Lecture 5. September 16, 2005
Homework. Problem Set 2 Part I: (a)-(e); Part II: Problem 2.
Practice Problems. Course Reader: 1I-1, 1I-4, 1I-5

1. Example of implicit differentiation. Let $y=f(x)$ be the unique function satisfying the equation,

$$
\frac{1}{x}+\frac{1}{y}=2
$$

What is slope of the tangent line to the graph of $y=f(x)$ at the point $(x, y)=(1,1)$?
Implicitly differentiate each side of the equation to get,

$$
\frac{d}{d x}\left(\frac{1}{x}\right)+\frac{d}{d x}\left(\frac{1}{y}\right)=\frac{d(2)}{d x}=0
$$

Of course $(1 / x)^{\prime}=\left(x^{-1}\right)^{\prime}=-x^{-2}$. And by the rule $d\left(u^{n}\right) / d x=n u^{n-1}(d u / d x)$, the derivative of $1 / y$ is $-y^{-2}(d y / d x)$. Thus,

$$
-x^{-2}-y^{-2} \frac{d y}{d x}=0
$$

Plugging in x equals 1 and y equals 1 gives,

$$
-1-1 y^{\prime}(1)=0
$$

whose solution is,

$$
y^{\prime}(1)=-1 \text {. }
$$

In fact, using that $1 / y$ equals $2-1 / x$, this can be solved for every x,

$$
\frac{d y}{d x}=\left(x^{-2}\right) /\left(y^{-2}\right)=\frac{1}{x^{2}} \cdot \frac{1}{(2-1 / x)^{2}}=\frac{1}{(2 x-1)^{2}}
$$

2. Rules for exponentials and logarithms. Let a be a positive real number. The basic rules of exponentials are as follows.
Rule 1. If a^{b} equals B and a^{c} equals C, then a^{b+c} equals $B \cdot C$, i.e.,

$$
a^{b+c}=a^{b} \cdot a^{c} .
$$

Rule 2. If a^{b} equals B and B^{d} equals D, then $a^{b d}$ equals D, i.e.,

$$
\left(a^{b}\right)^{d}=a^{b d}
$$

If a^{b} equals B, the logarithm with base a of B is defined to be b. This is written $\log _{a}(B)=b$. The function $B \rightarrow \log _{a}(B)$ is defined for all positive real numbers B. Using this definition, the rules of exponentiation become rules of logarithms.

Rule 1. If $\log _{a}(B)$ equals b and $\log _{a}(C)$ equals c, then $\log _{a}(B \cdot C)$ equals $b+c$, i.e.,

$$
\log _{a}(B \cdot C)=\log _{a}(B)+\log _{a}(C)
$$

Rule 2. If $\log _{a}(B)$ equals b and B^{d} equals D, then $\log _{a}(D)$ equals $d \log _{a}(B)$, i.e.,

$$
\log _{a}\left(B^{d}\right)=d \log _{a}(B)
$$

Rule 3. Since $\log _{B}(D)$ equals d, an equivalent formulation is $\log _{a}(D)$ equals $\log _{a}(B) \log _{B}(D)$, i.e.,

$$
\log _{a}(D)=\log _{a}(B) \log _{B}(D)
$$

3. The derivative of a^{x}. Let a be a positive real number. What is the derivative of a^{x} ? Denote the derivative of a^{x} at $x=0$ by $L(a)$. It equals the value of the limit,

$$
L(a)=\lim _{h \rightarrow 0} \frac{a^{h}-1}{h} .
$$

Then for every x_{0}, the derivative of a^{x} at x_{0} equals,

$$
\lim _{h \rightarrow 0} \frac{a^{x_{0}+h}-a^{x_{0}}}{h} .
$$

By Rule 1, $a^{x_{0}+h}$ equals $a^{x_{0}} a^{h}$. Thus the limit factors as,

$$
\lim _{h \rightarrow 0} \frac{a^{x_{0}} a^{h}-a^{x_{0}}}{h}=a^{x_{0}} \lim _{h \rightarrow 0} a^{h}-1 h
$$

