Lecture 9. September 29, 2005
Homework. Problem Set 2 all of Part I and Part II.
Practice Problems. Course Reader: 2B-1, 2B-2, 2B-4, 2B-5.

1. Application of the Mean Value Theorem. A real-world application of the Mean Value Theorem is error analysis. A device accepts an input signal x and returns an output signal y. If the input signal is always in the range $-1 / 2 \leq x \leq 1 / 2$ and if the output signal is,

$$
y=f(x)=\frac{1}{1+x+x^{2}+x^{3}}
$$

what precision of the input signal x is required to get a precision of $\pm 10^{-3}$ for the output signal? If the ideal input signal is $x=a$, and if the precision is $\pm h$, then the actual input signal is in the range $a-h \leq x \leq a+h$. The precision of the output signal is $|f(x)-f(a)|$. By the Mean Value Theorem,

$$
\frac{f(x)-f(a)}{x-a}=f^{\prime}(c),
$$

for some c between a and x. The derivative $f^{\prime}(x)$ is,

$$
f^{\prime}(x)=\frac{-\left(3 x^{2}+2 x+1\right)}{\left(1+x+x^{2}+x^{3}\right)^{2}}
$$

For $-1 / 2 \leq x \leq 1 / 2$, this is bounded by,

$$
\left|f^{\prime}(x)\right| \leq \frac{3(1 / 2)^{2}+2(1 / 2)+1}{\left[1+(-1 / 2)+(-1 / 2)^{2}+(-1 / 2)^{3}\right]^{2}}=7.04
$$

Thus the Mean Value Theorem gives,

$$
|f(x)-f(a)|=\left|f^{\prime}(c)\right||x-a| \leq 7.04|x-a| \leq 7.04 h
$$

Therefore a precision for the input signal of,

$$
h=10^{-3} / 7.04 \approx 10^{-4}
$$

guarantees a precision of 10^{-3} for the output signal.
2. First derivative test. A function $f(x)$ is increasing, respectively decreasing, if $f(a)$ is less than $f(b)$, resp. greater than $f(b)$, whenever a is less than b. In symbols, f is increasing, respectively decreasing, if

$$
f(a)<f(b) \text { whenever } a<b, \text { resp. } f(a)>f(b) \text { whenever } a<b \text {. }
$$

If $f(a)$ is less than or equal to $f(b)$, resp. greater than or equal to $f(b)$, whenever a is less than b, then $f(x)$ is non-decreasing, resp. non-increasing. If $f(x)$ is increasing, the graph rises to the right. If $f(x)$ is decreasing, the graph rises to the left.
If $f^{\prime}(a)$ is positive, the First Derivative Test guarantees that $f(x)$ is increasing for all x sufficiently close to a. If $f^{\prime}(a)$ is negative, the First Derivative Test guarantees that $f(x)$ is decreasing for all x sufficiently close to a.

Example. For the function $y=x^{3}+x^{2}-x-1$, determine where y is increasing and where y is decreasing.
The derivative is,

$$
y^{\prime}=3 x^{2}+2 x-1=(3 x-1)(x+1) .
$$

Thus the derivative of y changes sign only at the points $x=-1$ and $x=1 / 3$. By testing random elements, y^{\prime} is positive for $x>1 / 3$, it is negative for $-1<x<1 / 3$, and it is positive for $x<-1$. Therefore, by the First Derivative Test, y is increasing for $x<-1, y$ is decreasing for $-1<x<1 / 3$, and y is increasing for $x>1 / 3$.
3. Extremal points. If $f(x) \leq f(a)$ for all x near a, then x is a local maximum. If $f(x) \geq f(a)$ for all x near a, then x is a local minimum. Because of the First Derivative Test, if $f^{\prime}(a)>0$ and f is defined to the right of a, the graph of f rises to the right of a. Thus a is not a local maximum. Similarly, if $f^{\prime}(a)<0$ and f is defined to the left of a, the graph of f rises to the left of a. Thus a is not a local maximum. In particular, if f is defined to both the right and left of a, if $f^{\prime}(a)$ is defined, and if a is a local maximum, then $f^{\prime}(a)$ equals 0 . Similarly, if f is defined to both the right and left of a, if $f^{\prime}(a)$ is defined, and if a is a local minimum, then $f^{\prime}(a)$ equals 0 .
A point a where $f^{\prime}(a)$ is defined and equals 0 is a critical point. By the last paragraph, if $x=a$ is a local maximum of f, respectively a local minimum of f, then one of the following holds.
(i) The function $f(x)$ is discontinuous at a.
(ii) The function $f(x)$ is continuous at a, but $f^{\prime}(a)$ is not defined.
(iii) The point a is a left endpoint of the interval where f is defined, and $f^{\prime}(a) \leq 0$, resp. $f^{\prime}(a) \geq 0$.
(iv) The point a is a right endpoint of the interval where f is defined, and $f^{\prime}(a) \geq 0$, rexp. $f^{\prime}(a) \leq 0$.
(v) The function f is defined to the left and right of a, and $f^{\prime}(a)$ equals 0 . In other words, a is a critical point of f.

