Lecture 11. October 4, 2005
Homework. Problem Set 3 Part I: (g) and (h).
Practice Problems. Course Reader: 2E-4, 2E-8, 2E-9.

1. Related rates. A situation that arises often in practice is that two quantities, say x and y, depend on a third independent variable, say t. The quantities x and y are related through some constraint. Using the constraint, if the rate-of-change $d x / d t$ is known, the rate-of-change $d y / d t$ can be inferred.

Example. For a spring displaced x units from equilibrium, Hooke's law implies the potential energy of the spring is,

$$
P=\frac{1}{2} k x^{2}
$$

where k is a constant with units $\mathrm{kg} / \mathrm{s}^{2}$. At some moment $t=T$, a spring is displaced 5 cm from equilibrium and has velocity $5 \mathrm{~cm} / \mathrm{s}$. In terms of the spring constant k, describe the rate-of-change of the potential energy at $t=T$.

Implicitly differentiating the equation with respect to t gives, using the chain rule,

$$
\frac{d P}{d t}=\frac{1}{2} k(2 x) \frac{d x}{d t}=k x \frac{d x}{d t} .
$$

So, at time $t=T$,

$$
\frac{d P}{d t}(T)=k x(T) \frac{d x}{d t}(T)=k(5)(5) \mathrm{cm}^{2} / \mathrm{s}=25 \mathrm{kcm}^{2} / \mathrm{s}
$$

2. Method for solving related-rates problems. Many of these steps apply to any wordproblem in mathematics.
(i) Identify the independent variable. In the example, this is t.
(ii) Label all constants. In the example, k is a constant.
(iii) Label all dependent variables. In the example, x and P are dependent variables.
(iv) Draw a diagram and carefully label it.
(v) Write the given rate-of-change and the unknown rate-of-change. In the example, $d x / d t(T)$ is given as $5 \mathrm{~cm} / \mathrm{s}$, and $d P / d t$ is unknown.
(vi) Using the diagram and any other information, find constraints among the dependent variables. In the example, this is the equation $P=k x^{2} / 2$.
(vii) Implicitly differentiate the constraint equations with respect to the independent variable. In the example, this gives $d P / d t=k x d x / d t$.
(viii) Substitute in all known quantities and solve for the unknown rate-of-change. In the example, $d P / d t(T)$ equals $25 \mathrm{kcm}^{2} / \mathrm{s}$.

Example. A state trooper waits a distance a from a highway for passing speeders. The speed limit is 60 mph . The trooper aims her radar gun at an angle of $\pi / 4$ to the road. The radar registers a passing car moving away from the trooper at a speed of 50 mph . Should the trooper ticket the driver?
The independent variable is time t. The constants are the distance a and the angle $\theta=\pi / 4$. Label a coordinate system with the trooper at the origin and the highway equal to the line $y=a$. Label the position of the car along the highway as x, moving in the positive direction. Denote by r the distance of the car from the trooper. Then x and r are dependent variables. The rate-ofchange $d r / d t(T)$ is given as 50 mph . The unknown rate-of-change is $d x / d t(T)$. The constraint is the Pythagorean theorem,

$$
r^{2}=x^{2}+y^{2} .
$$

Implicit differentiation with respect to t yields,

$$
2 r \frac{d r}{d t}=2 x \frac{d x}{d t}+0=2 x \frac{d x}{d t} .
$$

At time $t=T, x(T)$ equals a, because the angle θ is $\pi / 4$. Thus $r(T)$ equals $\sqrt{2} a$. Substituting in gives,

$$
2(\sqrt{2} a) 50=2(a) \frac{d x}{d t}(T)
$$

Solving gives,

$$
\frac{d x}{d t}(T)=\sqrt{2} 50 \approx 71 \mathrm{mph}
$$

So the trooper should ticket the driver.
Example. A point on the x-axis moves away from the origin. There is an angle θ subtended by the point and the unit circle with equation $x^{2}+y^{2}=1$. In other words, standing at the point $(x, 0)$ and staring at the circle, θ is the angle of your field-of-vision occupied by the circle. At a moment $t=T$, the point is at the position $(2,0)$ and moving with velocity v. What is the rate-of-change of θ at $t=T$?
The independent variable is time t. There is no constant. The dependent variables are the x coordinate of the point, $x(t)$, and the angle $\theta(t)$. The rate-of-change $d x / d t(T)$ is given to be v. The rate-of-change $d \theta / d t$ is unknown.
The constraint is somewhat tricky. There are two tangent lines to the circle containing $(x, 0)$. These are the tangent lines to points $(a,+b)$ and $(a,-b)$ on the circle. Because the tangent line to the circle at (a, b) is perpendicular to the radius through (a, b), the triangle with vertices $(0,0),(a, b)$ and the point $(x, 0)$ is a right triangle. The angle of the triangle at $(x, 0)$ is $\theta / 2$. Since the radius has length 1 and the hypotenuse has length x, the constraint is,