Therefore, for every x, the derivative of a^{x} is,

$$
\frac{d\left(a^{x}\right)}{d x}=L(a) a^{x}
$$

What is $L(a)$? To figure this out, consider how $L(a)$ changes as a changes. First of all,

$$
L\left(a^{b}\right)=\lim _{h \rightarrow 0} \frac{\left(a^{b}\right)^{h}-1}{h}
$$

By Rule 2, $\left(a^{b}\right)^{h}$ equals $a^{b h}$. So the limit is,

$$
L\left(a^{b}\right)=\lim _{h \rightarrow 0} \frac{a^{b h}-1}{h}=b \lim _{h \rightarrow 0} \frac{a^{b h}-1}{b h} .
$$

Now, inside the limit, make the substitution that k equals $b h$. As h approaches 0 , also k approaches 0 . So the limit is,

$$
L\left(a^{b}\right)=b \lim _{k \rightarrow 0} \frac{a^{k}-1}{k}=b L(a) .
$$

This is very similar to Rule 2 for logarithms.
Choose a number a_{0} bigger than 1 , say $a_{0}=2$. Then for every positive real number $a, a=a_{0}^{b}$ where $b=\log _{a_{0}}(a)$. Thus,

$$
L(a)=L\left(a_{0}^{b}\right)=b L\left(a_{0}\right)=L\left(a_{0}\right) \log _{a_{0}}(a) .
$$

So, with a_{0} fixed and a allowed to vary, $L(a)$ is just the logarithm function $\log _{a_{0}}(a)$ scaled by $L\left(a_{0}\right)$. Looking at the graph of $\left(a_{0}\right)^{x}$, it is geometrically clear that $L\left(a_{0}\right)$ is positive (though we have not proved that $L\left(a_{0}\right)$ is even defined). Thus the graph of $L(a)$ looks qualitatively like the graph of $\log _{a_{0}}(a)$. In particular, for a less than $1, L(a)$ is negative. The value $L(1)$ equals 0 . And $L(a)$ approaches $+\infty$ and a increases. Therefore, there must be a number where L takes the value 1 . By long tradition, this number is called e;

$$
L(e)=\lim _{h \rightarrow 0} \frac{e^{h}-1}{h}=1 .
$$

This is the definition of e. It sheds very little light on the decimal value of e.
Because e is so important, the logarithm with base e is given a special name: the natural logarithm. It is denote by,

$$
\ln (a)=\log _{e}(a)
$$

So, finally, $L(a)$ equals,

$$
L(a)=\log _{e}(a) L(e)=\ln (a)(1)=\ln (a) .
$$

This leads to the formula for the derivative of a^{x},

$$
\frac{d\left(a^{x}\right)}{d x}=\ln (a) a^{x}
$$

In particular,

$$
\frac{d\left(e^{x}\right)}{d x}=e^{x}
$$

In fact, e^{x} is characterized by the property above and the property that e^{0} equals 1 .
4. The derivative of $\log _{a}(x)$ and the value of e. By the chain rule,

$$
\frac{d\left(a^{u}\right)}{d x}=\ln (a) a^{u} \frac{d u}{d x} .
$$

For $u=\log _{a}(x), a^{u}$ equals x. Thus,

$$
\frac{d\left(a^{u}\right)}{d x}=\frac{d(x)}{d x}=1 .
$$

Thus,

$$
\ln (a) a^{u} \frac{d u}{d x}=1
$$

Solving gives,

$$
\frac{d \log _{a}(x)}{d x}=\frac{1}{\ln (a)} \frac{1}{a^{u}}=1 /(\ln (a) x)
$$