Example. For the function $y=x^{3}+x^{2}-x-1$, the critical points are $x=-1$ and $x=1 / 3$. By examining where y is increasing and decreasing, $x=-1$ is a local maximum and $x=1 / 3$ is a local minimum.
The plurals of "maximum" and "minimum" are "maxima" and "minima". Together, local maxima and local minima are called extremal points, or extrema. These are points where f takes on an
extreme value, either positive or negative. A point where f achieves its maximum value among all points where f is defined is a global maximum or absolute maximum. A point where f achieves its minimum value among all points where f is defined is a global minimum or absolute minimum.
4. Concavity and the Second Derivative Test. For a differentiable function f, every "interior" extremal point is a critical point of f. But not every critical point of f is an extremal point.
Example. The function $f(x)=x^{3}$ has a critical point at $x=0$. But $f(x)$ is everywhere increasing, thus $x=0$ is not an extremal point of f.
When is a critical point an extremal point? When is it a local maximum? When is it a local minimum? This is closely related to the concavity of f. A function $f(x)$ is concave up, respectively concave down, if no secant line segment to $f(x)$ crosses below the graph of f, resp. above the graph of f. In symbols, f is concave up, resp. concave down, if

$$
\begin{aligned}
& \quad(f(c)-f(a)) /(c-a) \leq(f(b)-f(a)) /(b-a) \text { whenever } a<c<b, \\
& \text { resp. }(f(c)-f(a)) /(c-a) \geq(f(b)-f(a)) /(b-a) \text { whenever } a<c<b
\end{aligned}
$$

For a differentiable function f, this equation is close to,

$$
f^{\prime}(c) \leq f^{\prime}(b) \text { whenever } a<c<b
$$

resp. $f^{\prime}(c) \geq f^{\prime}(b)$ whenever $a>c>b$.
This precisely says that f^{\prime} is non-decreasing, resp. f^{\prime} is non-increasing. If f^{\prime} is non-decreasing, resp. non-increasing, then f is concave up, resp. concave down. Applying the First Derivative Test to determine when f^{\prime} is increasing, resp. decreasing, gives the Second Derivative Test: If $f^{\prime \prime}(a)>0$, then f is concave up near $x=a$; if $f^{\prime \prime}(a)<0$ then f is concave down near $x=a$.

If f is concave up near a critical point, the critical point is a local minimum. If f is concave down near a critical point, the critical point is a local maximum. Combined with the Second Derivative Test, this gives a test for when a critical point is a local maximum or local minimum: If $f^{\prime}(a)$ equals 0 and $f^{\prime \prime}(a)<0$, then $x=a$ is a local maximum. If $f^{\prime}(a)$ equals 0 and $f^{\prime \prime}(a)>0$, then $x=a$ is a local minimum.
Example. For $y=x^{3}+x^{2}-x-1$, the second derivative is $y^{\prime \prime}=6 x+2$. Since $y^{\prime \prime}(-1)=-4$ is negative, the critical point $x=-1$ is a local maximum. Since $y^{\prime \prime}(1 / 3)=4$ is positive, $x=1 / 3$ is a local minimum.
5. Inflection points. If f is differentiable, but for every neighborhood of a, f is neither concave up nor concave down on the entire neighborhood, then a is an inflection point. If $f^{\prime \prime}(a)$ is defined, the Second Derivative Test says that $f^{\prime \prime}(a)$ must equal 0. Except in pathological cases, an inflection point is a point where f is concave up to one side of f, and concave down to the other side of f.
Example. For $y=x^{3}+x^{2}-x-1$, the second derivative $y^{\prime \prime}=6 x+2$ is negative for $x<-1 / 3$ and is positive for $x>1 / 3$. By the Second Derivative Test, y is concave down for $x<-1 / 3$ and y is concave up for $x>-1 / 3$. Therefore $x=-1 / 3$ is an inflection point for y.

