
f^{\prime}(x)=q^{\prime}(x) g(x)+q(x) g^{\prime}(x)=q^{\prime}(x) g(x)+f(x) g^{\prime}(x) / g(x)
$$

Solving for $q^{\prime}(x)$ gives,

$$
q^{\prime}(x)=\left[f^{\prime}(x)-f(x) g^{\prime}(x) / g(x)\right] / g(x)=\left[f^{\prime}(x) g(x)-f(x) g^{\prime}(x)\right] / g(x)^{2} .
$$

6. Another proof that $d\left(x^{n}\right) / d x$ equals $n x^{n-1}$. This was mentioned only very briefly. The product rule also gives another induction proof that for every positive integer $n, d\left(x^{n}\right) / d x$ equals $n x^{n-1}$. For $n=1$, we proved this by hand. Let n be some specific positive integer, and make the induction hypothesis that $d\left(x^{n}\right) / d x$ equals $n x^{n-1}$. The goal is to deduce the formula for $n+1$,

$$
\frac{d\left(x^{n+1}\right)}{d x}=(n+1) x^{n}
$$

By the Leibniz rule,

$$
\frac{d\left(x^{n+1}\right)}{d x}=\frac{d\left(x \times x^{n}\right)}{d x}=\frac{d(x)}{d x} x^{n}+x \frac{d\left(x^{n}\right)}{d x}=(1) x^{n}+x \frac{d\left(x^{n}\right)}{d x} .
$$

By the induction hypothesis, the second term can be replaced,

$$
\frac{d\left(x^{n+1}\right)}{d x}=x^{n}+x\left(n x^{n-1}\right)=x^{n}+n x^{n}=(n+1) x^{n} .
$$

Thus the formula for n implies the formula for $n+1$. Therefore, by mathematical induction, the formula holds for every positive integer n.