$$
\sin (\theta)=\frac{1}{x}
$$

Implicit differentiation with respect to t gives,

$$
\frac{d \sin (\theta)}{d \theta} \frac{d \theta}{d t}=\frac{d\left(x^{-1}\right)}{d x} \frac{d x}{d t}
$$

or,

$$
\cos (\theta) \frac{d \theta}{d t}=\frac{-1}{x^{2}} \frac{d x}{d t}
$$

Since $x(T)$ equals $2, \sin (\theta(T))=1 / 2$, and thus $\cos (\theta(T))$ equals $\sqrt{3} / 2$. Plugging in gives,

$$
\frac{\sqrt{3}}{2} \frac{d \theta}{d t}(T)=\frac{-1}{(2)^{2}} v=\frac{-v}{4} .
$$

Solving gives,

$$
\frac{d \theta}{d t}(T)=-v /(2 \sqrt{3})
$$

3. Another applied max/min problem. As review for Exam 2, this is another applied max/min problem. A trapezoid is inscribed inside the upper unit semicircle, $x^{2}+y^{2}=1, y \geq 0$. The base of the trapezoid is the diameter of the semicircle lying on the x-axis. The top of the trapezoid is parallel to the x-axis joining $(-x, y)$ to (x, y) for a point (x, y) on the unit circle in the first quadrant. What is the maximal area enclosed by such a trapezoid?
The parameters are x and y. The height of the trapezoid is y. The area of a trapezoid is the product of the height with the average of the parallel sides. Thus,

$$
A=y \frac{(2+2 x)}{2}=(x+1) y
$$

This is the quantity to be maximized. There is a constraint among the parameters,

$$
x^{2}+y^{2}=1 .
$$

Also, since (x, y) is in the first quadrant, $0 \leq x \leq 1$ and $0 \leq y \leq 1$.
There are at least 3 ways to proceed. The most direct is to solve for y in terms of x,

$$
y=\sqrt{1-x^{2}} .
$$

Substituting this into the equation for A gives,

$$
A(x)=(x+1) \sqrt{1-x^{2}}
$$

Differentiating gives,

$$
\frac{d A}{d x}=\sqrt{1-x^{2}}+(x+1) \frac{-2 x}{2 \sqrt{1-x^{2}}}=\frac{1}{\sqrt{1-x^{2}}}\left(\left(1-x^{2}\right)-\left(x^{2}+x\right)\right)=\frac{-\left(2 x^{2}+x-1\right)}{\sqrt{1-x^{2}}}
$$

Because the quadratic polynomial $2 x^{2}+x-1$ factors as,

$$
2 x^{2}+x-1=(2 x-1)(x+1)
$$

the critical points of A are $x=-1$ and $x=1 / 2$. But $x=-1$ does not give a point in the first quadrant. Thus A is maximized either at one of the endpoints $x=0, x=1$ or at the critical point $x=1 / 2$. Plugging in gives,

$$
A(0)=1, A(1 / 2)=3 \sqrt{3} / 4, A(1)=0
$$

This gives the answer,

$$
\text { A achieves its maximum } 3 \sqrt{3} / 4 \text { for the point }(x, y)=(1 / 2, \sqrt{3} / 2) \text {. }
$$

18.01 Calculus

Jason Starr Fall 2005

Two other methods were given in lecture. The fastest among the three is to instead minimize A^{2},

$$
A^{2}=(x+1)^{2} y^{2} .
$$

Using the constraint, $y^{2}=1-x^{2}$, thus,

$$
\left(A^{2}\right)(x)=(x+1)^{2}\left(1-x^{2}\right) .
$$

The derivative of this polynomial is very fast to compute, and gives the same answer as above.

