
18.01 Calculus Jason Starr 
Fall 2005 

Lecture 15. October 18, 2005 

Homework. Problem Set 4 Part I: (d) and (e); Part II: Problem 2. 

Practice Problems. Course Reader: 3B6, 3C2, 3C3, 3C4, 3C6. 

1. The Riemann sum for the exponential function. The problem is to compute the Riemann 
integral, � b 

xe dx, 
0 

using Riemann sums. Choose the partition of [0, b] into a sequence of n equallyspaced subintervals 
of length b/n. So the partition numbers are xk = kb/n. Also the length of each partition is 

xΔxk = b/n. Because ex is increasing, the minimum value of e on the interval [xk−1, xk ] occurs at 
the left endpoint, 

(k−1)b/nyk,min = e xk−1 = e . 

Similarly, the maximum value occurs at the right endpoint, 

kb/n yk,max = e xk = e . 

Thus the lower sum is, 
n n� � b 

Amin = yk,minΔxk = e(k−1)b/n . 
n 

k=1 k=1 

And the upper sum is, 
n n� � b 

Amax = yk,maxΔxk = ekb/n . 
n 

k=1 k=1 

To evaluate each of the sums, make the substitution c = eb/n . Then the lower sum is, 

n−1n
b �b � 

lAmin = c k−1 = c . 
n n 

k=1 l=0 

The sum is a geometric sum, 
n 

(1 + c + c 2 + · · ·+ c n−2 + c n−1) = 
c − 1 

. 
c − 1 

Plugging this in gives, 
n ebn/n b c − 1 b − 1 

Amin = = . 
eb/n − 1n c − 1 n 
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This simplifies to, 
b/n 

.Amin = (e b − 1) 
eb/n − 1 

A similar computation gives, 
b/nb/nAmax = (e b − 1)e

eb/n − 1 
. 

Now make the substitution, h = b/n. This gives, 

h 
Amin = (e b − 1) 

eh − 1 
, 

hhAmax = (e b − 1)e . 
he − 1 

Taking the limit of Amin, respectively Amax, as n tends to infinity is the same as taking the limit 
as h tends to 0. 

Now observe that, 
he

lim 
− 1 

, 
h 0 h→

is the difference quotient limit giving the derivative of ex at x = 0. Since dex/dx equals ex, and 
since e0 equals 1, this gives, 

he − 1 
lim = 1. 
h 0 h→

Inverting gives, 
hh e − 1 

�−1 

lim = lim = (1)−1 = 1. 
h→0 eh − 1 h 0 h→

Also, because ex is continuous, 
lim e h = e 0 = 1. 
h 0→

Putting this together gives, 

lim Amin = (e b − 1) lim 
h→0 eh 

h 
− 1 

= (e b − 1)(1) = e b − 1. 
n→∞ 

Similarly, 
hlim Amax = (e b − 1)(lim e )(lim 

h→0 eh 

h 
− 1

) = (e b − 1)(1)(1) = e b − 1. 
h 0n→∞ →

Since the limit of Amin and the limit of Amax exist and are equal, the Riemann integral exists and 
equals, � b 

e xdx = 
0 

eb − 1. 
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r2. The Riemann sum for x . Let r > 0 be a positive real number. The problem is to compute 
the Riemann integral, � b 

r x dx, 
1 

using Riemann sums. For this particular integral, a different partition than usual is more efficient. 
Let n be a positive integer, and let q be the real number, 

q = b1/n. 

Choose the partition of [1, b] into n subintervals with partition numbers, 

k xk = q . 

Observe that, 
1 = x0 < x1 < · · · < xn−1 < xn = (b1/n)n = b. 

The length of the kth subinterval is, 

Δxk = xk − xk−1 = q k − q k−1 = q k−1(q − 1). 

Observe this increases as k increases. So this is not the partition of [1, b] into n equal subintervals. 
The mesh size is, 

mesh = max(Δx1, . . . ,Δxn) = Δxn = (q − 1)b(n−1)/n ≤ q − 1. 

As n tends to infinity, the mesh size tends to, 

lim mesh = lim q − 1 = lim b1/n − 1 = 0. 
n 0 n 0 n 0→ → →

Thus, even though this isn’t the most obvious choice of partition, it can be used to compute the 
Riemann integral. 

r rBecause x is increasing, the minimum value of x on the interval [xk−1, xk ] occurs at the left 
endpoint, 

r yk,min = xk−1 = q(k−1)r . 

Similarly, the maximum value occurs at the right endpoint, 

r kr yk,max = xk = q . 

Thus the lower sum is, 

n n

q(k−1)r · q(k−1)(q − 1).Amin = yk,minΔxk = 
k=1 k=1 
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This simplifies to, 
n

q(k−1)(r+1)Amin = (q − 1) . 
k=1 

And the upper sum is, 

n n

kr Amax = yk,maxΔxk = q q(k−1)(q − 1). 
k=1 k=1 

This simplifies to, 
n

q(k−1)(r+1)Amax = (q − 1)q r . 
k=1 

To evaluate the sum, make the substitution c = qr+1 . Then the sum is, 

n

2 n−1 c k−1 = 1 + c + c + · · ·+ c n−2 + c . 
k=1 

This geometric sum equals, 
n qn(r+1) − 1c − 1 

= . 
qr+1 − 1c − 1 

Thus the upper and lower sums simplify to, 

Amin = (q − 1)(q n(r+1) − 1)/(q r+1 − 1), 

r r+1Amax = q (q − 1)(q n(r+1) − 1)/(q − 1). 