In particular, for $a=e$, this gives,

$$
\frac{d \ln (x)}{d x}=1 / x
$$

What is the derivative of $\ln (x)$ at $x=1$? On the one hand, since the derivative of $\ln (x)$ equals $1 / x$, the derivative at $x=1$ is $1 / 1=1$. On the other hand, the definition of the derivative gives,

$$
\lim _{h \rightarrow 0} \frac{\ln (1+h)-\ln (1)}{h} .
$$

Of course, $\ln (1)$ equals 0 , so this simplifies to,

$$
\lim _{h \rightarrow 0} \frac{1}{h} \ln (1+h) .
$$

Using Rule 2 for logarithms, this gives,

$$
\lim _{h \rightarrow 0} \ln \left((1+h)^{1 / h}\right)
$$

Since $\ln (y)$ is continuous, the limit equals,

$$
\ln \left[\lim _{h \rightarrow 0}(1+h)^{1 / h}\right]
$$

So the natural logarithm of the inner limit equals 1 . But e is the unique number whose natural logarithm equals 1 . This leads to the formula,

$$
e=\lim _{h \rightarrow 0}(1+h)^{1 / h}
$$

Making the substitution $n=1 / h$ leads to the more familiar form,

$$
\lim _{n \rightarrow+\infty}(1+1 / n)^{n}=e
$$

This can be used to compute e to arbitrary accuracy. The first few digits of e are 2.718281828459045...
5. Logarithmic differentiation. There is a method of computing derivatives of products of functions that is often useful. If y is a product of n factors, say $f_{1}(x) \cdot f_{2}(x) \cdots \cdots f_{n}(x)$, the derivative of y can be computed by the product rule. However, it seems to be a fact that multiplication is more error-prone than addition. Thus introduce,

$$
u=\ln (y)=\ln \left(f_{1}(x)\right)+\ln \left(f_{2}(x)\right)+\cdots+\ln \left(f_{n}(x)\right)
$$

The derivative of u is,

$$
\frac{d u}{d x}=\frac{d}{d x}\left(\ln \left(f_{1}(x)\right)\right)+\cdots+\frac{d}{d x}\left(\ln \left(f_{n}(x)\right)\right)
$$

Using the chain rule, this is,

$$
\frac{d u}{d x}=\frac{f_{1}^{\prime}(x)}{f_{1}(x)}+\cdots+\frac{f_{n}^{\prime}(x)}{f_{n}(x)}
$$

Thus, far fewer multiplications are needed to compute u^{\prime}. This is good, because also,

$$
\frac{d u}{d x}=\frac{d \ln (y)}{d x}=\frac{1}{y} \frac{d y}{d x}
$$

Therefore the derivative of y can be computed as,

$$
y^{\prime}=y u^{\prime}=\left(f_{1}(x) \cdots \cdot f_{n}(x)\right)\left(\frac{f_{1}^{\prime}(x)}{f_{1}(x)}+\cdots+\frac{f_{n}^{\prime}(x)}{f_{n}(x)}\right) .
$$

Example. Let y be,

$$
\frac{\left(1+x^{3}\right)(1+\sqrt{x})}{x^{3 / 7}}
$$

Then,

$$
u=\ln (y)=\ln \left(1+x^{3}\right)+\ln (1+\sqrt{x})-\frac{3}{7} \ln (x) .
$$

By the chain rule, $\ln \left(1+x^{3}\right)^{\prime}=3 x^{2} /\left(1+x^{3}\right)$ and $\ln (1+\sqrt{x})^{\prime}=(\sqrt{x})^{\prime} /(1+\sqrt{x})=\left(1 / 2 x^{-1 / 2}\right) /(1+\sqrt{x})$. Thus, u^{\prime} equals,

$$
u^{\prime}=\frac{3 x^{2}}{\left(1+x^{3}\right)}+\frac{1}{2 \sqrt{x}(1+\sqrt{x})}-\frac{3}{7 x} .
$$

So, finally,

$$
y^{\prime}=y u^{\prime}=\frac{\left(1+x^{3}\right)(1+\sqrt{x})}{x^{3 / 7}}\left(\frac{3 x^{2}}{\left(1+x^{3}\right)}+\frac{1}{2 \sqrt{x}(1+\sqrt{x})}-\frac{3}{7 x}\right) .
$$