Now backsubstitute q = b1/n to get that qn(r+1) = br+1 . Simplifying gives, 

1 
,Amin = (br+1 − 1)

(qr+1 − 1)/(q − 1) 

1 r .Amax = (br+1 − 1)q 
(qr+1 − 1)/(q − 1) 

As n tends to infinity, the quantity q = b1/n tends to 1. The fraction, 

r+1q − 1 
, 

q − 1 

is the difference quotient for y = xr+1 for x = 1. As q tends to 1, the limit of the difference quotient 
is the derivative of y = xr+1 at x = 1, 

qr+1 d(xr+1)
lim 

− 1
= x=1 = ((r + 1)x r |x=1 = (r + 1). 

q→1 q − 1 dx 
|
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rAlso, since x is continuous, 
lim q r = 1r = 1. 
q→1 

Substituting this in gives, 

br+1 

lim Amin = (br+1 − 1) lim 
qr+1 − 1 −1 

= 
− 1 

, 
q→1 q − 1 r + 1 n→∞ 

br+1 

lim Amax = (br+1 − 1) lim q r lim 
qr+1 − 1 −1 

= 
− 1 

, 
q→1 q→1 q − 1 r + 1 n→∞ 

Since the limit of Amin and the limit of Amax exist and are equal, the Riemann integral exists and 
equals, � b 

x r dx = 
1 

(br+1 − 1)/(r + 1). 

3. The Fundamental Theorem of Calculus. There is a single theorem that it is at the heart 
of almost all applications involving Riemann integrals. The theorem answers two question simul
taneously: Which functions are Riemann integrable? What is the Riemann integral of a function? 
The answer to the first question is: Every function you are likely to encounter is Riemann inte
grable. Precisely, every continuous function, and every piecewise continuous function is Riemann 
integrable. 

The answer to the second question is more interesting. Assume f (x) is a continuous function. Let 
x = a be a fixed point where f (x) is defined. Form the function, 

x 

F (x) = f (t)dt. 
a 

The function F (x) is defined whenever f (t) is defined on all of [a, x]. If f (x) is continuous, the 
Fundamental Theorem of Calculus asserts F (x) is differentiable and, 

d xdF 
(x) = f (t)dt = f (x). 

dx dx a 

The proof of the second part is very easy. Consider the increment in F from x to x + Δx, � x+Δx x � x+Δx 

F (x + Δx) − F (x) = f (t)dt − f (t)dt = f (t)dt. 
a a x 

Let ymin be the minimum value of f (t) on the interval [x, x + Δx]. Let ymax be the maximum 
value of f (t) on the interval [x, x + Δx]. Then for every choice of partition t0 < t1 < tn of< · · · 
[x, x + Δx], and every choice of values y∗ on the subintervals, k 

ymin ≤ y∗ 
k ≤ ymax, 
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for every k. Thus the Riemann sum is squeezed between, 

n n n

∗Δt ≤kkyminΔtk ≤ y ymaxΔtk . 
k=1 k=1 k=1 

Of course the lower bound is, 

n n

yminΔtk = ymin Δtk = yminΔx, 
k=1 k=1 

because the total length of the interval [x, x + Δx] is Δx. Similarly, the upper bound is, 

n

ymaxΔtk = ymaxΔx. 
k=1 

Thus the Riemann sum is squeezed between, 

n

∗Δ ≤x ykk maxΔx.yminΔx ≤ y
k=1 

Because the Riemann integral is a limit of Riemann sums, it is also squeezed, � x+Δx 

yminΔx ≤ f (t)dt ≤ ymaxΔx. 
x 

Substituting in F (x + Δx) − F (x) and dividing each term by Δx gives, 

F (x + Δx) − F (x) 
ymin ≤ 

Δx 
≤ ymax. 

The middle term is the difference quotient. Consider what happens as Δx tends to 0. Because f (t) 
is continuous, both the maximum and minimum values of f (t) on [x, x + Δx] simply limit to the 
value f (x). Thus, 

lim ymin = lim ymax = f (x). 
Δx Δx 

By the Squeezing Lemma for limits, since these two limits exist and are equals, the middle limit 
also exists and equals f (x), 

F (x + Δx) − F (x)
= f (x).lim 

Δx
Δx 0→

This is precisely what the Fundamental Theorem of Calculus asserts, 

d x 

f (x) .f (t)dt = 
dx a 
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4. Algorithm for computing Riemann integrals. The Fundamental Theorem of Calculus has many 
important applications. The most obvious is to give us a simpler method for computing Riemann 
integrals, under the hypothesis that we can compute the antiderivative. If f (x) is a continuous 
function and G(x) is a known antiderivative of f (x), then, � b 

f (t)dt = G(b) − G(a). 
a 

To see this, observe that, 
x 

F (x) = f (t)dt, 
a 

is also an antiderivative of f (t) by the Fundamental Theorem of Calculus. Thus, since the general 
antiderivative is G(x) + C, there is a constant C such that F (x) = G(x) + C. But also, 

a 

F (a) = f (t)dt = 0. 
a 

Thus, F (x) = G(x) − G(a). Now plug in x = b to get, � b 

f (t)dt = F (b) = 
a 

G(b) − G(a). 


